-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsoftmax.py
47 lines (40 loc) · 1.27 KB
/
softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""Softmax."""
scores = [3.0, 1.0, 0.2]
import numpy as np
import math
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
#enter = False
#if isinstance(x,np.ndarray):
# if x.shape[0] == 1:
# enter = True
#if isinstance(x,list): #Is a list? Each element is an element | enter=True
# result = []
# denominator = sum(math.exp(x))
# for i in range(size(x)):
# result.append( math.exp(x(i))/denominator )
#enter = False
#else:
# isinstance(x,np.ndarray) ? A matrix were each column represents a sample
# x.shape[0] -> each item x.shape[1] -> each element of the item
result = np.exp(x)
#print len(result.shape)
if len(result.shape) == 1:
result = result / np.sum(result) # -> With just this line the function would have worked OK!
else:
nitem = result.shape[0]
nelem = result.shape[1]
#print nitem, nelem
for i in range(nelem):
denominator = np.sum ( result[:,i] )
#print denominator
for j in range(nitem):
result[j,i] = result[j,i] / denominator
return result # TODO: Compute and return softmax(x)
print(softmax(scores))
# Plot softmax curves
import matplotlib.pyplot as plt
x = np.arange(-2.0, 6.0, 0.1)
scores = np.vstack([x, np.ones_like(x), 0.2 * np.ones_like(x)])
plt.plot(x, softmax(scores).T, linewidth=2)
plt.show()