-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
53 lines (39 loc) · 1.56 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import pandas as pd
import numpy as np
from . import model
class CovertypeDataset(torch.utils.data.Dataset):
feature_cols = model.TabNet.covertype_cols
label_col = model.IntColumn(54, 'CoverType')
def __init__(self, filename):
self.df = pd.read_csv(filename, header=None)
self.features = [
col.preprocess(self.df[col.idx].to_numpy()).astype(col.dtype)
for col in self.feature_cols
]
self.label = self.label_col.preprocess(
self.df[self.label_col.idx].to_numpy()) \
.astype(self.label_col.dtype)
def __len__(self): return len(self.df)
def __getitem__(self, idx):
return \
[torch.tensor(self.features[i][idx]) for i in range(len(self.features))], \
torch.tensor(self.label[idx])
class CovertypeSyntheticDataset(torch.utils.data.Dataset):
feature_cols = model.TabNet.covertype_cols
label_col = model.IntColumn(54, 'CoverType')
def __init__(self, num_samples):
self.num_samples = num_samples
self.features = [
col.make_synthetic(num_samples)
for col in self.feature_cols
]
self.label = self.label_col.make_synthetic(num_samples)
def __len__(self): return self.num_samples
def __getitem__(self, idx):
return \
[torch.tensor(self.features[i][idx]) for i in range(len(self.features))], \
torch.tensor(self.label[idx])
if __name__ == '__main__':
ds = CovertypeDataset('tabnet/ref/data/train_covertype.csv')
print(ds[0:20])