-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathray-aws-cluster.yaml
58 lines (52 loc) · 2.09 KB
/
ray-aws-cluster.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# An unique identifier for the head node and workers of this cluster.
cluster_name: rayz1d
# Cloud-provider specific configuration.
provider:
type: aws
region: us-east-1
cache_stopped_nodes: True
max_workers: 30
setup_commands:
- sudo bash -c 'rm -rf /etc/security/limits.d; echo "* soft nofile 65535" >> /etc/security/limits.conf; echo "* hard nofile 65535" >> /etc/security/limits.conf;'
- sudo bash -c 'mkswap /dev/nvme1n1 && swapon /dev/nvme1n1'
# - sudo apt install swig -y
# - pip install -U 'boto3>=1.4.8'
# - pip install -U 'ray[default,rllib]==2.0.0'
# - pip install -U tensorflow==2.10.0 tensorflow-probability==0.17.0 torch==1.12.1 wandb 'pettingzoo[magent,sisl]==1.20.1' supersuit==3.5.0
# - pip install -U gym==0.22.0
available_node_types:
ray.head.default:
resources: {"CPU": 1, "object-store-memory": 0}
node_config:
InstanceType: z1d.12xlarge
ImageId: ami-0c3a82216886b746f # My AMI with prerequisites installed
ray.worker.default:
min_workers: 0
max_workers: 16
resources: {"object-store-memory": 0}
node_config:
InstanceType: z1d.6xlarge
ImageId: ami-0c3a82216886b746f # My AMI with prerequisites installed
ray.worker.3xlarge:
min_workers: 0
max_workers: 16
resources: {"object-store-memory": 0}
node_config:
InstanceType: z1d.3xlarge
ImageId: ami-0c3a82216886b746f # My AMI with prerequisites installed
ray.worker.2xlarge:
min_workers: 0
max_workers: 16
resources: {"object-store-memory": 0}
node_config:
InstanceType: z1d.2xlarge
ImageId: ami-0c3a82216886b746f # My AMI with prerequisites installed
ray.worker.12xlarge:
min_workers: 0
max_workers: 16
resources: {"object-store-memory": 0}
node_config:
InstanceType: z1d.12xlarge
ImageId: ami-0c3a82216886b746f # My AMI with prerequisites installed
# Specify the node type of the head node (as configured above).
head_node_type: ray.head.default