-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
78 lines (63 loc) · 2.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from pathlib import Path
import streamlit as st
from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders.pdf import PyPDFLoader
from langchain_community.vectorstores.faiss import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_openai.chat_models import ChatOpenAI
from dotenv import load_dotenv, find_dotenv
from configs import *
_ = load_dotenv(find_dotenv())
PASTA_ARQUIVOS = Path(__file__).parent / 'arquivos'
def importacao_documentos():
documentos = []
for arquivo in PASTA_ARQUIVOS.glob('*.pdf'):
loader = PyPDFLoader(str(arquivo))
documentos_arquivo = loader.load()
documentos.extend(documentos_arquivo)
return documentos
def split_de_documentos(documentos):
recur_splitter = RecursiveCharacterTextSplitter(
chunk_size=2500,
chunk_overlap=250,
separators=["/n\n", "\n", ".", " ", ""]
)
documentos = recur_splitter.split_documents(documentos)
for i, doc in enumerate(documentos):
doc.metadata['source'] = doc.metadata['source'].split('/')[-1]
doc.metadata['doc_id'] = i
return documentos
def cria_vector_store(documentos):
embedding_model = OpenAIEmbeddings()
vector_store = FAISS.from_documents(
documents=documentos,
embedding=embedding_model
)
return vector_store
def cria_chain_conversa():
documentos = importacao_documentos()
documentos = split_de_documentos(documentos)
vector_store = cria_vector_store(documentos)
chat = ChatOpenAI(model=get_config('model_name'))
memory = ConversationBufferMemory(
return_messages=True,
memory_key='chat_history',
output_key='answer'
)
retriever = vector_store.as_retriever(
search_type=get_config('retrieval_search_type'),
search_kwargs=get_config('retrieval_kwargs')
)
prompt = PromptTemplate.from_template(get_config('prompt'))
chat_chain = ConversationalRetrievalChain.from_llm(
llm=chat,
memory=memory,
retriever=retriever,
return_source_documents=True,
verbose=True,
combine_docs_chain_kwargs={'prompt': prompt}
)
st.session_state['chain'] = chat_chain