-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTD.py
169 lines (143 loc) · 5.94 KB
/
STD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import csv
import logging
import coloredlogs
import os
from datetime import datetime
import numpy as np
from sklearn.preprocessing import RobustScaler
from sklearn.metrics.pairwise import cosine_similarity
import text_preprocessing as tp
import embedding_word as ew
import PCA_plot3D as pca
import operator
import result_visualization as rv
# GLOBAL VARIABLES
choose = ""
'''
multiprocess function to preprocess the text
'''
logger = logging.getLogger(__name__)
coloredlogs.install(level='INFO', logger=logger,
fmt="- Process -> pid[%(process)d], name[%(processName)s] Function -> [%(funcName)s]\n%(asctime)s --- %(levelname)s log -> [%(message)s]")
def preprocessing(file):
if file.endswith(".txt"):
input_file = open(f"data/{file}", encoding="utf8")
file_text = input_file.read()
file_text = tp.remove_whitespace(file_text) # rimozione doppi spazi
file_text = tp.tokenization(file_text) # tokenizzo
file_text = tp.stopword_removing(file_text) # rimuovo le stopword
file_text = tp.pos_tagging(file_text) # metto un tag ad ogni parola
file_text = tp.lemmatization(file_text) # trasformo nella forma base ogni parola
logger.info("Subprocess for file -> [%s]", file)
return file_text
# TODO ripetuto anche dentro wordcloud
# def frequencyEachDoc(files, filtered_docs_list, year):
# frequency_list = []
# header = ['file_name', 'word_frequency']
# if not os.path.exists(f"output/{year}/STD/"):
# os.makedirs(f"output/{year}/STD/")
# with open(f'output/{year}/STD/{year}_file_word_frequency.csv', 'w', encoding='UTF8', newline='') as f:
# writer = csv.writer(f)
# # write the header
# writer.writerow(header)
#
# for i in range(len(filtered_docs_list)):
# with open(f'output/{year}/STD/{year}_file_word_frequency.csv', 'a', encoding='UTF8', newline='') as f:
# writer = csv.writer(f)
# # write file words
# frequency_list.append(rv.word_count(files[i]))
# data = [filtered_docs_list[i],
# str(frequency_list[i]).replace(",", "").replace("[", "").replace("]", "")]
# writer.writerow(data)
def printCloud(files):
for file in files:
rv.tag_cloud(file)
def densityArea(docs, title, year):
for i in range(0, len(docs)):
clear_results = [list(dict.fromkeys(docs[i]))]
tot_vectors = {}
for word in clear_results[0]:
tot_vectors[str(word)] = ew.get_embedding(str(word))
if not os.path.exists(f"output/{year}/STD/{title[i][:-4]}"):
os.makedirs(f"output/{year}/STD/{title[i][:-4]}")
pca.pca_clustering_3D(list(tot_vectors.values()), list(tot_vectors.keys()),
f"output/{year}/STD/{title[i][:-4]}/InitialCluster__nWords_{len(tot_vectors)}")
transformer = RobustScaler(quantile_range=(0, 75.0))
transformer.fit(list(tot_vectors.values()))
centroid_ = transformer.center_
centroid_ = np.array([centroid_])
distance_vector = {}
for j in range(0, len(tot_vectors) - 1):
dist = cosine_similarity(centroid_, np.array([list(tot_vectors.values())[j]]))
distance_vector[list(tot_vectors.keys())[j]] = dist[0][0]
distance_vector = sorted(distance_vector.items(), key=operator.itemgetter(1),
reverse=True)
dct = {}
dct[1] = []
dct[-1] = []
dct[0] = []
for s in range(0, len(distance_vector)):
if distance_vector[s][1] <= 1 and distance_vector[s][1] > 0.3:
dct[1].append(distance_vector[s][0])
continue
if distance_vector[s][1] <= 0.3 and distance_vector[s][1] > -0.5:
dct[0].append(distance_vector[s][0])
continue
if distance_vector[s][1] <= -0.5 and distance_vector[s][1] >= -1:
dct[-1].append(distance_vector[s][0])
continue
path = f"output/{year}/STD/{title[i][:-4]}"
if not os.path.exists(path):
os.makedirs(path)
with open(f"{path}/{year}_TopWords.txt", "w") as f:
f.write("1:")
f.write(" \n")
for word in dct[1]:
f.write(word + ", ")
f.write(" \n")
f.write(" \n")
f.write("0:")
f.write(" \n")
for word in dct[0]:
f.write(word + ", ")
f.write(" \n")
f.write(" \n")
f.write("-1:")
f.write(" \n")
for word in dct[-1]:
f.write(word + ", ")
f.write(" \n")
words = []
for p in range(0, len(docs[i])):
for t in range(0, len(dct[1])):
if dct[1][t] == docs[i][p]:
words.append(dct[1][t])
path = f"output/{year}/STD/{title[i][:-4]}"
rv.tag_cloud(words, year, path)
def STD():
year = input("Insert year to be analyze: \n(insert skip if you want to scan all the documents)\n")
# Working Folder
os.chdir("data")
listDoc = os.listdir()
os.chdir("../")
filtered_docs_list = []
all_docs = []
for doc in listDoc:
if doc.endswith(".txt"):
all_docs.append(doc)
if doc.endswith(".txt") and year in doc:
filtered_docs_list.append(doc)
if filtered_docs_list == [] and year != "skip":
print("No documents found for this decade")
exit()
if year == "skip":
filtered_docs_list = all_docs
logger.info("Start Time : %s", datetime.now())
start_time = datetime.utcnow()
filePP = []
for doc in filtered_docs_list:
filePP.append(preprocessing(doc))
a = 2
# write in file "output" all frequency words each document for year
# frequencyEachDoc(filePP, filtered_docs_list, year)
densityArea(filePP, filtered_docs_list, year) # found the densest area of the cluster