-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidateCoproduct.py
100 lines (76 loc) · 3.56 KB
/
validateCoproduct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
__author__ = 'mfansler'
import sys
from collections import Counter
import CellChainParse
DELTA = u"\u0394"
PARTIAL = u"\u2202"
OTIMES = u"\u2297"
CHAINPARTIAL = "(1" + OTIMES + PARTIAL + " + " + PARTIAL + OTIMES + "1)"
def reduceModN(obj, n = 2):
return {k: 1 for k, v in obj.items() if v % n == 1}
def formatTuple(t):
if type(t) is tuple:
return u" \u2297 ".join(list(t))
else:
return str(t)
def formatSum(dict_obj):
if dict_obj is None:
return "0"
single = [formatTuple(k) for k, v in dict_obj.items() if v == 1]
multiple = [u"{}*({})".format(v, formatTuple(k)) for k, v in dict_obj.items() if v > 1]
return " + ".join(single + multiple)
# Check if input file is specified
if len(sys.argv) == 2:
f = open(sys.argv[1])
data = f.read()
f.close()
result = CellChainParse.parse(data)
if not result:
raise SystemExit
topDimension = max([int(g) for g in result["groups"]])
differential = {}
for n in range(1, topDimension + 1):
differential[n] = {}
for j, face in enumerate(result["groups"][n]):
if face not in result["differentials"]:
print "Warning: Boundary of {} not specified; null is assumed".format(face)
continue
for edge, count in result["differentials"][face].iteritems():
i = result["groups"][n-1].index(edge)
differential[n][(i, j)] = count
allValid = True;
for n in range(1, topDimension+1):
for i in result["groups"][n]:
# Compute and print \Delta \partial (X)
boundary = result["differentials"][i] if i in result["differentials"] else None
lhs = DELTA + PARTIAL + str(i)
print u"{} = {} ({})".format(lhs, DELTA, formatSum(boundary))
boundary_coproducts = Counter()
if boundary is None:
boundary_coproducts = None
else:
for k, v in boundary.items():
boundary_coproducts += Counter({l: w * v for l, w in result["coproducts"][k].items()})
boundary_coproducts = reduceModN(boundary_coproducts)
print " " * len(lhs) + " = " + formatSum(boundary_coproducts) + "\n"
# Compute and print (1 \otimes \partial + \partial \otimes 1) \Delta (X)
coproduct = result["coproducts"][i]
lhs = CHAINPARTIAL + DELTA + str(i)
print u"{} = {} ({})".format(lhs, CHAINPARTIAL, formatSum(coproduct))
fullDifferential = Counter()
for (l, r), v in coproduct.items():
if l in result["differentials"].keys():
fullDifferential += Counter({(l_diff, r): v*w for l_diff, w in result["differentials"][l].items()})
if r in result["differentials"].keys():
fullDifferential += Counter({(l, r_diff): v*w for r_diff, w in result["differentials"][r].items()})
fullDifferential = reduceModN(fullDifferential)
if not fullDifferential:
fullDifferential = None
print u"{} = {}".format(" "*len(lhs), formatSum(fullDifferential)) + "\n"
# Compare two results
if fullDifferential == boundary_coproducts:
print "Diagonal Valid!: " + DELTA + PARTIAL + str(i) + " == " + CHAINPARTIAL + DELTA + str(i)
else:
allValid = False
print "Diagonal Invalid!: " + DELTA + PARTIAL + str(i) + " != " + CHAINPARTIAL + DELTA + str(i)
print "All Diagonals Valid!" if allValid else "Invalid Diagonal Detected!"