-
Notifications
You must be signed in to change notification settings - Fork 857
/
Copy pathsyllabus-autumn2018.html
543 lines (505 loc) · 21.2 KB
/
syllabus-autumn2018.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
<!DOCTYPE html>
<html lang="en">
<head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- <meta http-equiv="X-UA-Compatible" content="IE=edge"> -->
<!-- <meta name="viewport" content="width=device-width, initial-scale=1"> -->
<title>CS229: Machine Learning</title>
<!-- bootstrap -->
<!-- <link rel="stylesheet" href="./style/bootstrap.min.css"> -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/css/bootstrap.min.css" integrity="sha384-/Y6pD6FV/Vv2HJnA6t+vslU6fwYXjCFtcEpHbNJ0lyAFsXTsjBbfaDjzALeQsN6M" crossorigin="anonymous">
<link rel="stylesheet" href="./style/bootstrap-theme.min.css">
<link href="./style/newstyle.css" rel="stylesheet" type="text/css">
<body>
<nav class="navbar navbar-expand-md navbar-dark">
<a href="http://cs229.stanford.edu/">
<img src="./static/seal-dark-red.png" style="height:40px; float: left; margin-left: 20px; margin-right: 20px;"></a>
<a class="navbar-brand" href="http://cs229.stanford.edu/">CS229</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarsExampleDefault" aria-controls="navbarsExampleDefault" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarsExampleDefault">
<ul class="navbar-nav mr-auto">
<li class="nav-item"><a class="nav-link" href="./index.html#announcement">Announcements</a></li>
<li class="nav-item"><a class="nav-link" href="./syllabus.html">Syllabus</a></li>
<li class="nav-item"><a class="nav-link" href="./index.html#info">Course Info</a></li>
<li class="nav-item"><a class="nav-link" href="./index.html#logistics">Logistics</a></li>
<li class="nav-item"><a class="nav-link" href="projects.html">Projects</a></li>
<li class="nav-item"><a class="nav-link" href="https://piazza.com/class/spring2019/cs229">Piazza</a></li>
</ul>
</div>
</nav>
<div class="sechighlight">
<div class="container sec" style="margin-top: 1em">
<h2>Syllabus and Course Schedule</h2>
<p>
<b>Time and Location</b>:
Monday, Wednesday 4:30-5:50pm, <a href="https://campus-map.stanford.edu/?srch=bishop%20auditorium">Bishop Auditorium</a><br />
<strong>Class Videos</strong>:
Current quarter's class videos are available <a href="http://scpd.stanford.edu">here</a> for SCPD students and <a href="https://mvideox.stanford.edu/">here</a> for non-SCPD students.</p>
<br>
</div>
</div>
<div class="container">
<table id="schedule" class="table table-bordered no-more-tables">
<thead class="active" style="background-color:#f9f9f9">
<th>Event</th><th>Date</th><th>Description</th><th>Materials and Assignments</th>
</thead>
<tbody>
<!--<tr>
<td colspan="4" style="text-align:center; vertical-align:middle;background-color:#fffde7">
<strong>Introduction</strong> (1 class)
</td>
</tr>-->
<tr>
<td>Lecture 1</td>
<td> 9/24 </td>
<td>
Introduction and Basic Concepts
</td>
<td>
</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>A0</td>
<td>9/24</td>
<td colspan="3" style="text-align:center; vertical-align:middle;">
<strong>Problem Set 0</strong> <a href="materials/ps0.pdf">[pdf]</a>
</td>
</tr>
<!--<tr>
<td colspan="4" style="text-align:center; vertical-align:middle;background-color:#fffde7">
<strong>Supervised learning</strong> (6 classes)
</td>
</tr>-->
<tr>
<td>Lecture 2</td>
<td>9/26</td>
<td>Supervised Learning Setup. Linear Regression.
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li>Supervised Learning, Discriminative Algorithms [<a href="notes/cs229-notes1.pdf">pdf</a>] </li>
</ul>
</td>
</tr>
<tr>
<td>Section</td>
<td>9/28</td>
<td colspan="2">
<strong>Discussion Section</strong>: Linear Algebra [<a href="section/cs229-linalg.pdf">Notes</a>]<br>
</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>10/1</td>
<td rowspan="2">
Weighted Least Squares. Logistic Regression. Netwon's Method <br>
Perceptron. Exponential Family. Generalized Linear Models.
</td>
<td rowspan="2">
<strong>Class Notes</strong>
<ul>
<li>Generative Algorithms [<a href="notes/cs229-notes2.pdf">pdf</a>] </li>
</ul>
</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>10/3</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>A1</td>
<td>10/3</td>
<td colspan="3" style="text-align:center; vertical-align:middle;">
<!-- to a folder -->
<strong>Problem Set 1</strong> <a href="problem-sets/ps1/">[directory]</a>
</td>
</tr>
<tr>
<td>Section</td>
<td>10/5</td>
<td colspan="2">
<strong>Discussion Section</strong>: Probability[<a href="section/cs229-prob.pdf">Notes</a>][<a href="section/cs229-prob-slide.pdf">Slides</a>]
</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>10/8</td>
<td>
Gaussian Discriminant Analysis. Naive Bayes.
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>10/10</td>
<td>
Laplace Smoothing. Support Vector Machines. <br>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li>Support Vector Machines [<a href="notes/cs229-notes3.pdf">pdf</a>] </li>
</ul>
</td>
</tr>
<tr>
<td>Section</td>
<td>10/12</td>
<td colspan="2">
<strong>Discussion Section</strong>: Python <a href="https://d1b10bmlvqabco.cloudfront.net/attach/jkbylqx4kcp1h3/jm8g1m67da14eq/jn7zkozyyol7/CS229_Python_Tutorial.pdf">[slides]<a> <!--Vectorization[<a href="section/vec_demo/Vectorization_Section.pdf">Slides</a>][<a href="section/vec_demo/knn.py">kNN</a>][<a href="section/vec_demo/lr.ipynb">Logistic Regression</a>][<a href="section/vec_demo/sr.ipynb">Softmax Regression</a>][<a href="section/vec_demo/images.csv">images</a>][<a href="section/vec_demo/labels.csv">labels</a>]-->
</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>10/15</td>
<td>
Support Vector Machines. Kernels.
</td>
<td> </td>
</tr>
<!-- <tr>
<td>Lecture 2</td>
<td> 9/27 </td>
<td rowspan="6">
<strong>Supervised learning</strong> (5 classes)
<ol>
<li>Supervised learning setup. LMS.</li>
<li>Logistic regression. Perceptron. Exponential family. </li>
<li>Generative learning algorithms. Gaussian discriminant analysis. Naive Bayes. </li>
<li>Support vector machines. </li>
<li>Model selection and feature selection. </li>
<li>Evaluating and debugging learning algorithms. </li>
</ol>
</td>
<td rowspan="6">
<strong>Class Notes</strong>
<ul>
<li>Generative Algorithms [<a href="notes/cs229-notes2.pdf">pdf</a>] </li>
<li>Support Vector Machines [<a href="notes/cs229-notes3.pdf">pdf</a>] </li>
</ul>
<strong>Problem Set 1</strong> <a href="ps/ps1/ps1.pdf">[pdf]</a>. Out 10/4. Due 10/18. <a href="gradescope.html">Submission instructions</a>.<br>
<strong>Discussion Section: Probability</strong> [<a href="section/cs229-prob.pdf">Notes</a>][<a href="section/cs229-prob-slide.pdf">Slides</a>]<br>
<strong>Discussion Section: Vectorization</strong> [<a href="section/vec_demo/Vectorization_Section.pdf">Slides</a>][<a href="section/vec_demo/knn.py">kNN</a>][<a href="section/vec_demo/lr.ipynb">Logistic Regression</a>][<a href="section/vec_demo/sr.ipynb">Softmax Regression</a>]<br>
</td>
</tr>
<tr>
<td>
Section
</td>
<td> 9/29 </td>
</tr>
<tr>
<td>Lecture 3</td>
<td> 10/2 </td>
</tr>
<tr>
<td>Lecture 4</td>
<td> 10/4 </td>
</tr>
<tr>
<td>Lecture 5</td>
<td> 10/9 </td>
</tr>
<tr>
<td>Lecture 6</td>
<td> 10/11 </td>
</tr> -->
<!--<tr>
<td colspan="4" style="text-align:center; vertical-align:middle;background-color:#fffde7">
<strong>Learning theory </strong> (2 classes)
</td>
</tr>-->
<tr>
<td>Lecture 8</td>
<td> 10/17 </td>
<td>
Bias-Variance tradeoff. Regularization and model/feature selection.
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li>Bias/variance tradeoff[<a href="notes/cs229-notes4.pdf">pdf</a>]</li>
<li>Error analysis[<a href="section/error-analysis.pdf">pdf</a>]</li>
<!--<li>Learning Theory [<a href="notes/cs229-notes4.pdf">pdf</a>]</li>-->
<li>Regularization and Model Selection [<a href="notes/cs229-notes5.pdf">pdf</a>] </li>
<li>Advice on applying machine learning[<a href="http://cs229.stanford.edu/materials/ML-advice.pdf">pdf</a>]</li>
</ul>
</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>A2</td>
<td>10/17</td>
<td colspan="3" style="text-align:center; vertical-align:middle;">
<strong>Problem Set 2</strong> <a href="problem-sets/ps2/">[directory]</a>
</td>
</tr>
<tr>
<td>Section</td>
<td>10/19</td>
<td colspan="2">
<strong>Discussion Section</strong>: Learning Theory [<a href="notes/cs229-notes4.pdf">pdf</a>]
<!--<ul>
<li>Convex Optimization Overview, Part I [<a href="section/cs229-cvxopt.pdf">pdf</a>]</li>
<li>Convex Optimization Overview, Part II [<a href="section/cs229-cvxopt2.pdf">pdf</a>] </li>
</ul>-->
</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>Project</td>
<td> 10/19 </td>
<td colspan="2" style="text-align:center; vertical-align:middle;">Project proposal due at <strong>11:59pm</strong>.</td>
</tr>
<tr>
<td>Lecture 9</td>
<td> 10/22 </td>
<td>
Tree Ensembles.
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li>Decision trees [<a href="notes/cs229-notes-dt.pdf">pdf</a>]</li>
<li>Ensembling methods [<a href="notes/cs229-notes-ensemble.pdf">pdf</a>]</li>
</ul>
<!--<strong>Related material</strong>
<ul>
<li>ESL 8.7 (Bagging), ESL 9.2 (Decision Trees), ESL 15 (Random Forest) [<a href="https://web.stanford.edu/~hastie/Papers/ESLII.pdf">pdf</a>]</li>
</ul>-->
</td>
</tr>
<!--<tr>
<td colspan="4" style="text-align:center; vertical-align:middle;background-color:#fffde7">
<strong>Deep Learning</strong> (2 classes)
</td>
</tr>-->
<tr>
<td>Lecture 10</td>
<td>10/24</td>
<td>
Neural Networks: Basics<br>
</td>
<td>
<strong>Class Notes</strong>
<ul>
<li>Online Learning and the Perceptron Algorithm. (optional reading) [<a href="notes/cs229-notes6.pdf">pdf</a>] </li>
<li>Deep learning [<a href="notes/cs229-notes-deep_learning.pdf">pdf</a>] </li>
<li>Backpropagation [<a href="notes/cs229-notes-backprop.pdf">pdf</a>] </li>
</ul>
</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>10/29</td>
<td>Neural Networks: Training
</td>
<td> </td>
</tr>
<tr>
<td>Section</td>
<td>10/26</td>
<td colspan="2">
<strong>Discussion Section</strong>: Evaluation Metrics [<a href="section/evaluation_metrics.pdf">Slides</a>]
</td>
</tr>
<!--<tr>
<td colspan="4" style="text-align:center; vertical-align:middle;background-color:#fffde7">
<strong>Unsupervised learning</strong> (5 classes)
</td>
</tr>-->
<tr>
<td>Lecture 12 </td>
<td>10/31</td>
<td>Practical Advice for ML projects
</td>
<td rowspan="5">
<strong>Class Notes</strong>
<ul>
<li>Unsupervised Learning, k-means clustering. [<a href="notes/cs229-notes7a.pdf">pdf</a>]</li>
<li>Mixture of Gaussians [<a href="notes/cs229-notes7b.pdf">pdf</a>] </li>
<li>The EM Algorithm [<a href="notes/cs229-notes8.pdf">pdf</a>] </li>
<li>Factor Analysis [<a href="notes/cs229-notes9.pdf">pdf</a>]</li>
<li>Principal Components Analysis [<a href="notes/cs229-notes10.pdf">pdf</a>] </li>
<li>Independent Components Analysis [<a href="notes/cs229-notes11.pdf">pdf</a>] </li>
</ul>
</td>
</tr>
<tr>
<td>Lecture 13</td>
<td>11/5</td>
<td>K-means. Mixture of Gaussians. Expectation Maximization.</td>
<!-- <td> </td> -->
</tr>
<tr>
<td>Lecture 14</td>
<td> 11/7 </td>
<td>Factor Analysis.</td>
<!-- <td></td> -->
</tr>
<tr>
<td>Lecture 15</td>
<td> 11/12 </td>
<td>Principal Component Analysis. Independent Component Analysis.</td>
<!-- <td></td> -->
</tr>
<tr>
<td>Lecture 16</td>
<td> 11/14</td>
<td>MDPs. Bellman Equations.</td>
<!-- <td></td> -->
</tr>
<tr>
<td>Section</td>
<td>11/2</td>
<td colspan="2">
<strong>Discussion Section</strong>: Midterm Review [<a href="materials/cs229-mt-review.pdf">pdf</a>]
</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>A3</td>
<td>10/31</td>
<td colspan="3" style="text-align:center; vertical-align:middle;">
<strong>Problem Set 3</strong> <a href="problem-sets/ps3/">[directory]</a>
</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>Midterm</td>
<td>11/7</td>
<td colspan="2">
<span style="text-align: left;">We will have a take-home midterm. All details are posted <a href="https://piazza.com/class/jkbylqx4kcp1h3?cid=24">on Piazza</a>.</span>
</td>
</tr>
<tr>
<td>Section</td>
<td>11/16</td>
<td colspan="2">
<strong>Discussion Section</strong>: canceled
</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>Project</td>
<td> 11/16 </td>
<td colspan="2">Project milestones due 11/16 at <strong>11:59pm</strong>.</td>
</tr>
<!--<tr>
<td colspan="4" style="text-align:center; vertical-align:middle;background-color:#fffde7">
<strong>Reinforcement learning and control</strong> (4 classes)
</td>
</tr>-->
<tr>
<td>Lecture 17 </td>
<td> 11/26 </td>
<td> Value Iteration and Policy Iteration. LQR. LQG. </td>
<td rowspan="4">
<strong>Class Notes</strong>
<ul>
<li>Reinforcement Learning and Control [<a href="notes/cs229-notes12.pdf">pdf</a>]</li>
<li>LQR, DDP and LQG [<a href="notes/cs229-notes13.pdf">pdf</a>]</li>
</ul>
</td>
</tr>
<tr>
<td>Lecture 18</td>
<td> 11/28 </td>
<td>Q-Learning. Value function approximation.</td>
<!-- <td> </td> -->
</tr>
<tr>
<td>Lecture 19</td>
<td> 12/3 </td>
<td>Policy Search. REINFORCE. POMDPs.</td>
<!-- <td></td> -->
</tr>
<tr>
<td>Lecture 20</td>
<td> 12/5 </td>
<td>Optional topic. Wrap-up.</td>
<!-- <td></td> -->
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>A4</td>
<td>11/14</td>
<td colspan="3" style="text-align:center; vertical-align:middle;">
<strong>Problem Set 4</strong> <a href="problem-sets/ps4/">[directory]</a>
</td>
</tr>
<tr>
<td>Section</td>
<td>11/30</td>
<td colspan="2">
<strong>Discussion Section</strong>: On critiques of Machine Learning [<a href="materials/critiques-ml.pdf">slides</a>]
</td>
</tr>
<tr>
<td>Section</td>
<td>12/07</td>
<td colspan="2">
<strong>Discussion Section</strong>: Convolutional Neural Networks
</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>Project</td>
<td>12/10</td>
<td colspan="2" style="text-align:center; vertical-align:middle;">
<strong>Project poster PDF</strong> and project recording (some teams) due at 11:59 pm.<br>
</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>Project</td>
<td> 12/11 </td>
<td colspan="2"> Poster presentations from 8:30-11:30am. Venue and details to be announced.</td>
</tr>
<tr style="text-align:center; vertical-align:middle;background-color:#FFF2F2">
<td>Project</td>
<td> 12/13 </td>
<td colspan="2">Final writeup due at <strong>11:59pm</strong> (no late days).</td>
</tr>
<tr class="warning" id="opt">
<td colspan="4">
<b>Supplementary Notes</b>
<ol>
<li>Binary classification with +/-1 labels [<a href="extra-notes/loss-functions.pdf">pdf</a>]</li>
<li>Boosting algorithms and weak learning [<a href="extra-notes/boosting.pdf">pdf</a>] </li>
<li>Functional after implementing stump_booster.m in PS2. [<a href="extra-notes/boosting_example.m">here</a>] </li>
<li>The representer theorem [<a href="extra-notes/representer-function.pdf">pdf</a>]</li>
<li>Hoeffding's inequality [<a href="extra-notes/hoeffding.pdf">pdf</a>] </li>
</ol></td>
</tr>
<tr class="alert">
<td colspan="4">
<b>Section Notes</b>
<ol>
<li id="la">Linear Algebra Review and Reference [<a href="section/cs229-linalg.pdf">pdf</a>]</li>
<li>Probability Theory Review [<a href="section/cs229-prob.pdf">pdf</a>] </li>
<!--<li>Files for the Matlab tutorial: [<a href="http://cs229.stanford.edu/materials/MATLAB_Session.pdf">pdf</a>] [<a href="section/matlab/sigmoid.m">sigmoid.m</a>] [<a href="section/matlab/logistic_grad_ascent.m">logistic_grad_ascent.m</a>] [<a href="http://cs229.stanford.edu/materials/matlab_session.m">matlab_session.m</a>] </li>-->
<li>Convex Optimization Overview, Part I [<a href="section/cs229-cvxopt.pdf">pdf</a>]</li>
<li>Convex Optimization Overview, Part II [<a href="section/cs229-cvxopt2.pdf">pdf</a>] </li>
<li>Hidden Markov Models [<a href="section/cs229-hmm.pdf">pdf</a>] </li>
<li>The Multivariate Gaussian Distribution [<a href="section/gaussians.pdf">pdf</a>] </li>
<li>More on Gaussian Distribution [<a href="section/more_on_gaussians.pdf">pdf</a>] </li>
<li>Gaussian Processes [<a href="section/cs229-gaussian_processes.pdf">pdf</a>] </li>
</ol></td>
</tr>
<tr>
<td colspan="4">
<b>Other Resources</b>
<ol>
<li>Advice on applying machine learning: Slides from Andrew's lecture on getting machine learning algorithms to work in practice can be found <a href="http://cs229.stanford.edu/materials/ML-advice.pdf">here</a>.<br></li>
<li>Previous projects: A list of last year's final projects can be found <a href="http://cs229.stanford.edu/proj2017/index.html">here</a>.<br></li>
<!--<li>Matlab resources: Here are a couple of Matlab tutorials that you might find helpful: <a href="http://www.math.ucsd.edu/~bdriver/21d-s99/matlab-primer.html">http://www.math.ucsd.edu/~bdriver/21d-s99/matlab-primer.html</a> and <a href="http://www.math.mtu.edu/~msgocken/intro/node1.html">http://www.math.mtu.edu/~msgocken/intro/node1.html</a>. For emacs users only: If you plan to run Matlab in emacs, here are <a href="http://cs229.stanford.edu/materials/matlab.el">matlab.el</a>, and a helpful <a href="http://cs229.stanford.edu/materials/emacs">.emac's</a> file.<br></li>
<li>Octave resources: For a free alternative to Matlab, check out <a href="http://www.gnu.org/software/octave/">GNU Octave</a>. The official documentation is available <a href="http://www.gnu.org/software/octave/doc/interpreter/">here</a>. Some useful tutorials on Octave include <a href="http://en.wikibooks.org/wiki/Octave_Programming_Tutorial">http://en.wikibooks.org/wiki/Octave_Programming_Tutorial</a> and <a href="http://www-mdp.eng.cam.ac.uk/web/CD/engapps/octave/octavetut.pdf">http://www-mdp.eng.cam.ac.uk/web/CD/engapps/octave/octavetut.pdf</a> .<br></li>-->
<li>Data: Here is the <a href="http://www.ics.uci.edu/~mlearn/MLRepository.html">UCI Machine learning repository</a>, which contains a large collection of standard datasets for testing learning algorithms. If you want to see examples of recent work in machine learning, start by taking a look at the conferences <a href="http://www.nips.cc/">NIPS</a>(all old NIPS papers are online) and ICML. Some other related conferences include UAI, AAAI, IJCAI.<br></li>
<li>Viewing PostScript and PDF files: Depending on the computer you are using, you may be able to download a <a href="http://www.cs.wisc.edu/~ghost/">PostScript</a> viewer or <a href="http://www.adobe.com/products/acrobat/readstep2_allversions.html">PDF viewer</a> for it if you don't already have one.<br></li>
<li><a href="https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning">Machine learning study guides tailored to CS 229</a> by Afshine Amidi and Shervine Amidi.</li>
</ol>
</td>
</tr>
</tbody></table>
</div>
<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.11.0/umd/popper.min.js" integrity="sha384-b/U6ypiBEHpOf/4+1nzFpr53nxSS+GLCkfwBdFNTxtclqqenISfwAzpKaMNFNmj4" crossorigin="anonymous"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/js/bootstrap.min.js" integrity="sha384-h0AbiXch4ZDo7tp9hKZ4TsHbi047NrKGLO3SEJAg45jXxnGIfYzk4Si90RDIqNm1" crossorigin="anonymous"></script>
</body></html>