forked from ChristianGaser/cat12
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcat_amap.c
212 lines (182 loc) · 8 KB
/
cat_amap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/* ______________________________________________________________________
*
* Christian Gaser, Robert Dahnke
* Structural Brain Mapping Group (https://neuro-jena.github.io)
* Departments of Neurology and Psychiatry
* Jena University Hospital
* ______________________________________________________________________
* $Id$
*
*/
/*
* TODO:
* - use structure with defaults for input parameter
* - use long rather to indexing ultra-high-resolution data
*/
#include "mex.h"
#include "math.h"
#include "stdio.h"
#include "Amap.h"
/* #include "matrix.h" */
void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] )
{
unsigned char *label0, *label, *prob, *mask;
double *src0, *src, *srco, *mean, *fmeans, *fstds, *voxelsize;
double max_vol = -1e15, weight_MRF, bias_fwhm, offset;
const mwSize *dims;
mwSize dims3[4];
int dims2[4];
int n_classes, pve, nvox, iters_icm, verb;
int niters, iters_nu, sub, init, thresh, thresh_kmeans_int;
if (nrhs<11 | nrhs > 12)
mexErrMsgTxt("11 inputs required: \n [prob, means, stds, srcb] = cat_amap(src, label, n_classes, n_iters, sub, pve, init, mrf_weight, voxelsize, iters_icm, bias_fwhm, verb)");
else if (nlhs>4)
mexErrMsgTxt("Too many output arguments.");
if (!mxIsDouble(prhs[0])) /* src */
mexErrMsgTxt("First argument must be double.");
if (!mxIsUint8(prhs[1])) /* label */
mexErrMsgTxt("Second argument must be uint8.");
if (!mxIsDouble(prhs[2])) /* n_classes */
mexErrMsgTxt("Third argument must be double.");
if (!mxIsDouble(prhs[3])) /* n_iters */
mexErrMsgTxt("4th argument must be double.");
if (!mxIsDouble(prhs[4])) /* sub */
mexErrMsgTxt("5th argument must be double.");
if (!mxIsDouble(prhs[5])) /* pve */
mexErrMsgTxt("6th argument must be double.");
if (!mxIsDouble(prhs[6])) /* init */
mexErrMsgTxt("7th argument must be double.");
if (!mxIsDouble(prhs[7])) /* mrf_weight */
mexErrMsgTxt("8th argument must be double.");
if (!mxIsDouble(prhs[8])) /* voxelsize */
mexErrMsgTxt("9th argument must be double.");
if (nrhs>9 && !mxIsDouble(prhs[9])) /* iters_icm */
mexErrMsgTxt("10th argument must be double.");
if (nrhs>10 && !mxIsDouble(prhs[10])) /* bias_fwhm */
mexErrMsgTxt("11th argument must be double.");
if (nrhs>11 && !mxIsDouble(prhs[11])) /* verb */
mexErrMsgTxt("12th argument must be double.");
src0 = (double*)mxGetPr(prhs[0]);
label0 = (unsigned char*)mxGetPr(prhs[1]);
n_classes = (int)mxGetScalar(prhs[2]);
niters = (int)mxGetScalar(prhs[3]);
sub = (int)mxGetScalar(prhs[4]);
pve = (int)mxGetScalar(prhs[5]);
init = (int)mxGetScalar(prhs[6]);
weight_MRF = (double)mxGetScalar(prhs[7]);
voxelsize = (double*)mxGetPr(prhs[8]);
iters_icm = (int)mxGetScalar(prhs[9]);
if (nrhs>10) bias_fwhm = (double)mxGetScalar(prhs[10]); else bias_fwhm = 60.0;
if (nrhs>11) verb = (int)mxGetScalar(prhs[11]); else verb = 0;
if ( mxGetM(prhs[8])*mxGetN(prhs[8]) != 3)
mexErrMsgTxt("Voxelsize should have 3 values.");
dims = mxGetDimensions(prhs[0]);
dims2[0] = (int)dims[0]; dims2[1] = (int)dims[1]; dims2[2] = (int)dims[2]; dims2[3] = n_classes;
/* for PVE we need more classes */
if(pve == 6) dims2[3] += 3;
if(pve == 5) dims2[3] += 2;
/* mxCreateNumericArray expects mwSize data type */
for(int i = 0; i < 4; i++) dims3[i] = (mwSize)dims2[i];
/* final segmentation */
plhs[0] = mxCreateNumericArray(4, dims3, mxUINT8_CLASS, mxREAL);
prob = (unsigned char *)mxGetPr(plhs[0]);
/* internal mean and std values */
mxArray *hlps[3];
hlps[0] = mxCreateNumericMatrix(1, n_classes+3, mxDOUBLE_CLASS, mxREAL); /* old segmentation mean values */
hlps[1] = mxCreateNumericMatrix(1, n_classes+3, mxDOUBLE_CLASS, mxREAL); /* new corrected mean values (may equal to old) */
hlps[2] = mxCreateNumericMatrix(1, n_classes+3, mxDOUBLE_CLASS, mxREAL); /* new std values */
mean = (double *)mxGetPr(hlps[0]);
fmeans = (double *)mxGetPr(hlps[1]);
fstds = (double *)mxGetPr(hlps[2]);
for (int i=0; i<n_classes+3; i++) mean[i] = 0.0;
for (int i=0; i<n_classes+3; i++) fmeans[i] = 0.0;
for (int i=0; i<n_classes+3; i++) fstds[i] = 0.0;
/* new dynamic output for segmentation mean and std values */
double *fmeanso; double *fstdso;
if ( nlhs>1 ) { /* means */
plhs[1] = mxCreateNumericMatrix(1, n_classes, mxDOUBLE_CLASS, mxREAL);
fmeanso = (double *)mxGetPr(plhs[1]);
for (int i=0; i<n_classes; i++) fmeanso[i] = fmeans[i];
}
if ( nlhs>2 ) { /* stds */
plhs[2] = mxCreateNumericMatrix(1, n_classes, mxDOUBLE_CLASS, mxREAL);
fstdso = (double *)mxGetPr(plhs[2]);
for (int i=0; i<n_classes; i++) fstdso[i] = fstds[i];
}
if ( nlhs>3 ) { /* bias corrected */
plhs[3] = mxCreateNumericArray(3, dims, mxDOUBLE_CLASS, mxREAL);
srco = (double *)mxGetPr(plhs[3]);
for (int i=0; i<nvox; i++) srco[i] = src[i];
}
/* internal dublicat of the input - NOT YET WORKING - creating a bug somewhere else but should be correct in general */
mxArray *prhsi[2];
const mwSize *sL = mxGetDimensions(prhs[0]);
int nL = mxGetNumberOfElements(prhs[0]);
int dL = mxGetNumberOfDimensions(prhs[0]);
prhsi[0] = mxCreateNumericArray(dL, sL, mxDOUBLE_CLASS, mxREAL);
prhsi[1] = mxCreateNumericArray(dL, sL, mxUINT8_CLASS , mxREAL);
src = (double*)mxGetPr(prhsi[0]);
label = (unsigned char*)mxGetPr(prhsi[1]);
for(long i = 0; i < nL; i++) src[i] = src0[i];
for(long i = 0; i < nL; i++) label[i] = label0[i];
nvox = dims[0]*dims[1]*dims[2];
for(int i = 0; i < nvox; i++) {
max_vol = MAX(src[i], max_vol);
}
offset = 0.2*max_vol;
/* add offset to ensure that CSF values are much larger than background noise */
for (int i=0; i<nvox; i++) {
if (label[i] > 0) src[i] += offset;
}
/* initial labeling using Kmeans */
if (init>0) {
mask = (unsigned char *)mxMalloc(sizeof(unsigned char)*nvox);
if(mask == NULL) {
mexErrMsgTxt("Memory allocation error\n");
exit(EXIT_FAILURE);
}
for (int i=0; i<nvox; i++)
mask[i] = (src[i]>0) ? 255 : 0;
thresh = 0;
thresh_kmeans_int = 128;
iters_nu = 0; /* bias correction works better inside Amap */
/*
* kmeans.c:
* double Kmeans(double *src, unsigned char *label, unsigned char *mask, int NI, int n_clusters,
* double *voxelsize, int *dims, int thresh_mask, int thresh_kmeans, int iters_nu, int pve, double bias_fwhm)
*/
/* initial Kmeans estimation with 6 classes */
max_vol = Kmeans( src, label, mask, 25, n_classes, voxelsize, dims2, thresh, thresh_kmeans_int, iters_nu, KMEANS, bias_fwhm);
/* final Kmeans estimation with 3 classes */
max_vol = Kmeans( src, label, mask, 25, n_classes, voxelsize, dims2, thresh, thresh_kmeans_int, iters_nu, NOPVE, bias_fwhm);
mxFree(mask);
}
/*
* Amap.c:
* void Amap(double *src, unsigned char *label, unsigned char *prob, double *mean, int n_classes, int niters,
* int sub, int *dims, int pve, double weight_MRF, double *voxelsize, int niters_ICM, double offset, double bias_fwhm,
* double *fmeans, double *fstd)
*/
Amap(src, label, prob, mean, n_classes, niters, sub, dims2, pve, weight_MRF, voxelsize, iters_icm, offset, bias_fwhm, verb, fmeans, fstds);
/* Pve.c:
* void Pve5(double *src, unsigned char *prob, unsigned char *label, double *mean, int *dims)
* void Pve6(double *src, unsigned char *prob, unsigned char *label, double *mean, int *dims)
*/
if(pve==6) Pve6(src, prob, label, mean, dims2);
if(pve==5) Pve5(src, prob, label, mean, dims2);
/* new dynamic output for segmentation mean and std values */
if ( nlhs>1 ) {
for (int i=0; i<n_classes; i++) fmeanso[i] = fmeans[i];
}
if ( nlhs>2 ) {
for (int i=0; i<n_classes; i++) fstdso[i] = fstds[i];
}
if ( nlhs>3 ) {
for (int i=0; i<nvox; i++) srco[i] = src[i] - offset;
}
/* clear internal variables */
/*
mxDestroyArray(prhsi[0]);
mxDestroyArray(prhsi[1]);
*/
}