Skip to content

Latest commit

 

History

History

ssd

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

SSD: Single-Shot MultiBox Detector (2016)

Original Paper: arXiv

Code Source Link License
Original Caffe Source GitHub BSD (LICENSE.weiliu.ssd)
MLPerf Reference Source (Inference) GitHub Apache V2.0 (LICENSE.mlperf.inference)
MLPerf Reference Source (Training) GitHub Apache V2.0 (LICENSE.mlperf.training)
Unofficial Impl (amdegroot) GitHub MIT (LICENSE.amdegroot.ssd)
Unofficial Impl (kuangliu) GitHub MIT (LICENSE.kuangliu.ssd)

Getting Started

Download the COCO 2017 dataset using MLPerf's download script:

$ cd /path/to/coco
$ curl -O http://images.cocodataset.org/zips/train2017.zip; unzip train2017.zip
$ curl -O http://images.cocodataset.org/zips/val2017.zip; unzip val2017.zip
$ curl -O http://images.cocodataset.org/annotations/annotations_trainval2017.zip; unzip annotations_trainval2017.zip

Examples

Example Description
train_ssdrn34_coco.py Train the official MLPerf config for SSD-Resnet34 on COCO 2017.
pred_ssdrn34_coco.py Predicts a few example images from the COCO 2017 Validation set. Dumps to tensorboard.
list_coco_cats.py List categories in COCO 2017
stream_ssd.py PyQT App which reads webcam input and runs SSD-Resnet34 on the feed.

How to run:

# Train SSDRN34
$ python -m ssdrn34.examples.train_ssdrn34_coco

Validation

Level 2: In addition to being based on reference code (Level 1), the model in this repository has been studied to provide similar (eyeball validation) loss values when running on provided reference training data.