-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_augmentation.py
38 lines (34 loc) · 1.54 KB
/
visualize_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import keras.applications as ka
import os
import numpy as np
from skimage.io import imread
from skimage.transform import resize
from keras.preprocessing.image import ImageDataGenerator
from glob import glob
"""
this module is to try different augmentation parameters and visualize their
effect on images feed to the training process
"""
if __name__ == '__main__':
base_model_pre_process = ka.inception_resnet_v2.preprocess_input
file_name = './example_img.jpg'
image_input_size = (224, 224)
seed = 42
save_agu_dir = './data_augmented_visualize/example_1'
os.makedirs(save_agu_dir, exist_ok=True)
img = np.array([resize(base_model_pre_process(imread(file_name)), (224, 224))])
generator = ImageDataGenerator(shear_range=0.2,
brightness_range=[0.5, 1.5],
fill_mode='nearest',
zoom_range=[0.9, 1.25],
rotation_range=90,
horizontal_flip=True,
preprocessing_function=base_model_pre_process).\
flow(img, [0],
save_to_dir=save_agu_dir,
shuffle=True, batch_size=img.shape[0],
seed=seed, save_prefix='rename_me_')
for idx in range(30):
next(generator)
src = glob(save_agu_dir + '/rename_me_*')[0]
os.rename(src, src.replace('rename_me', f'sample_{idx}_'))