-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathSteps to Fitting a Model in lavaan.Rmd
145 lines (109 loc) · 3.54 KB
/
Steps to Fitting a Model in lavaan.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
output:
pdf_document:
highlight: default
papersize: a4
geometry: "left=3cm,right=3cm,top=1cm,bottom=2cm"
knit: (
function(inputFile, encoding, ...) {
rmarkdown::render(
input = inputFile,
encoding = encoding,
output_file = "Steps to Fitting a Model in lavaan",
...) })
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
library(tidySEM)
library(lavaan)
library(dplyr)
```
# Steps to Fitting a Model in `lavaan`
## 1. Draw your model on a piece of paper!
> Color any paths you may be interested in.
```{r, fig.height=2.5, out.width = '60%', fig.align='center'}
mod <- "
Lat =~ 0.1*ind1 + 0.1*ind2 + 0.1*ind3
ind1 ~~ 0.1*ind2
ind1 ~~ 1*ind1
ind2 ~~ 1*ind2
ind3 ~~ 1*ind3
Obs1 ~~ 0.1*Obs2
Obs3 ~ 0.1*Obs1 + 0.1*Obs2
Obs3 ~~ 1*Obs3
Lat ~ 0.1*Obs1
Lat ~~ 0*Lat
Lat ~~ 0*Obs3
"
# lavaanify(mod, fixed.x=FALSE)
d <- simulateData(mod, sample.nobs = 100, fixed.x=FALSE, standardized = FALSE)
fit <- sem(mod, data = d)
lay <- get_layout(
NA, NA, "Obs1", NA, "Obs2",
"ind1", NA, NA, NA, NA,
"ind2", "Lat", NA, NA, NA,
"ind3", NA, NA, NA, NA,
NA, NA, NA, "Obs3", NA,
rows = 5
)
g <- prepare_graph(fit, layout = lay,
rect_height = 1.2,
ellipses_height = 1.2,
variance_diameter = 0.6)
edges(g) <- edges(g) %>%
filter(!(to == from & to %in% c("Lat", "Obs1", "Obs2")),
!(from == "Lat" & to == "Obs3")) %>%
mutate(
label = NA,
linetype = "solid",
color = "black",
color = replace(color, from == "Obs1" & to == "Obs2", "orange"),
color = replace(color, from == "Obs1" & to == "Obs3", "orange"),
color = replace(color, from == "Obs2" & to == "Obs3", "blue"),
arrow = replace(arrow, arrow=="none", "both"),
connect_from = replace(connect_from, from==to & from == "ind1", "bottom"),
connect_to = replace(connect_to, from==to & from == "ind1", "bottom"),
connect_to = replace(connect_to, from=="Obs1" & to=="Lat", "right"),
size = 0.5,
size = replace(size, color != "black", 1)
)
plot(g)
```
## 2. Write out your model speficication
***Remember to use modifiers and to set fixed values where you need to!***
***Don't forget `lavaan`'s defaults:***
1. Loading to first indicator is fixed at 1.
2. All covariances between latent variables are estimated.
3. All error terms are estimated.
### 2.1. Identify each **latent variable** by its indicators (`=~`)
```
Lat =~ ind1 + ind2 + ind3
```
### 2.2. Predict each **endogenous variable** with a regression formula (`~`)
... according to its *incoming* arrows.
```
Lat ~ Obs1
Obs3 ~ b * Obs1 + c * Obs2
```
### 2.3. Estimate co/variances (`~~`) for each **two headed arrow**
These include *auto-correlations*, and possibly any *error* / *disturbances* / *uniqueness variances*.
```
Obs1 ~~ a * Obs2
ind1 ~~ ind2
Lat ~~ 0 * Lat
```
### 2.4. Define any computed parameters (`:=`)
(paths, differences, simple slopes, etc.)
```
indirect_path := a * b
direct_path := c
total := indirect_path + direct_path
```
### 2.5. Don't forget to add self-regressors
... if you have any covariances between **latent** and **observed** variables.
(You can also use single-indicator latent variables instead.)
## 3. Fit the model (`sem()` / `cfa()` / `growth()` / `lavaan()`)
## 4. Plot your model and look at the parameter table
Make sure there are no missing (or too many) arrows / parameters!
## 5. Carry on...
Asses fit, test hypotheses, compare models...