From 542b4c1292f3e4cd4c6937cea156c21bfa467155 Mon Sep 17 00:00:00 2001 From: Anna Xiong Date: Fri, 5 Jul 2024 22:05:52 +0800 Subject: [PATCH 1/2] [Dev] Update LLM model wrapper mapping (#517) Co-authored-by: Lingyi Zhang --- ...20240626_224646_anna_xiong_azure_openai.md | 48 +++++++++++++++ vizro-ai/src/vizro_ai/chains/_llm_models.py | 58 ++++++++----------- 2 files changed, 72 insertions(+), 34 deletions(-) create mode 100644 vizro-ai/changelog.d/20240626_224646_anna_xiong_azure_openai.md diff --git a/vizro-ai/changelog.d/20240626_224646_anna_xiong_azure_openai.md b/vizro-ai/changelog.d/20240626_224646_anna_xiong_azure_openai.md new file mode 100644 index 000000000..f1f65e73c --- /dev/null +++ b/vizro-ai/changelog.d/20240626_224646_anna_xiong_azure_openai.md @@ -0,0 +1,48 @@ + + + + + + + + + diff --git a/vizro-ai/src/vizro_ai/chains/_llm_models.py b/vizro-ai/src/vizro_ai/chains/_llm_models.py index 7c70952f2..b8f4b929f 100644 --- a/vizro-ai/src/vizro_ai/chains/_llm_models.py +++ b/vizro-ai/src/vizro_ai/chains/_llm_models.py @@ -3,41 +3,24 @@ from langchain_core.language_models.chat_models import BaseChatModel from langchain_openai import ChatOpenAI -# TODO constant of model inventory, can be converted to yaml and link to docs -PREDEFINED_MODELS: Dict[str, Dict[str, Union[int, BaseChatModel]]] = { - "gpt-3.5-turbo-0613": { - "max_tokens": 4096, - "wrapper": ChatOpenAI, - }, - "gpt-4-0613": { - "max_tokens": 8192, - "wrapper": ChatOpenAI, - }, - "gpt-3.5-turbo-1106": { - "max_tokens": 16385, - "wrapper": ChatOpenAI, - }, - "gpt-4-1106-preview": { - "max_tokens": 128000, - "wrapper": ChatOpenAI, - }, - "gpt-3.5-turbo-0125": { - "max_tokens": 16385, - "wrapper": ChatOpenAI, - }, - "gpt-3.5-turbo": { - "max_tokens": 16385, - "wrapper": ChatOpenAI, - }, - "gpt-4-turbo": { - "max_tokens": 128000, - "wrapper": ChatOpenAI, - }, +SUPPORTED_MODELS = { + "OpenAI": [ + "gpt-4-0613", + "gpt-3.5-turbo-1106", + "gpt-4-1106-preview", + "gpt-3.5-turbo-0125", + "gpt-3.5-turbo", + "gpt-4-turbo", + "gpt-4o", + ] } +DEFAULT_WRAPPER_MAP: Dict[str, BaseChatModel] = {"OpenAI": ChatOpenAI} DEFAULT_MODEL = "gpt-3.5-turbo" DEFAULT_TEMPERATURE = 0 +model_to_vendor = {model: key for key, models in SUPPORTED_MODELS.items() for model in models} + def _get_llm_model(model: Optional[Union[ChatOpenAI, str]] = None) -> BaseChatModel: """Fetches and initializes an instance of the LLM. @@ -54,14 +37,21 @@ def _get_llm_model(model: Optional[Union[ChatOpenAI, str]] = None) -> BaseChatMo """ if not model: return ChatOpenAI(model_name=DEFAULT_MODEL, temperature=DEFAULT_TEMPERATURE) - if isinstance(model, ChatOpenAI): + + if isinstance(model, BaseChatModel): return model - if isinstance(model, str) and model in PREDEFINED_MODELS: - return PREDEFINED_MODELS.get(model)["wrapper"](model_name=model, temperature=DEFAULT_TEMPERATURE) + + if isinstance(model, str): + if any(model in model_list for model_list in SUPPORTED_MODELS.values()): + vendor = model_to_vendor[model] + return DEFAULT_WRAPPER_MAP.get(vendor)(model_name=model, temperature=DEFAULT_TEMPERATURE) + raise ValueError( f"Model {model} not found! List of available model can be found at https://vizro.readthedocs.io/projects/vizro-ai/en/latest/pages/explanation/faq/#which-llms-are-supported-by-vizro-ai" ) if __name__ == "__main__": - llm_chat_openai = _get_llm_model() + llm_chat_openai = _get_llm_model(model="gpt-3.5-turbo") + print(repr(llm_chat_openai)) # noqa: T201 + print(llm_chat_openai.model_name) # noqa: T201 From 6ba4119a56b719f9814242c1906175aff6955c5e Mon Sep 17 00:00:00 2001 From: Li Nguyen <90609403+huong-li-nguyen@users.noreply.github.com> Date: Fri, 5 Jul 2024 20:27:28 +0200 Subject: [PATCH 2/2] [Bug] Fix inconsistent return types in selector values (#562) --- ...uong_li_nguyen_fix_selector_return_type.md | 47 ++++++++++++ vizro-core/examples/_dev/app.py | 75 ++++++++----------- .../src/vizro/actions/_actions_utils.py | 15 +++- .../src/vizro/models/_action/_action.py | 2 +- .../tests/unit/vizro/actions/conftest.py | 28 +++++++ .../vizro/actions/test_parameter_action.py | 72 ++++++++++++++++++ 6 files changed, 189 insertions(+), 50 deletions(-) create mode 100644 vizro-core/changelog.d/20240703_091955_huong_li_nguyen_fix_selector_return_type.md diff --git a/vizro-core/changelog.d/20240703_091955_huong_li_nguyen_fix_selector_return_type.md b/vizro-core/changelog.d/20240703_091955_huong_li_nguyen_fix_selector_return_type.md new file mode 100644 index 000000000..b1e16724c --- /dev/null +++ b/vizro-core/changelog.d/20240703_091955_huong_li_nguyen_fix_selector_return_type.md @@ -0,0 +1,47 @@ + + + + + + + + +### Fixed + +- Ensure that categorical selectors always return a list of values. ([#562](https://github.com/mckinsey/vizro/pull/562)) + + diff --git a/vizro-core/examples/_dev/app.py b/vizro-core/examples/_dev/app.py index a69ca412a..bb29d2a92 100644 --- a/vizro-core/examples/_dev/app.py +++ b/vizro-core/examples/_dev/app.py @@ -1,64 +1,49 @@ """Dev app to try things out.""" -from typing import Optional - -import dash_bootstrap_components as dbc import pandas as pd import vizro.models as vm import vizro.plotly.express as px -from dash import html from vizro import Vizro -from vizro.figures import kpi_card from vizro.models.types import capture -tips = px.data.tips +df_stocks = px.data.stocks(datetimes=True) +df_stocks_long = pd.melt( + df_stocks, + id_vars="date", + value_vars=["GOOG", "AAPL", "AMZN", "FB", "NFLX", "MSFT"], + var_name="stocks", + value_name="value", +) -@capture("figure") # (1)! -def custom_kpi_card( # noqa: PLR0913 - data_frame: pd.DataFrame, - value_column: str, - *, - value_format: str = "{value}", - agg_func: str = "sum", - title: Optional[str] = None, - icon: Optional[str] = None, -) -> dbc.Card: # (2)! - """Creates a custom KPI card.""" - title = title or f"{agg_func} {value_column}".title() - value = data_frame[value_column].agg(agg_func) +@capture("graph") +def vizro_plot(data_frame, stocks_selected, **kwargs): + """Custom chart function.""" + return px.line(data_frame[data_frame["stocks"].isin(stocks_selected)], **kwargs) - header = dbc.CardHeader( - [ - html.H2(title), - html.P(icon, className="material-symbols-outlined") if icon else None, # (3)! - ] - ) - body = dbc.CardBody([value_format.format(value=value)]) - return dbc.Card([header, body], className="card-kpi") +df_stocks_long["value"] = df_stocks_long["value"].round(3) page = vm.Page( - title="Create your own KPI card", - layout=vm.Layout(grid=[[0, 1, -1, -1]] + [[-1, -1, -1, -1]] * 3), # (4)! + title="My first page", components=[ - vm.Figure( - figure=kpi_card( # (5)! - data_frame=tips, - value_column="tip", - value_format="${value:.2f}", - icon="shopping_cart", - title="Default KPI card", - ) + vm.Graph( + id="my_graph", + figure=vizro_plot( + data_frame=df_stocks_long, + stocks_selected=list(df_stocks_long["stocks"].unique()), + x="date", + y="value", + color="stocks", + ), ), - vm.Figure( - figure=custom_kpi_card( # (6)! - data_frame=tips, - value_column="tip", - value_format="${value:.2f}", - icon="payment", - title="Custom KPI card", - ) + ], + controls=[ + vm.Parameter( + targets=["my_graph.stocks_selected"], + selector=vm.Dropdown( + options=[{"label": s, "value": s} for s in df_stocks_long["stocks"].unique()], + ), ), ], ) diff --git a/vizro-core/src/vizro/actions/_actions_utils.py b/vizro-core/src/vizro/actions/_actions_utils.py index 6f0c327bb..e7a532f99 100644 --- a/vizro-core/src/vizro/actions/_actions_utils.py +++ b/vizro-core/src/vizro/actions/_actions_utils.py @@ -138,12 +138,19 @@ def _get_parametrized_config(target: ModelID, ctd_parameters: List[CallbackTrigg config["data_frame"] = {} for ctd in ctd_parameters: - selector_value = ctd[ - "value" - ] # TODO: needs to be refactored so that it is independent of implementation details + # TODO: needs to be refactored so that it is independent of implementation details + selector_value = ctd["value"] + if hasattr(selector_value, "__iter__") and ALL_OPTION in selector_value: # type: ignore[operator] selector: SelectorType = model_manager[ctd["id"]] - selector_value = selector.options + + # Even if options are provided as List[Dict], the Dash component only returns a List of values. + # So we need to ensure that we always return a List only as well to provide consistent types. + if all(isinstance(option, dict) for option in selector.options): + selector_value = [option["value"] for option in selector.options] + else: + selector_value = selector.options + selector_value = _validate_selector_value_none(selector_value) selector_actions = _get_component_actions(model_manager[ctd["id"]]) diff --git a/vizro-core/src/vizro/models/_action/_action.py b/vizro-core/src/vizro/models/_action/_action.py index 0285b8459..3d9c1c665 100644 --- a/vizro-core/src/vizro/models/_action/_action.py +++ b/vizro-core/src/vizro/models/_action/_action.py @@ -105,7 +105,7 @@ def _action_callback_function( ) -> Any: logger.debug("===== Running action with id %s, function %s =====", self.id, self.function._function.__name__) if logger.isEnabledFor(logging.DEBUG): - logger.debug("Action inputs:\n%s", pformat(inputs, depth=2, width=200)) + logger.debug("Action inputs:\n%s", pformat(inputs, depth=3, width=200)) logger.debug("Action outputs:\n%s", pformat(outputs, width=200)) if isinstance(inputs, Mapping): diff --git a/vizro-core/tests/unit/vizro/actions/conftest.py b/vizro-core/tests/unit/vizro/actions/conftest.py index 2adf94ae8..d8ecbdaa2 100644 --- a/vizro-core/tests/unit/vizro/actions/conftest.py +++ b/vizro-core/tests/unit/vizro/actions/conftest.py @@ -10,6 +10,11 @@ def gapminder_2007(gapminder): return gapminder.query("year == 2007") +@pytest.fixture +def iris(): + return px.data.iris() + + @pytest.fixture def gapminder_dynamic_first_n_last_n_function(gapminder): return lambda first_n=None, last_n=None: ( @@ -44,6 +49,16 @@ def scatter_chart(gapminder_2007, scatter_params): return px.scatter(gapminder_2007, **scatter_params).update_layout(margin_t=24) +@pytest.fixture +def scatter_matrix_params(): + return {"dimensions": ["sepal_width", "sepal_length", "petal_width", "petal_length"]} + + +@pytest.fixture +def scatter_matrix_chart(iris, scatter_matrix_params): + return px.scatter_matrix(iris, **scatter_matrix_params).update_layout(margin_t=24) + + @pytest.fixture def scatter_chart_dynamic_data_frame(scatter_params): return px.scatter("gapminder_dynamic_first_n_last_n", **scatter_params).update_layout(margin_t=24) @@ -110,3 +125,16 @@ def managers_one_page_two_graphs_one_table_one_aggrid_one_button( ], ) Vizro._pre_build() + + +@pytest.fixture +def managers_one_page_one_graph_with_dict_param_input(scatter_matrix_chart): + """Instantiates a model_manager and data_manager with a page and a graph that requires a list input.""" + vm.Page( + id="test_page", + title="My first dashboard", + components=[ + vm.Graph(id="scatter_matrix_chart", figure=scatter_matrix_chart), + ], + ) + Vizro._pre_build() diff --git a/vizro-core/tests/unit/vizro/actions/test_parameter_action.py b/vizro-core/tests/unit/vizro/actions/test_parameter_action.py index d4677e865..4db90f879 100644 --- a/vizro-core/tests/unit/vizro/actions/test_parameter_action.py +++ b/vizro-core/tests/unit/vizro/actions/test_parameter_action.py @@ -15,6 +15,13 @@ def target_scatter_parameter_y(request, gapminder_2007, scatter_params): return px.scatter(gapminder_2007, **scatter_params).update_layout(margin_t=24) +@pytest.fixture +def target_scatter_matrix_parameter_dimensions(request, iris, scatter_matrix_params): + dimensions = request.param + scatter_matrix_params["dimensions"] = dimensions + return px.scatter_matrix(iris, **scatter_matrix_params).update_layout(margin_t=24) + + @pytest.fixture def target_scatter_parameter_hover_data(request, gapminder_2007, scatter_params): hover_data = request.param @@ -95,6 +102,38 @@ def ctx_parameter_y(request): return context_value +@pytest.fixture +def ctx_parameter_dimensions(request): + """Mock dash.ctx that represents `dimensions` Parameter value selection.""" + y = request.param + mock_ctx = { + "args_grouping": { + "external": { + "filter_interaction": [], + "filters": [], + "parameters": [ + CallbackTriggerDict( + id="dimensions_parameter", + property="value", + value=y, + str_id="dimensions_parameter", + triggered=False, + ) + ], + "theme_selector": CallbackTriggerDict( + id="theme_selector", + property="checked", + value=False, + str_id="theme_selector", + triggered=False, + ), + } + } + } + context_value.set(AttributeDict(**mock_ctx)) + return context_value + + @pytest.fixture def ctx_parameter_hover_data(request): """Mock dash.ctx that represents hover_data Parameter value selection.""" @@ -497,3 +536,36 @@ def test_data_frame_parameters_multiple_targets( } assert result == expected + + @pytest.mark.usefixtures("managers_one_page_one_graph_with_dict_param_input") + @pytest.mark.parametrize( + "ctx_parameter_dimensions, target_scatter_matrix_parameter_dimensions", + [("ALL", ["sepal_length", "sepal_width", "petal_length", "petal_width"]), (["sepal_width"], ["sepal_width"])], + indirect=True, + ) + def test_one_parameter_with_dict_input_as_options( + self, ctx_parameter_dimensions, target_scatter_matrix_parameter_dimensions + ): + # If the options are provided as a list of dictionaries, the value should be correctly passed to the + # target as a list. So when "ALL" is selected, a list of all possible values should be returned. + dimensions_parameter = vm.Parameter( + id="test_parameter_dimensions", + targets=["scatter_matrix_chart.dimensions"], + selector=vm.RadioItems( + id="dimensions_parameter", + options=[ + {"label": "sepal_length", "value": "sepal_length"}, + {"label": "sepal_width", "value": "sepal_width"}, + {"label": "petal_length", "value": "petal_length"}, + {"label": "petal_width", "value": "petal_width"}, + ], + ), + ) + model_manager["test_page"].controls = [dimensions_parameter] + dimensions_parameter.pre_build() + + # Run action by picking the above added action function and executing it with () + result = model_manager[f"{PARAMETER_ACTION_PREFIX}_test_parameter_dimensions"].function() + expected = {"scatter_matrix_chart": target_scatter_matrix_parameter_dimensions} + + assert result == expected