-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
86 lines (68 loc) · 3.18 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from enum import Enum
from datetime import datetime
from datetime import timedelta
import streamlit as st
from options import Option
from options import Ticker
class OPTION_PRICING_MODEL(Enum):
BSM = 'BSM'
BSM_FT_NUM = 'BSM via Furier Transform (Lewis)'
BSM_FFT = 'BSM via FFT (Lewis)'
MERTON_FT_NUM = 'Merton via Fourier Transform (Lewis)'
MERTON_FFT = 'Merton via FFT (Carr-Madan)'
@st.cache
def get_historical_data(ticker):
"""Getting historical data for speified ticker and caching it with streamlit app."""
return Ticker.get_historical_data(ticker)
####################
##Streamlit config##
####################
st.title('Option pricing')
# User selected model from sidebar
pricing_method = st.sidebar.radio('Please select option pricing method', options=[model.value for model in OPTION_PRICING_MODEL]) # noqa
# Displaying specified model
st.subheader(f'Pricing method: {pricing_method}')
# Model parameters
# Parameters for Black-Scholes model
ticker = st.text_input('Ticker symbol', 'AAPL')
strike_price = st.number_input('Strike price')
risk_free_rate = st.slider('Risk-free rate (%)', 0, 100, 10)
sigma = st.slider('Sigma (%)', 0, 100, 20)
exercise_date = st.date_input('Exercise date', min_value=datetime.today() + timedelta(days=1), value=datetime.today() + timedelta(days=365)) # noqa
# Additional parameters for jump-diffusion model (Merton model)
if pricing_method == OPTION_PRICING_MODEL.MERTON_FFT.value or pricing_method == OPTION_PRICING_MODEL.MERTON_FT_NUM.value:
st.text("Parameters for jump-diffusion Merton model:")
lamb = st.number_input('Jump frequency', 1.)
mu = st.number_input('Expected jump size', -0.1)
delta = st.number_input('Jump size volatility', 0.1)
if st.button(f'Calculate option price for {ticker}'):
# Getting data for selected ticker
data = get_historical_data(ticker)
if data is None:
st.warning(f"Couldn't get price for {ticker}.")
st.stop()
print(data)
st.write(data.tail())
ticker_plot_pbj = Ticker.plot_data(data, ticker, 'Adj Close')
st.pyplot(ticker_plot_pbj)
# Formating selected model parameters
spot_price = Ticker.get_last_price(data, 'Adj Close')
risk_free_rate = risk_free_rate / 100
sigma = sigma / 100
days_to_maturity = (exercise_date - datetime.now().date()).days
# Option object
option = Option(spot_price, strike_price, days_to_maturity/365, risk_free_rate, sigma) # noqa
# Calculating option price
call_price = None
if pricing_method == OPTION_PRICING_MODEL.BSM.value:
call_price = option.price('call', 'BSM')
elif pricing_method == OPTION_PRICING_MODEL.BSM_FFT.value:
call_price = option.price('call', 'BSM_FFT')
elif pricing_method == OPTION_PRICING_MODEL.BSM_FT_NUM.value:
call_price = option.price('call', 'BSM_FT_NUM')
elif pricing_method == OPTION_PRICING_MODEL.MERTON_FT_NUM.value:
call_price = option.price('call', 'MERTON_FT_NUM', lamb, mu, delta)
elif pricing_method == OPTION_PRICING_MODEL.MERTON_FFT.value:
call_price = option.price('call', 'MERTON_FFT', lamb, mu, delta)
# Displaying call/put option price
st.subheader(f'Call option price: {round(call_price, 2)} $')