-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDBSCAN_topic.py
131 lines (114 loc) · 5.25 KB
/
DBSCAN_topic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os.path
from sklearn.cluster import DBSCAN
import numpy as np
from sklearn.preprocessing import RobustScaler
from sklearn.metrics.pairwise import cosine_similarity
import PCA_plot3D as pca
import operator
def DBSCAN_Topic(word_vect_dict, year):
print("partito dbscan")
X = []
for index in range(0, len(word_vect_dict)):
X.append(list(word_vect_dict.values())[index])
bestCluster = {}
best_eps = {}
for i in range(1, 11):
clustering = DBSCAN(metric='cosine', eps=i / 10, min_samples=5).fit(X)
key = []
value = []
d = {}
for index in range(0, len(word_vect_dict)):
d[clustering.labels_[index]] = 0
for index in range(0, len(word_vect_dict)):
d[clustering.labels_[index]] = d[clustering.labels_[index]] + 1
cluster_array_sorted = sorted(d.items(), key=operator.itemgetter(1),
reverse=True) # clusters ordinati in base al numero di elementi
number_of_clusters = len(cluster_array_sorted) # abbiamo trovato il numero di cluster diversi
if cluster_array_sorted[0][0] != -1:
cluster_array_sorted = cluster_array_sorted[0][0]
elif len(cluster_array_sorted) == 1:
continue
else:
cluster_array_sorted = cluster_array_sorted[1][0]
bestCluster[i] = cluster_array_sorted
best_eps[i] = number_of_clusters # id raggio piu popoloso
for index in range(0, len(word_vect_dict)):
key.append(clustering.labels_[index]) # prendo gli id dei cluster
value.append(list(word_vect_dict.values())[index])
theBest = sorted(best_eps.items(), key=operator.itemgetter(1), reverse=True)
clustering = DBSCAN(metric='cosine', eps=theBest[0][0] / 10, min_samples=5).fit(
X) # clustering sul raggio che ha il maggior numero di cluster
dctWord = {}
dctValue = {}
for index in range(0, len(word_vect_dict)):
if (clustering.labels_[index] != -1):
dctWord[clustering.labels_[index]] = []
dctValue[clustering.labels_[index]] = []
for index in range(0, len(word_vect_dict)):
if (clustering.labels_[index] != -1):
dctWord[clustering.labels_[index]].append(list(word_vect_dict.keys())[index])
dctValue[clustering.labels_[index]].append(list(word_vect_dict.values())[index])
if os.path.exists(f"output/{year}/clustering/{year}_clusters.txt"):
os.remove(f"output/{year}/clustering/{year}_clusters.txt")
bigClusters = {}
for g in range(0, len(dctWord)):
tot_vectors = {}
if len(dctWord[g]) > 50:
bigClusters[g] = []
for r in range(0, len(dctWord[g])):
tot_vectors[dctWord[g][r]] = dctValue[g][r]
transformer = RobustScaler(quantile_range=(0, 75.0)) # rimuovo gli outlier
transformer.fit(list(tot_vectors.values()))
centroid_ = transformer.center_
centroid_ = np.array([centroid_])
distance_vector = {}
for j in range(0, len(tot_vectors) - 1):
dist = cosine_similarity(centroid_, np.array([list(tot_vectors.values())[j]]))
distance_vector[list(tot_vectors.keys())[j]] = dist[0][0]
distance_vector = sorted(distance_vector.items(), key=operator.itemgetter(1), reverse=True)
if not os.path.exists(f"output/{year}/clustering"):
os.makedirs(f"output/{year}/clustering")
a = "w"
else:
a = "a"
with open(f"output/{year}/clustering/{year}_clusters.txt", a) as f:
f.write("selected year: " + year)
f.write(" \n")
f.write("len: " + str(len(dctWord[g])))
f.write(" \n")
f.write("cluster words:\n")
for l in range(0, len(distance_vector)):
if l == 100:
break
bigClusters[g].append(distance_vector[l][0])
f.write(distance_vector[l][0] + ", ")
f.write(" \n")
f.write(" \n")
else:
if not os.path.exists(f"output/{year}/clustering"):
os.makedirs(f"output/{year}/clustering")
a = "w"
else:
a = "a"
with open(f"output/{year}/clustering/{year}_clusters.txt", a) as f:
f.write("selected year: " + year)
f.write(" \n")
f.write("len: " + str(len(dctWord[g])))
f.write(" \n")
f.write("cluster words:\n")
for l in range(0, len(dctWord[g])):
f.write(dctWord[g][l] + ", ")
f.write(" \n")
f.write(" \n")
key = []
value = []
word = []
for index in range(0, len(word_vect_dict)):
key.append(clustering.labels_[index])
value.append(list(word_vect_dict.values())[index])
word.append(list(word_vect_dict.keys())[index])
if not os.path.exists(f"output/{year}/PCA/"):
os.makedirs(f"output/{year}/PCA/")
pca.pca_clustering_3D(value, key,
f"output/{year}/PCA/year_{year}__radius_{theBest[0][0] / 10}_FinalClustering")
return bigClusters