forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcover_rectangle_sat.py
108 lines (86 loc) · 3.7 KB
/
cover_rectangle_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fill a 72x37 rectangle by a minimum number of non-overlapping squares."""
from ortools.sat.python import cp_model
def cover_rectangle(num_squares):
"""Try to fill the rectangle with a given number of squares."""
size_x = 72
size_y = 37
model = cp_model.CpModel()
areas = []
sizes = []
x_intervals = []
y_intervals = []
x_starts = []
y_starts = []
# Creates intervals for the NoOverlap2D and size variables.
for i in range(num_squares):
size = model.NewIntVar(1, size_y, 'size_%i' % i)
start_x = model.NewIntVar(0, size_x, 'sx_%i' % i)
end_x = model.NewIntVar(0, size_x, 'ex_%i' % i)
start_y = model.NewIntVar(0, size_y, 'sy_%i' % i)
end_y = model.NewIntVar(0, size_y, 'ey_%i' % i)
interval_x = model.NewIntervalVar(start_x, size, end_x, 'ix_%i' % i)
interval_y = model.NewIntervalVar(start_y, size, end_y, 'iy_%i' % i)
area = model.NewIntVar(1, size_y * size_y, 'area_%i' % i)
model.AddProdEquality(area, [size, size])
areas.append(area)
x_intervals.append(interval_x)
y_intervals.append(interval_y)
sizes.append(size)
x_starts.append(start_x)
y_starts.append(start_y)
# Main constraint.
model.AddNoOverlap2D(x_intervals, y_intervals)
# Redundant constraints.
model.AddCumulative(x_intervals, sizes, size_y)
model.AddCumulative(y_intervals, sizes, size_x)
# Forces the rectangle to be exactly covered.
model.Add(sum(areas) == size_x * size_y)
# Symmetry breaking 1: sizes are ordered.
for i in range(num_squares - 1):
model.Add(sizes[i] <= sizes[i + 1])
# Define same to be true iff sizes[i] == sizes[i + 1]
same = model.NewBoolVar('')
model.Add(sizes[i] == sizes[i + 1]).OnlyEnforceIf(same)
model.Add(sizes[i] < sizes[i + 1]).OnlyEnforceIf(same.Not())
# Tie break with starts.
model.Add(x_starts[i] <= x_starts[i + 1]).OnlyEnforceIf(same)
# Symmetry breaking 2: first square in one quadrant.
model.Add(x_starts[0] < 36)
model.Add(y_starts[0] < 19)
# Creates a solver and solves.
solver = cp_model.CpSolver()
status = solver.Solve(model)
print('%s found in %0.2fs' % (solver.StatusName(status), solver.WallTime()))
# Prints solution.
if status == cp_model.OPTIMAL:
display = [[' ' for _ in range(size_x)] for _ in range(size_y)]
for i in range(num_squares):
sol_x = solver.Value(x_starts[i])
sol_y = solver.Value(y_starts[i])
sol_s = solver.Value(sizes[i])
char = format(i, '01x')
for j in range(sol_s):
for k in range(sol_s):
if display[sol_y + j][sol_x + k] != ' ':
print('ERROR between %s and %s' %
(display[sol_y + j][sol_x + k], char))
display[sol_y + j][sol_x + k] = char
for line in range(size_y):
print(' '.join(display[line]))
return status == cp_model.FEASIBLE
for num in range(1, 15):
print('Trying with size =', num)
if cover_rectangle(num):
break