-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_adaptive.py
executable file
·662 lines (500 loc) · 21.2 KB
/
train_adaptive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Usage: %(scriptName) <feature_files_prefix>
Requires results of save_normalized_fold_dataframes.py
"""
import json
import os
import time
import sys
from collections import defaultdict
from itertools import product
from timeit import default_timer
import gc
import numpy as np
import pandas as pd
import tqdm
from joblib import Parallel, delayed
from scipy.stats import kruskal, ttest_ind, levene
from sklearn.decomposition import *
from sklearn.ensemble import *
from sklearn.feature_selection import *
from sklearn.linear_model import *
from sklearn.model_selection import KFold
from sklearn.utils import safe_mask
from skopt import *
from metrics import calculate_metric_results
from train_utils import eprint
feature_columns = [
"f1",
"f2",
"f3",
"f4",
"f5",
"f6",
"f7",
"f8",
"f9",
"f10",
"f11",
"f12",
"f13",
"f14",
"f15",
"f16",
"f17",
"f18",
"f19",
]
def main():
file_prefix = sys.argv[1]
cwd = os.getcwd()
folder = cwd+'/joblib_memmap_' + file_prefix
data_filename_memmap = os.path.join(folder, "data_memmap")
fold_number, fold_testing, fold_training = load(data_filename_memmap, mmap_mode="r")
models = [Adaptive_Process()]
results = []
for m in models:
results.append(process(m, fold_number, fold_testing, fold_training, file_prefix))
results = [r for r in results if r is not None]
eprint('Results')
print(results)
def _process(ptemplate, fold_training, fold_testing):
clf = ptemplate.train(fold_training)
result = ptemplate.predict(clf, fold_testing)
return result
def process(ptemplate, fold_number, fold_testing, fold_training, file_prefix):
results_list = []
for i in range(fold_number):
r = _process(ptemplate, fold_training[i], fold_testing[i + 1])
if r is None:
del ptemplate
gc.collect()
return None
min_fix_result = r[r["used_in_fix"] == 1.0]["result"].min()
minimal_reasonable_set = r[r["result"] >= min_fix_result].copy()
del r
results_list.append(minimal_reasonable_set)
training_time_list = ptemplate.training_time_list.copy()
prescoring_log = ptemplate.prescoring_log.copy()
regression_log = ptemplate.regression_log.copy()
best_prescoring_log = ptemplate.best_prescoring_log.copy()
best_regression_log = ptemplate.best_regression_log.copy()
all_results_df = pd.concat(results_list)
all_results_df.reset_index(level=1, drop=True, inplace=True)
eprint(training_time_list)
time_sum = sum([time for time, bug_reports_number, file_number in training_time_list])
bug_reports_number_sum = sum([bug_reports_number for time, bug_reports_number, file_number in training_time_list])
file_number_sum = sum([file_number for time, bug_reports_number, file_number in training_time_list])
eprint("time_sum", time_sum)
eprint("bug_reports_number_sum", bug_reports_number_sum)
eprint("file_number_sum", file_number_sum)
mean_time_bug_report_training = time_sum / bug_reports_number_sum
mean_time_file_training = time_sum / file_number_sum
eprint("mean_time_bug_report_training", mean_time_bug_report_training)
eprint("mean_time_file_training", mean_time_file_training)
training_time = {'time_sum': time_sum,
'bug_reports_number_sum': bug_reports_number_sum,
'file_number_sum': file_number_sum,
'mean_time_bug_report_training': mean_time_bug_report_training,
'mean_time_file_training': mean_time_file_training}
eprint(training_time)
results_timestamp = time.strftime("%Y%m%d%H%M%S")
with open(file_prefix + '_' + ptemplate.name + '_training_time_'+results_timestamp, 'w') as time_file:
json.dump(training_time, time_file)
with open(file_prefix + '_' + ptemplate.name + '_prescoring_log_'+results_timestamp, 'w') as prescoring_log_file:
json.dump(prescoring_log, prescoring_log_file)
with open(file_prefix + '_' + ptemplate.name + '_regression_log_'+results_timestamp, 'w') as regression_log_file:
json.dump(regression_log, regression_log_file)
with open(file_prefix + '_' + ptemplate.name + '_best_prescoring_log_'+results_timestamp, 'w') as best_prescoring_log_file:
json.dump(best_prescoring_log, best_prescoring_log_file)
with open(file_prefix + '_' + ptemplate.name + '_best_regression_log_'+results_timestamp, 'w') as best_regression_log_file:
json.dump(best_regression_log, best_regression_log_file)
try:
return {
"name": ptemplate.name,
"results": calculate_metric_results(all_results_df),
}
except Exception as e:
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
eprint(exc_type, fname, exc_tb.tb_lineno)
eprint(ptemplate.name, e)
return None
def _weights_normalize(weights):
weights_sum = weights.sum()
if weights_sum > 0:
weights /= weights_sum
return weights
def weights_chi2(df, columns):
weights = chi2(df[columns], df["used_in_fix"])
weights = weights[0]
return _weights_normalize(weights)
def weights_mutual_info_classif(df, columns):
weights = mutual_info_classif(
df[columns], df["used_in_fix"], discrete_features=False
)
weights = weights
return _weights_normalize(weights)
def weights_FastICA(df, columns):
m = FastICA(n_components=1)
m.fit(df[columns])
weights = m.components_[0]
return _weights_normalize(weights)
def weights_variance(df, columns):
fs = VarianceThreshold()
fs.fit(df[columns])
weights = fs.variances_
weights[weights < 0] = 0
return _weights_normalize(weights)
def weights_const(df, columns):
return np.ones(df[columns].shape[1]) * 0.5
def weights_ExtraTreesClassifier(df, columns):
tree = ExtraTreesClassifier(n_estimators=100)
tree.fit(df[columns], df["used_in_fix"])
weights = tree.feature_importances_
return _weights_normalize(weights)
def weights_GradientBoostingClassifier(df, columns):
tree = GradientBoostingRegressor(n_estimators=100)
tree.fit(df[columns], df["used_in_fix"])
weights = tree.feature_importances_
return _weights_normalize(weights)
def weights_AdaBoostClassifier(df, columns):
tree = AdaBoostClassifier(n_estimators=100)
tree.fit(df[columns], df["used_in_fix"])
weights = tree.feature_importances_
return _weights_normalize(weights)
def weights_kruskal_classif(df, columns):
weights = kruskal_classif(df[columns], df["used_in_fix"])
weights = weights[0]
return _weights_normalize(weights)
def kruskal_classif(X, y):
ret_k = []
ret_p = []
for column in X:
args = [X[safe_mask(X, y == k)][column] for k in np.unique(y)]
r = kruskal(*args)
ret_k.append(abs(r[0]))
ret_p.append(r[1])
return np.asanyarray(ret_k), np.asanyarray(ret_p)
def weights_ttest_ind_classif(df, columns):
weights = ttest_ind_classif(df[columns], df["used_in_fix"])
weights = weights[0]
return _weights_normalize(weights)
def ttest_ind_classif(X, y):
ret_k = []
ret_p = []
for column in X:
args = [X[safe_mask(X, y == k)][column] for k in np.unique(y)]
r = ttest_ind(*args, equal_var=False)
ret_k.append(abs(r[0]))
ret_p.append(r[1])
return np.asanyarray(ret_k), np.asanyarray(ret_p)
def weights_levene_median(df, columns):
weights = levene_median(df[columns], df["used_in_fix"])
weights = weights[0]
return _weights_normalize(weights)
def levene_median(X, y):
ret_k = []
ret_p = []
for column in X:
args = [X[safe_mask(X, y == k)][column] for k in np.unique(y)]
r = levene(args[0], args[1], center='median')
ret_k.append(abs(r[0]))
ret_p.append(r[1])
return np.asanyarray(ret_k), np.asanyarray(ret_p)
def weights_mean_var(df, columns):
weights_var = np.var(df[df["used_in_fix"]==1][columns], axis=0)
weights_mean = np.mean(df[df["used_in_fix"]==1][columns], axis=0)
weights_var1 = np.var(df[df["used_in_fix"]==0][columns], axis=0)
weights_var1_mean = np.mean(df[df["used_in_fix"]==0][columns], axis=0)
return (weights_var / weights_mean) / (weights_var1 / weights_var1_mean)
def weights_maximum_absolute_deviation(df, columns):
weights_max = np.max(df[df["used_in_fix"]==1][columns], axis=0)
weights_mad = np.mean(np.abs(df[df["used_in_fix"]==1][columns] - weights_max), axis=0)
return weights_mad
def evaluate_fold(df, Y):
df = df.copy()
df.index.names = ["bid", "fid"]
r = df[["used_in_fix", "f1"]].copy(deep=False)
r["result"] = Y
min_fix_result = r[r["used_in_fix"] == 1.0]["result"].min()
minimal_reasonable_set = r[r["result"] >= min_fix_result].copy()
acc, m_a_p, mrr, k_range = calculate_metric_results(minimal_reasonable_set)
# eprint()
# eprint("evaluate fold")
# eprint(len(np.unique(Y)))
# eprint(np.unique(Y))
# eprint("acc", acc)
# eprint("map", m_a_p)
# eprint("mrr", mrr)
# eprint()
return m_a_p
def weights_on_df(method, df, columns):
weights = method(df, columns)
return method.__name__, weights
def eval_weights(m_name, weights, df, columns):
Y = np.dot(df[columns], weights)
return m_name, (weights, evaluate_fold(df, Y))
def fold_check(method, df, columns):
weights = method(df, columns)
Y = np.dot(df[columns], weights)
return method.__name__, (weights, evaluate_fold(df, Y))
def fold_check_combination(w1, w2, df):
weights = w1[1][0] + w2[1][0]
Y = np.dot(df[feature_columns], weights)
return w1[0] + w2[0], (weights, evaluate_fold(df, Y))
def size_selectf_only_fixes(df, score):
used_in_fix = df["used_in_fix"] == 1
ret = used_in_fix
G = df[["used_in_fix", "f1"]].copy(deep=False)
G["score"] = score
t = G[G['score'] > 0]['score']
tm = t.nsmallest(int(0.25 * used_in_fix.sum())).max()
ret |= G['score'] <= tm
ret &= G['score'] > 0
return ret
def size_selectf_only_fixes_p(df, score, perc=0.25, smallest=True, largest=False):
used_in_fix = df["used_in_fix"] == 1
ret = used_in_fix
G = df[["used_in_fix"]].copy(deep=False)
G["score"] = score
t = G[G['score'] > 0]['score']
if smallest:
tm = t.nsmallest(int(perc * used_in_fix.sum())).max()
ret |= G['score'] <= tm
if largest:
tm = t.nlargest(int(perc * used_in_fix.sum())).min()
ret |= G['score'] >= tm
ret &= G['score'] > 0
return ret
def get_skmodels():
sgd_loss = [
"squared_loss",
"huber",
"epsilon_insensitive",
"squared_epsilon_insensitive",
]
sgd_penalty = ["none", "l2", "l1", "elasticnet"]
alpha = 10.0**-np.arange(4, 5)
return [
SGDRegressor(max_iter=1000, shuffle=False, loss=l, penalty=p, alpha=a)
for l, p, a in product(sgd_loss, sgd_penalty, alpha)
]
def normal_score(df, columns, weights):
score = np.dot(df[columns], weights)
return score
def cut_fit_predict(df, df_test, columns, score, score_fixed, cut_method, reg_model):
cut_set = cut_method(df, score)
X = df[cut_set]
reg_model.fit(X[columns], score_fixed[cut_set])
Y = reg_model.predict(df_test[columns])
return evaluate_fold(df_test, Y)
def size_selectf_only_fixes_p_perc_05(df, score):
return size_selectf_only_fixes_p(df, score, perc=0.05)
def size_selectf_only_fixes_p_perc_10(df, score):
return size_selectf_only_fixes_p(df, score, perc=0.10)
def size_selectf_only_fixes_p_perc_15(df, score):
return size_selectf_only_fixes_p(df, score, perc=0.15)
def size_selectf_only_fixes_p_perc_20(df, score):
return size_selectf_only_fixes_p(df, score, perc=0.20)
def size_selectf_only_fixes_p_perc_25(df, score):
return size_selectf_only_fixes_p(df, score, perc=0.25)
def size_selectf_only_fixes_p_perc_30(df, score):
return size_selectf_only_fixes_p(df, score, perc=0.30)
class Adaptive_Process(object):
def __init__(self):
self.weights_methods = [
weights_AdaBoostClassifier,
weights_ExtraTreesClassifier,
weights_GradientBoostingClassifier,
weights_const,
weights_variance,
weights_chi2,
weights_mutual_info_classif,
weights_FastICA,
weights_kruskal_classif,
weights_ttest_ind_classif,
weights_levene_median,
weights_mean_var,
weights_maximum_absolute_deviation,
]
self.weights = {}
self.reg_models = []
self.reg_models.extend(get_skmodels())
# Works for aspectj, birt, swt
self.cut_methods = []
self.cut_methods.append(size_selectf_only_fixes_p_perc_05)
self.cut_methods.append(size_selectf_only_fixes_p_perc_10)
self.cut_methods.append(size_selectf_only_fixes_p_perc_15)
self.cut_methods.append(size_selectf_only_fixes_p_perc_20)
self.cut_methods.append(size_selectf_only_fixes_p_perc_25)
self.cut_methods.append(size_selectf_only_fixes_p_perc_30)
self.score_methods = []
self.score_methods.append(normal_score)
self.score_methods_map = {m.__name__: m for m in self.score_methods}
self.cut_methods_map = {m.__name__: m for m in self.cut_methods}
self.reg_models_map = {str(m): m for m in self.reg_models}
self.name = "Adaptive"
self.first_fold_processed = False
self.enforce_relearning = True
self.use_prescoring_always = False
self.use_reg_model_always = True
self.use_prescoring_cross_validation = True
self.use_training_cross_validation = True
self.cross_validation_fold_number = 2
self.previous_models = []
self.reg_model = None
self.cut_method = None
self.score_method = None
self.weights = None
self.columns = None
self.training_time_list = []
self.prescoring_log = []
self.best_prescoring_log = []
self.regression_log = []
self.best_regression_log = []
def compute_weights(self, df, columns):
if self.use_prescoring_cross_validation:
kfold = KFold(n_splits=self.cross_validation_fold_number, random_state=None, shuffle=False)
partial_result_dict = defaultdict(list)
for train_index, test_index in kfold.split(df):
kdf = df.iloc[train_index]
weights = Parallel(n_jobs=-1)(
delayed(weights_on_df)(m, kdf, columns) for m in tqdm.tqdm(self.weights_methods)
)
kdf_test = df.iloc[test_index]
weights_results = Parallel(n_jobs=-1)(
delayed(eval_weights)(m, w, kdf_test, columns) for m, w in tqdm.tqdm(weights)
)
weights_results_dict = dict(weights_results)
for m_name in weights_results_dict:
partial_result_dict[m_name].append(weights_results_dict[m_name])
results = {}
for m_name in partial_result_dict:
# print(m_name)
# print(partial_result_dict[m_name])
values = partial_result_dict[m_name]
weights_avg = []
eval_avg = []
for value in values:
weights_avg.append(value[0])
eval_avg.append(value[1])
weights_avg = np.mean(weights_avg, axis=0)
eval_avg = np.mean(eval_avg)
# print(weights_avg)
# print(eval_avg)
results[m_name] = (weights_avg, eval_avg)
# exit(0)
self.weights = results
else:
results = Parallel(n_jobs=-1)(
delayed(fold_check)(m, df, columns) for m in tqdm.tqdm(self.weights_methods)
)
self.weights = dict(results)
def adapt_process(self, df, columns):
eprint("=============== Weights Select")
self.compute_weights(df, columns)
w_maks = 0
w_method = None
w_weights = None
for k, v in self.weights.items():
self.prescoring_log.append((k, v[1]))
if v[1] > w_maks:
w_maks = v[1]
w_method = k
w_weights = v[0]
self.weights = w_weights
self.weights_score = w_maks
eprint(w_method, w_weights, w_maks)
self.best_prescoring_log.append((w_method, w_maks))
eprint("===============")
eprint("=============== Size and regression model select")
results = Parallel(n_jobs=-1)(
delayed(self._train)(df, columns, w_weights, score_method, reg_model, cut_method)
for score_method, reg_model, cut_method in tqdm.tqdm(
product(self.score_methods, self.reg_models, self.cut_methods)
)
)
res_max = 0
for res in results:
current_name = res[0]
current_cut_function = res[1]
current_score_function = res[2]
current_score = res[3]
current_reg_model = self.reg_models_map[current_name]
name = self.prepare_regressor_name(current_reg_model)
self.regression_log.append((name, current_cut_function, current_score_function, current_score))
if res[3] > res_max:
res_max = res[3]
self.reg_model_name = res[0]
self.cut_method_name = res[1]
self.score_method_name = res[2]
self.reg_model = self.reg_models_map[self.reg_model_name]
self.cut_method = self.cut_methods_map[self.cut_method_name]
self.score_method = self.score_methods_map[self.score_method_name]
self.reg_model_score = res_max
current_reg_model = self.reg_model
name = self.prepare_regressor_name(current_reg_model)
self.best_regression_log.append((name, self.cut_method_name, self.score_method_name, self.reg_model_score))
eprint(res_max, self.reg_model_name, self.cut_method_name, self.score_method_name)
eprint("===============")
def prepare_regressor_name(self, current_reg_model):
if isinstance(current_reg_model, SGDRegressor):
name = 'SGDRegressor' + '_' + current_reg_model.loss + '_' + current_reg_model.penalty + '_' + \
str(current_reg_model.alpha) + '_' + str(current_reg_model.shuffle)
else:
name = self.reg_model_name
return name
def _train(self, df, columns, weights, score_method, reg_model, cut_method):
score = score_method(df, columns, weights)
score_fixed = score + df["used_in_fix"] * np.max(score)
if self.use_training_cross_validation:
# eprint("Attempting cross validation")
# eprint("X type", type(X))
# eprint("X shape", X[feature_columns].shape)
# eprint("score_fixed[cut_set] type", type(score_fixed[cut_set]))
# eprint("score_fixed[cut_set] shape", score_fixed[cut_set].shape)
# eprint("cross validation fold number", self.cross_validation_fold_number)
kfold = KFold(n_splits=self.cross_validation_fold_number, random_state=None, shuffle=False)
partial_eval_results = []
for train_index, test_index in kfold.split(df):
kdf = df.iloc[train_index]
kscore = score[train_index]
kscore_fixed = score_fixed.iloc[train_index]
kdf_test = df.iloc[test_index]
pres = cut_fit_predict(kdf, kdf_test, columns, kscore, kscore_fixed, cut_method, reg_model)
partial_eval_results.append(pres)
eval_result = np.mean(partial_eval_results)
return str(reg_model), cut_method.__name__, score_method.__name__, eval_result
else:
return str(reg_model), cut_method.__name__, score_method.__name__, cut_fit_predict(df, df, columns, score, score_fixed, cut_method, reg_model)
def train(self, df):
before_training = default_timer()
columns = feature_columns.copy()
if not self.first_fold_processed or self.enforce_relearning:
self.adapt_process(df, columns)
self.first_fold_processed = True
self._train(df, columns, self.weights, self.score_method, self.reg_model, self.cut_method)
self.previous_models.append(self.weights)
self.columns = columns
after_training = default_timer()
total_training = after_training - before_training
self.training_time_list.append((total_training,
df.index.get_level_values(0).unique().shape[0],
df.index.get_level_values(1).unique().shape[0]))
return self.reg_model
def predict(self, clf, df):
df.index.names = ["bid", "fid"]
columns = self.columns.copy()
X = df[columns].values
# Check if weights method gives better results on training
if not self.use_prescoring_always and (self.reg_model_score >= self.weights_score or self.use_reg_model_always):
result = clf.predict(X)
else:
result = np.dot(X, self.weights)
r = df[["used_in_fix", "f1"]].copy(deep=False)
r["result"] = result
return r
if __name__ == "__main__":
main()