-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathProblem03.java
45 lines (41 loc) · 1.58 KB
/
Problem03.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
package algorithm.knapsack;
import java.util.Scanner;
/**
* @author: mayuan
* @desc: 多重背包问题 http://acm.hdu.edu.cn/showproblem.php?pid=2191
* @date: 2018/09/06
*/
public class Problem03 {
/**
* 这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:
* 取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:
* f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}
*
* @param args
*/
public static void main(String args[]) {
Scanner scanner = new Scanner(System.in);
int testNumber = scanner.nextInt();
while (0 < testNumber--) {
// 背包可供消耗的资源
int M = scanner.nextInt();
// 物品的种类
int N = scanner.nextInt();
int[] dp = new int[M + 1];
for (int i = 1; i <= N; ++i) {
// 每件物品的消耗
int w = scanner.nextInt();
// 每件物品可以获取的价值
int v = scanner.nextInt();
// 每件物品的数量
int c = scanner.nextInt();
for (int j = M; j >= w; --j) {
for (int k = 0; k <= c && k * w <= j; ++k) {
dp[j] = dp[j] >= dp[j - k * w] + k * v ? dp[j] : dp[j - k * w] + k * v;
}
}
}
System.out.println(dp[M]);
}
}
}