-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlightning_denoiser.py
382 lines (326 loc) · 17.6 KB
/
lightning_denoiser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import os
import torch
from torch import nn
import pytorch_lightning as pl
from torch.optim import Adam
from torch.optim import lr_scheduler
import random
import torchmetrics
try: # version issues
from torchmetrics import PSNR
except:
from torchmetrics import PeakSignalNoiseRatio as PSNR
from argparse import ArgumentParser
import cv2
import torchvision
from models.test_utils import test_mode
from models.network_unet import UNetRes
from models.DNCNN import DnCNN, weights_init_kaiming
class DenoisingModel(pl.LightningModule):
'''
Standard Denoiser model
'''
def __init__(self, model_name, pretrained, pretrained_checkpoint, act_mode, DRUNet_nb, bias, nc_in=3, nc_out=3):
super().__init__()
self.model_name = model_name
if 'DRUNet' in self.model_name:
self.model = UNetRes(in_nc=nc_in+1, out_nc=nc_out, nc=[64, 128, 256, 512], nb=DRUNet_nb, act_mode=act_mode,
downsample_mode='strideconv', upsample_mode='convtranspose')
elif 'DNCNN' in self.model_name:
if 'BF' in self.model_name:
bias = False
self.model = DnCNN(nc_in, nc_out, 20, act_mode, bias=bias) # Modified depth to 20 because variable noise level
self.model.apply(weights_init_kaiming)
self.model.to(self.device)
if pretrained:
checkpoint = torch.load(pretrained_checkpoint, map_location=self.device)
state_dict = checkpoint['state_dict']
new_state_dict = {}
for key, val in state_dict.items():
new_state_dict[key[6:]] = val
self.model.load_state_dict(new_state_dict, strict=False)
def forward(self, x, sigma):
if 'DRUNet' in self.model_name:
noise_level_map = torch.FloatTensor(x.size(0), 1, x.size(2), x.size(3)).fill_(sigma).to(self.device)
x = torch.cat((x, noise_level_map), 1)
out = self.model(x)
return out
def normalize_min_max(A):
'''
Required for Gradient Step Denoiser
'''
AA = A.clone()
AA = AA.view(A.size(0), -1)
AA -= AA.min(1, keepdim=True)[0]
AA /= AA.max(1, keepdim=True)[0]
AA = AA.view(A.size())
return AA
class Denoiser(pl.LightningModule):
'''
Gradient Step Denoiser
'''
def __init__(self, hparams):
super().__init__()
self.save_hyperparameters(hparams)
self.denoiser = DenoisingModel(self.hparams.model_name, self.hparams.pretrained_student,
self.hparams.pretrained_checkpoint, self.hparams.act_mode,
self.hparams.DRUNet_nb, self.hparams.bias,
nc_in=self.hparams.nc_in, nc_out=self.hparams.nc_out)
if 'GS_' in self.hparams.model_name:
self.hparams.grad_matching = True
self.train_PSNR = PSNR(data_range=1.0)
self.val_PSNR = PSNR(data_range=1.0)
self.train_teacher_PSNR = PSNR(data_range=1.0)
def forward(self, x, sigma):
'''
Denoising (either Gradient Step Denoiser or regular denoising)
:param x: torch.tensor input image
:param sigma: Denoiser level (std)
:return: Denoised image x_hat, Dg(x) gradient of the regularizer g at x
'''
x_hat = self.denoiser.forward(x, sigma)
Dg = x - x_hat
return x_hat, Dg
def lossfn(self, x, y): # L2 or L1 loss
if self.hparams.loss_name == 'l2':
criterion = nn.MSELoss(reduction='none')
return criterion(x.view(x.size()[0], -1), y.view(y.size()[0], -1)).mean(dim=1)
if self.hparams.loss_name == 'l1':
criterion = nn.L1Loss(reduction='none')
return criterion(x.view(x.size()[0], -1), y.view(y.size()[0], -1)).mean(dim=1)
def training_step(self, batch, batch_idx):
y, _ = batch
sigma = random.uniform(self.hparams.min_sigma_train, self.hparams.max_sigma_train) / 255
u = torch.randn(y.size(), device=self.device)
noise_in = u * sigma
x = y + noise_in
x_hat, Dg = self.forward(x, sigma)
loss = self.lossfn(x_hat, y)
self.train_PSNR.update(x_hat, y)
if self.hparams.jacobian_loss_weight > 0:
if self.hparams.jacobian_compute_type == 'nonsymmetric':
jacobian_norm = self.jacobian_spectral_norm(x[0:1], x_hat[0:1], sigma=sigma, interpolation=False, training=True)
self.log('train/jacobian_norm_max', jacobian_norm.max(), prog_bar=True)
if self.hparams.jacobian_loss_type == 'max':
jacobian_loss = torch.maximum(jacobian_norm, torch.ones_like(jacobian_norm)-self.hparams.eps_jacobian_loss)
elif self.hparams.jacobian_loss_type == 'exp':
jacobian_loss = self.hparams.eps_jacobian_loss * torch.exp(jacobian_norm - torch.ones_like(jacobian_norm)*(1+self.hparams.eps_jacobian_loss)) / self.hparams.eps_jacobian_loss
else:
print("jacobian loss not available")
jacobian_loss = torch.clip(jacobian_loss, 0, 1e3)
self.log('train/jacobian_loss_max', jacobian_loss.max(), prog_bar=True)
loss = (loss + self.hparams.jacobian_loss_weight * jacobian_loss)
loss = loss.mean()
psnr = self.train_PSNR.compute()
self.log('train/train_loss', loss.detach())
self.log('train/train_psnr', psnr.detach(), prog_bar=True)
if batch_idx == 0:
noisy_grid = torchvision.utils.make_grid(normalize_min_max(x.detach())[:1])
clean_grid = torchvision.utils.make_grid(normalize_min_max(y.detach())[:1])
denoised_grid = torchvision.utils.make_grid(normalize_min_max(x_hat.detach())[:1])
self.logger.experiment.add_image('train/noisy', noisy_grid, self.current_epoch)
self.logger.experiment.add_image('train/denoised', denoised_grid, self.current_epoch)
self.logger.experiment.add_image('train/clean', clean_grid, self.current_epoch)
return loss
def on_train_batch_end(self, outputs, batch, batch_idx: int, unused: int = 0):
if ('project' in self.denoiser.model_name) and ('noproj' not in self.denoiser.model_name):
self.denoiser.model.project_weights()
return None
def training_epoch_end(self, outputs):
print('train PSNR updated')
self.train_PSNR.reset()
def validation_step(self, batch, batch_idx):
y, _ = batch
batch_dict = {}
sigma_list = self.hparams.sigma_list_test
for i, sigma in enumerate(sigma_list):
x = y + torch.randn(y.size(), device=self.device) * sigma / 255.
if self.hparams.use_sigma_model: # Possibility to test with sigma model different than input sigma
sigma_model = self.hparams.sigma_model / 255.
else:
sigma_model = sigma / 255.
torch.set_grad_enabled(True)
for n in range(self.hparams.n_step_eval):
current_model = lambda v: self.forward(v, sigma / 255)[0]
x_hat = x
if x.size(2) % 8 == 0 and x.size(3) % 8 == 0:
x_hat = current_model(x_hat)
elif x.size(2) % 8 != 0 or x.size(3) % 8 != 0:
x_hat = test_mode(current_model, x_hat, refield=64, mode=5)
Dg = (x - x_hat)
Dg_norm = torch.norm(Dg, p=2)
l = self.lossfn(x_hat, y)
self.val_PSNR.reset()
p = self.val_PSNR(x_hat, y)
if self.hparams.get_spectral_norm:
jacobian_norm = self.jacobian_spectral_norm(x, x_hat, sigma_model)
batch_dict["max_jacobian_norm_" + str(sigma)] = jacobian_norm.max().detach()
batch_dict["mean_jacobian_norm_" + str(sigma)] = jacobian_norm.mean().detach()
batch_dict["psnr_" + str(sigma)] = p.detach()
batch_dict["loss_" + str(sigma)] = l.detach()
batch_dict["Dg_norm_" + str(sigma)] = Dg_norm.detach()
if batch_idx == 0: # logging for tensorboard
clean_grid = torchvision.utils.make_grid(normalize_min_max(y.detach())[:1])
noisy_grid = torchvision.utils.make_grid(normalize_min_max(x.detach())[:1])
denoised_grid = torchvision.utils.make_grid(normalize_min_max(x_hat.detach())[:1])
self.logger.experiment.add_image('val/clean', clean_grid, self.current_epoch)
self.logger.experiment.add_image('val/noisy', noisy_grid, self.current_epoch)
self.logger.experiment.add_image('val/denoised', denoised_grid, self.current_epoch)
if self.hparams.save_images:
save_dir = 'images/' + self.hparams.model_name
if not os.path.exists(save_dir):
os.mkdir(save_dir)
os.mkdir(save_dir + '/noisy')
os.mkdir(save_dir + '/denoised')
os.mkdir(save_dir + '/denoised_no_noise')
os.mkdir(save_dir + '/clean')
for i in range(len(x)):
clean = y[i].detach().cpu().numpy().transpose(1, 2, 0) * 255
noisy = x[i].detach().cpu().numpy().transpose(1, 2, 0) * 255
denoised = x_hat[i].detach().cpu().numpy().transpose(1, 2, 0) * 255
clean = cv2.cvtColor(clean, cv2.COLOR_RGB2BGR)
noisy = cv2.cvtColor(noisy, cv2.COLOR_RGB2BGR)
denoised = cv2.cvtColor(denoised, cv2.COLOR_RGB2BGR)
cv2.imwrite(save_dir + '/denoised/' + str(batch_idx) + '.png', denoised)
cv2.imwrite(save_dir + '/clean/' + str(batch_idx) + '.png', clean)
cv2.imwrite(save_dir + '/noisy/' + str(batch_idx) + '.png', noisy)
return batch_dict
def validation_epoch_end(self, outputs):
self.val_PSNR.reset()
sigma_list = self.hparams.sigma_list_test
for i, sigma in enumerate(sigma_list):
res_mean_SN = []
res_max_SN = []
res_psnr = []
res_Dg = []
if self.hparams.get_regularization:
res_g = []
for x in outputs:
if x["psnr_" + str(sigma)] is not None:
res_psnr.append(x["psnr_" + str(sigma)])
res_Dg.append(x["Dg_norm_" + str(sigma)])
if self.hparams.get_regularization:
res_g.append(x["g_" + str(sigma)])
if self.hparams.get_spectral_norm:
res_max_SN.append(x["max_jacobian_norm_" + str(sigma)])
res_mean_SN.append(x["mean_jacobian_norm_" + str(sigma)])
avg_psnr_sigma = torch.stack(res_psnr).mean()
avg_Dg_norm = torch.stack(res_Dg).mean()
if self.hparams.get_regularization:
avg_s = torch.stack(res_g).mean()
self.log('val/val_g_sigma=' + str(sigma), avg_s)
if self.hparams.get_spectral_norm:
avg_mean_SN = torch.stack(res_mean_SN).mean()
max_max_SN = torch.stack(res_max_SN).max()
self.log('val/val_max_SN_sigma=' + str(sigma), max_max_SN)
self.log('val/val_mean_SN_sigma=' + str(sigma), avg_mean_SN)
self.log('val/val_psnr_sigma=' + str(sigma), avg_psnr_sigma)
self.log('val/val_Dg_norm_sigma=' + str(sigma), avg_Dg_norm)
def test_step(self, batch, batch_idx):
return self.validation_step(batch, batch_idx)
def test_epoch_end(self, outputs):
return self.validation_epoch_end(outputs)
def configure_optimizers(self):
optim_params = []
for k, v in self.denoiser.named_parameters():
if v.requires_grad:
optim_params.append(v)
else:
print('Params [{:s}] will not optimize.'.format(k))
optimizer = Adam(optim_params, lr=self.hparams.optimizer_lr, weight_decay=0)
scheduler = lr_scheduler.MultiStepLR(optimizer,
self.hparams.scheduler_milestones,
self.hparams.scheduler_gamma)
return [optimizer], [scheduler]
def jacobian_spectral_norm(self, y_in, x_hat, sigma, interpolation=True, training=False):
'''
Jacobian spectral norm from Pesquet et al; computed with a power iteration method.
Given a denoiser J, computes the spectral norm of Q = 2J-I where J is the denoising model.
Inputs:
:y_in: point where the jacobian is to be computed, typically a noisy image (torch Tensor)
:x_hat: denoised image (unused if interpolation = False) (torch Tensor)
:sigma: noise level
:interpolation: whether to compute the jacobian only at y_in, or somewhere on the segment [x_hat, y_in].
:training: set to True during training to retain grad appropriately
Outputs:
:z.view(-1): the square of the Jacobian spectral norm of (2J-Id)
Beware: reversed usage compared to the original Pesquet et al code.
'''
if interpolation:
eta = torch.rand(y_in.size(0), 1, 1, 1, requires_grad=True).to(self.device)
x = eta * y_in.detach() + (1 - eta) * x_hat.detach()
x = x.to(self.device)
else:
x = y_in
x.requires_grad_()
x_hat, _ = self.forward(x, sigma)
y = 2.*x_hat-y_in # Beware notation : y_in = input, x_hat = output network
u = torch.randn_like(x)
u = u / torch.norm(u, p=2)
z_old = torch.zeros(u.shape[0])
for it in range(self.hparams.power_method_nb_step):
w = torch.ones_like(y, requires_grad=True) # Double backward trick. From https://gist.github.com/apaszke/c7257ac04cb8debb82221764f6d117ad
v = torch.autograd.grad(torch.autograd.grad(y, x, w, create_graph=True), w, u, create_graph=training)[0] # Ju
v, = torch.autograd.grad(y, x, v, retain_graph=True, create_graph=True) # vtJt
z = torch.matmul(u.reshape(u.shape[0], 1, -1), v.reshape(v.shape[0], -1, 1)) / torch.matmul(
u.reshape(u.shape[0], 1, -1), u.reshape(u.shape[0], -1, 1))
if it > 0:
rel_var = torch.norm(z - z_old)
if rel_var < self.hparams.power_method_error_threshold:
break
z_old = z.clone()
u = v / torch.norm(v, p=2) # Modified
if self.eval:
w.detach_()
v.detach_()
u.detach_()
return z.view(-1)
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--start_from_checkpoint', dest='start_from_checkpoint', action='store_true')
parser.set_defaults(start_from_checkpoint=False)
parser.add_argument('--pretrained_student', dest='pretrained_student', action='store_true')
parser.set_defaults(pretrained_student=False)
parser.add_argument('--n_channels', type=int, default=3)
parser.add_argument('--nc', type=int, default=64)
parser.add_argument('--nb', type=int, default=20)
parser.add_argument('--no_bias', dest='no_bias', action='store_false')
parser.set_defaults(use_bias=True)
parser.add_argument('--power_method_nb_step', type=int, default=50)
parser.add_argument('--power_method_error_threshold', type=float, default=1e-2)
parser.add_argument('--power_method_error_momentum', type=float, default=0.)
parser.add_argument('--power_method_mean_correction', dest='power_method_mean_correction', action='store_true')
parser.add_argument('--DRUNet_nb', type=int, default=2)
parser.set_defaults(power_method_mean_correction=False)
parser.add_argument('--no_grad_matching', dest='grad_matching', action='store_false')
parser.set_defaults(grad_matching=False)
parser.add_argument('--weight_Ds', type=float, default=1.)
return parser
@staticmethod
def add_optim_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--optimizer_type', type=str, default='adam')
parser.add_argument('--scheduler_type', type=str, default='MultiStepLR')
parser.add_argument('--early_stopping_patiente', type=str, default=5)
parser.add_argument('--val_check_interval', type=float, default=1.0)
parser.add_argument('--check_val_every_n_epoch', type=int, default=20)
parser.add_argument('--min_sigma_test', type=int, default=0)
parser.add_argument('--max_sigma_test', type=int, default=50)
parser.add_argument('--sigma_step', dest='sigma_step', action='store_true')
parser.set_defaults(sigma_step=False)
parser.add_argument('--get_spectral_norm', dest='get_spectral_norm', action='store_true')
parser.set_defaults(get_spectral_norm=True)
parser.add_argument('--jacobian_loss_weight', type=float, default=0)
parser.add_argument('--jacobian_compute_type', type=str, default='nonsymmetric')
parser.add_argument('--eps_jacobian_loss', type=float, default=0.1)
parser.add_argument('--jacobian_loss_type', type=str, default='max')
parser.add_argument('--n_step_eval', type=int, default=1)
parser.add_argument('--use_post_forward_clip', dest='use_post_forward_clip', action='store_true')
parser.set_defaults(use_post_forward_clip=False)
parser.add_argument('--use_sigma_model', dest='use_sigma_model', action='store_true')
parser.set_defaults(use_sigma_model=False)
parser.add_argument('--sigma_model', type=int, default=25)
parser.add_argument('--get_regularization', dest='get_regularization', action='store_true')
parser.set_defaults(get_regularization=False)
return parser