-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcalculate_buglocator_features.py
executable file
·250 lines (181 loc) · 9.56 KB
/
calculate_buglocator_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Usage: %(scriptName) <bug_report_file> <data_prefix>
"""
import json
from timeit import default_timer
import datetime
import numpy as np
import sys
from multiprocessing import Pool
from operator import itemgetter
from scipy import sparse
from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm
def main():
print("Start", datetime.datetime.now().isoformat())
before = default_timer()
bug_report_file_path = sys.argv[1]
print("bug report file path", bug_report_file_path)
data_prefix = sys.argv[2]
print("data prefix", data_prefix)
bug_reports = load_bug_reports(bug_report_file_path)
process(bug_reports, data_prefix, bug_report_file_path)
after = default_timer()
total = after - before
print("End", datetime.datetime.now().isoformat())
print("total time", total)
def load_bug_reports(bug_report_file_path):
"""load bug report file (the one generated from xml)"""
with open(bug_report_file_path) as bug_report_file:
bug_reports = json.load(bug_report_file)
return bug_reports
def sort_bug_reports_by_id(bug_reports):
dates = []
for index, id in enumerate(tqdm(bug_reports)):
date = bug_reports[id]['bug_report']['timestamp']
dates.append((id, date))
sorted_dates = sorted(dates, key=itemgetter(1))
sorted_ids = [sorted_date[0] for sorted_date in sorted_dates]
return sorted_ids
def load_bug_report(vectorized_data, bug_report_indexes, bug_report_id):
# index_dict = pickle.loads(bug_report_indexes[bug_report_id[0:7]])
index_dict = bug_report_indexes[bug_report_id]
report_index = index_dict['report']
vectorized_report = vectorized_data[report_index, :]
summary_index = index_dict['summary']
vectorized_summary = vectorized_data[summary_index, :]
description_index = index_dict['description']
vectorized_description = vectorized_data[description_index, :]
return vectorized_report, vectorized_summary, vectorized_description
def feature_1(report, data, source_index, method_start_index, method_end_index):
sources = data[source_index:method_end_index+1, :]
similarities = cosine_similarity(report, sources)
return np.amax(similarities)
def feature_2(report, data, enriched_api_indexes, current_file_index):
file_enriched_api = enriched_api_indexes[current_file_index]
enriched_api_start = file_enriched_api['enrichedApiStart']
enriched_api_end = file_enriched_api['enrichedApiEnd']
return feature_sim(report, data, enriched_api_start, enriched_api_end)
def feature_sim(document, data, start_index, end_index):
if start_index == end_index + 1:
return 0.0
sources = data[start_index:end_index+1, :]
similarities = cosine_similarity(document, sources)
return np.amax(similarities)
def feature_3(feature_3_data, feature_3_report_lookup, file_index):
report_index = feature_3_report_lookup['report']
packages_with_directory = file_index.replace('/', '.')
for file in feature_3_report_lookup['files']:
if packages_with_directory.endswith(file):
feature_3_file_index = feature_3_report_lookup['files'][file]
report_row = feature_3_data[report_index, :]
file_row = feature_3_data[feature_3_file_index, :]
return float(cosine_similarity(report_row, file_row))
return 0.0
def feature_4(bug_report_summary, file_index):
class_name = file_index.split('/')[-1].split('.')[0]
if class_name in bug_report_summary:
return len(class_name)
else:
return 0.0
def process(bug_reports, data_prefix, bug_report_file_path):
sorted_ids = sort_bug_reports_by_id(bug_reports)
work = []
for bug_report_id in sorted_ids:
work.append((data_prefix, bug_report_id, bug_report_file_path))
# _f(work[0])
# exit(0)
pool = Pool(12, maxtasksperchild=1)
r = list(tqdm(pool.imap(_f, work), total=len(work)))
print("r", len(r))
def _f(args):
return process_bug_report(args[0], args[1], args[2])
def process_bug_report(data_prefix, bug_report_id, bug_report_file_path):
bug_reports = load_bug_reports(bug_report_file_path)
bug_report = bug_reports[bug_report_id]
vectorized_data = sparse.load_npz(data_prefix+'_raw_count_data.npz')
with open(data_prefix+'_feature_names_dict', 'r') as infile:
feature_names_lenghts_dict = json.load(infile)
with open(data_prefix+'_file_index_lookup', 'r') as infile:
file_index_lookup = json.load(infile)
with open(data_prefix+'_bug_report_index_lookup', 'r') as infile:
bug_report_index_lookup = json.load(infile)
enriched_api_data = sparse.load_npz(data_prefix+'_tfidf_enriched_api.npz').tocsr()
with open(data_prefix + '_partial_enriched_api_index_lookup') as infile:
enriched_api_lookup = json.load(infile)
with open(data_prefix + '_partial_enriched_api_bug_report_index_lookup') as infile:
enriched_api_bug_reports_lookup = json.load(infile)
graph_data = sparse.load_npz(data_prefix+'_graph_features_data.npz').tocsr()
with open(data_prefix + '_graph_features_index_lookup', 'r') as infile:
graph_lookup = json.load(infile)
feature_3_data = sparse.load_npz(data_prefix + '_feature_3_data.npz')
with open(data_prefix + '_feature_3_report_lookup', 'r') as infile:
feature_3_report_lookup = json.load(infile)
with open(data_prefix + '_feature_5_report_lookup', 'r') as infile:
recency_lookup = json.load(infile)
with open(data_prefix + '_feature_6_report_lookup', 'r') as infile:
frequency_lookup = json.load(infile)
(vectorized_report, vectorized_summary, vectorized_description) = load_bug_report(vectorized_data, bug_report_index_lookup, bug_report_id)
enriched_report = enriched_api_data[enriched_api_bug_reports_lookup[bug_report_id], :]
current_feature_3_report_lookup = feature_3_report_lookup[bug_report_id]
current_bug_report_summary = bug_reports[bug_report_id]['bug_report']['summary']
features = []
features_files = []
for file_index in file_index_lookup:
current_lookup = file_index_lookup[file_index]
source_index = current_lookup['source']
method_source_start_index = current_lookup['methodsStart']
method_source_end_index = current_lookup['methodsEnd']
class_start_index = current_lookup['classNamesStart']
class_end_index = current_lookup['classNamesEnd']
method_names_start_index = current_lookup['methodNamesStart']
method_names_end_index = current_lookup['methodNamesEnd']
variable_start_index = current_lookup['variableNamesStart']
variable_end_index = current_lookup['variableNamesEnd']
comment_start_index = current_lookup['commentsStart']
comment_end_index = current_lookup['commentsEnd']
current_graph_lookup = graph_lookup[file_index]
current_recency_lookup = recency_lookup[bug_report_id]
current_frequency_lookup = frequency_lookup[bug_report_id]
class_with_packages_and_directory = file_index.replace('/', '.')
f1 = feature_1(vectorized_report, vectorized_data, source_index, method_source_start_index, method_source_end_index)
f2 = feature_2(enriched_report, enriched_api_data, enriched_api_lookup, file_index)
f3 = feature_3(feature_3_data, current_feature_3_report_lookup, file_index)
f4 = feature_4(current_bug_report_summary, file_index)
f5 = 0.0
for recency_file in current_recency_lookup.keys():
if class_with_packages_and_directory.endswith(recency_file):
f5 = current_recency_lookup[recency_file]
break
f6 = 0.0
for frequency_file in current_frequency_lookup.keys():
if class_with_packages_and_directory.endswith(frequency_file):
f6 = current_recency_lookup[frequency_file]
break
f7 = feature_sim(vectorized_summary, vectorized_data, class_start_index, class_end_index)
f8 = feature_sim(vectorized_summary, vectorized_data, method_names_start_index, method_names_end_index)
f9 = feature_sim(vectorized_summary, vectorized_data, variable_start_index, variable_end_index)
f10 = feature_sim(vectorized_summary, vectorized_data, comment_start_index, comment_end_index)
f11 = feature_sim(vectorized_description, vectorized_data, class_start_index, class_end_index)
f12 = feature_sim(vectorized_description, vectorized_data, method_names_start_index, method_names_end_index)
f13 = feature_sim(vectorized_description, vectorized_data, variable_start_index, variable_end_index)
f14 = feature_sim(vectorized_description, vectorized_data, comment_start_index, comment_end_index)
f15 = graph_data[current_graph_lookup, 0]
f16 = graph_data[current_graph_lookup, 1]
f17 = graph_data[current_graph_lookup, 2]
f18 = graph_data[current_graph_lookup, 3]
f19 = graph_data[current_graph_lookup, 4]
used_in_fix = 0.0
for result in bug_report['bug_report']['result']:
if class_with_packages_and_directory.endswith(result):
used_in_fix = 1.0
break
features.append([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, used_in_fix])
features_files.append(file_index)
sparse_features = sparse.csr_matrix(features)
sparse.save_npz(data_prefix+'_'+bug_report_id+'_features', sparse_features)
with open(data_prefix+'_'+bug_report_id+'_files', 'w') as outfile:
json.dump(features_files, outfile)
if __name__ == '__main__':
main()