-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathface_detector.py
236 lines (174 loc) · 8.25 KB
/
face_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import cv2
import math
import time
import pickle
import datetime
import numpy as np
from sklearn import neighbors
from PIL import Image, ImageDraw
import face_recognition.api as face_recognition
####################################
# DEVELOPER : VIKRAM SINGH #
# TECHNOLOGY STACK : PYTHON #
####################################
# =============================== CONFIG =======================================
RECOGNISED_NAMES = "recorded_data/names.txt" # saved names list of people recognised
RECOGNISED_ENCODINGS = "recorded_data/encodings.txt" # saved encoding list of people recognised
MODEL_PATH = "recorded_data/models/model.txt" # tranied model to save path
DIST_THRESHOLD = 0.45 # Threshold value iversely proportional to accuracy
DETECTED_IMAGE_SAVE_PATH = "recorded_data/images/detections/"
# ==============================================================================
class FaceDetector():
def __init__(self):
self.frameNumber = 1
self.start_time = time.time()
self.knownNames = []
self.knownFaceEncodings = []
'''
Retrain model for any new entries of faces
'''
def scanKnownFaces(self):
with open(RECOGNISED_NAMES) as f:
known_names = f.read().splitlines()
known_face_encodings=np.loadtxt(RECOGNISED_ENCODINGS, dtype='float')
n_neighbors = int(round(math.sqrt(len(known_face_encodings))))
knn_clf = neighbors.KNeighborsClassifier(n_neighbors, algorithm='ball_tree', weights='distance')
# print known_face_encodings
knn_clf.fit(known_face_encodings, known_names)
# Save the trained KNN classifier
if MODEL_PATH is not None:
with open(MODEL_PATH, 'wb') as f:
pickle.dump(knn_clf, f)
self.knownNames = known_names
self.knownFaceEncodings = known_face_encodings
print ("MODEL RETRAINED")
return known_names, known_face_encodings
def _predict(self, frame_number, frame, knn_clf, known_names, known_face_encodings):
unknown_image = frame[:, :, ::-1]
if max(unknown_image.shape) > 1600:
pil_image = Image.fromarray(unknown_image)
pil_image.thumbnail((1600,0), PIL.Image.LANCZOS)
unknown_image = np.array(pil_img)
img = cv2.cvtColor( unknown_image, cv2.COLOR_RGB2GRAY )
pil_image = Image.fromarray(unknown_image)
self.start_time = time.time()
face_locations = face_recognition.face_locations(img, number_of_times_to_upsample=2, model="hog")
print "Face detection--- %s seconds ---" % (time.time() - self.start_time)
if not face_locations:
return False
if face_locations:
print face_locations
unknown_encodings = face_recognition.face_encodings(unknown_image, face_locations)
print "amy", type(unknown_encodings[0])
closest_distances = knn_clf.kneighbors(unknown_encodings, n_neighbors=1)
matches = [closest_distances[0][i][0] <= DIST_THRESHOLD for i in range(len(face_locations))]
return [(pred, loc, encoding, rec) if rec else ("unknown", loc, encoding, rec) for pred, encoding, loc, rec in zip(knn_clf.predict(unknown_encodings), unknown_encodings, face_locations, matches)]
def _showPredictionLabelsOnImage(self, frame, data):
# Draw a box around the face
cv2.rectangle(frame, (data["left"], data["top"]), (data["right"], data["bottom"]), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (data["left"], data["bottom"] - 35), (data["right"], data["bottom"]), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, data["name"], (data["left"] + 6, data["bottom"] - 6), font, 1.0, (255, 255, 255), 1)
return
def detectFrameFromModel(self, image):
frame = image
result = {
"faceFound" : False,
"name": "",
}
frame_number = self.frameNumber
self.frameNumber += 1
if not len(self.knownNames) or not len(self.knownFaceEncodings):
print "Did not find any previous data starting training model"
self.scanKnownFaces()
known_names = self.knownNames
known_face_encodings = self.knownFaceEncodings
with open(MODEL_PATH, 'rb') as f:
knn_clf = pickle.load(f)
predictions = self._predict(frame_number, frame, knn_clf, known_names, known_face_encodings)
if(predictions == 0):
print "No face detected"
else:
print "Face detected"
print type(predictions)
for name, (top, right, bottom, left),encoding,rec in predictions:
array2 = 0
for nam, k_encode in zip(known_names, known_face_encodings):
if(nam == name):
array2 = k_encode
print "- Found {} at ({}, {}) frame no:".format(name, left, top), frame_number
print "Face Recognition--- %s seconds ---" % (time.time() - self.start_time)
data = {
"name": name,
"top": top,
"right": right,
"bottom": bottom,
"left": left
}
# add label on detections
self._showPredictionLabelsOnImage(frame, data)
if(name != "unknown"):
IMAGE_PATH = DETECTED_IMAGE_SAVE_PATH + '/' + str(datetime.date.today())
if not os.path.exists(IMAGE_PATH):
os.makedirs(IMAGE_PATH)
FaceFileName = IMAGE_PATH + "/{}_{}.jpg".format(name, datetime.datetime.now().strftime('%H:%M:%S'))
cv2.imwrite(FaceFileName, frame)
result = {
"faceFound" : True,
"name": name
}
# Display the resulting image
cv2.imshow('Video', frame)
return result
def run(self):
known_names, known_face_encodings = self.scanKnownFaces()
input_movie = cv2.VideoCapture(0)
frame_number = 0
while True:
flag = 0
ret, frame = input_movie.read()
frame_number += 1
# Quit when the input video file ends
if not ret:
break
if(frame_number % 5 == 0):
with open(MODEL_PATH, 'rb') as f:
knn_clf = pickle.load(f)
predictions = self._predict(frame_number, frame, knn_clf, known_names, known_face_encodings)
if(predictions == 0):
print "No face detected"
else:
print "Face detected"
print type(predictions)
i = 0
for name, (top, right, bottom, left),encoding,rec in predictions:
array2 = 0
for nam, k_encode in zip(known_names, known_face_encodings):
if(nam == name):
array2 = k_encode
i += 1
print "- Found {} at ({}, {}) frame no:".format(name, left, top), frame_number
print "Face Recognition--- %s seconds ---" % (time.time() - self.start_time)
data = {
"name": name,
"top": top,
"right": right,
"bottom": bottom,
"left": left
}
# add label on detections
self._showPredictionLabelsOnImage(frame, data)
if(name != "unknown"):
FaceFileName = DETECTED_IMAGE_SAVE_PATH + "{}_{}_{}.jpg".format(name, i, frame_number)
cv2.imwrite(FaceFileName, frame)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
return
if __name__ == "__main__":
detector = FaceDetector()
detector.run()