-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03- DADA2 denoising.Rmd
962 lines (804 loc) · 24.4 KB
/
03- DADA2 denoising.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
---
title: "DADA2 denoising and number of reads"
author: "Marwa Tawfik"
summary: "NP_devStages_ampliseq"
Platform: "R version 4.1.0 (2021-05-18) -- Camp Pontanezen; x86_64-conda-linux-gnu (64-bit)"
date: "22 October 2022"
output: html_document
---
```{r setup, include=FALSE}
library(rmarkdown)
library(tinytex)
library(knitr)
library(stats)
knitr::opts_chunk$set(echo=TRUE, warning=FALSE, message=FALSE)
```
# DADA2 denoising
```{r create path and directories, file list and sample names}
# load libraries ----
library("tidyverse")
library("dada2")
library("ggplot2")
```
```{r}
filtFs <- readRDS("Robjects/filtFs.rds")
filtRs <- readRDS("Robjects/filtRs.rds")
# Learn the Error Model ----
errF <- learnErrors(filtFs, multithread = TRUE, MAX_CONSIST = 25)
# 128493750 total bases in 513975 reads from 4 samples will be used for learning the error rates.
errR <- learnErrors(filtRs, multithread = TRUE, MAX_CONSIST = 25)
# 113074500 total bases in 513975 reads from 4 samples will be used for learning the error rates.
# errF #to see all
head(errF) #view first 6
# errR
write.table(errF, file = "tables/FerrorModel.txt", sep = "\t")
write.table(errR, file = "tables/RerrorModel.txt", sep = "\t")
```
```{r}
# Plot the error model and check convergence from the expected line
#The error rates for each possible transition (eg. A->C, A->G,...) are shown. Points are the observed error rates for each
#consensus qualtiy score. The black line shows the estimated error rates after convergence. THe red line shows the error rates
#expected under the nomical definiiton of the Q-value. Here the black line (the estimated rates) fits the observed rates well,
#and the error rates drop with increased quality as expected. Everything looks reasonable and we proceed with confidence.
#if using this workflow on your own data: Parameter learning is computationally intensive, so by default the learnErrors function
#uses only a subset of the data (the first 1M reads). If the plotted error model doesn't look like a good fit, try increasing
#the nreads parameter to see if the fit improves.
# Note: shift + conrtol + c --> on a selected lines to be as a comment
plotErrors(errF, nominalQ = TRUE)
ggsave("figures/FerrorPlot.tiff", height = 7, width = 15)
plotErrors(errR, nominalQ = TRUE)
ggsave("figures/RerrorPlot.tiff", height = 7, width = 15)
#for both commands (plotErrors & ggsave) and for both F and R it gave the following error
# Warning messages:
# 1: Transformation introduced infinite values in continuous y-axis
# 2: Transformation introduced infinite values in continuous y-axis
#the following should end up giving zeros
dada2:::checkConvergence(errF)
# [1] 54.763003254 0.583057803 0.038885165 0.001190749 0.000000000
dada2:::checkConvergence(errR)
# [1] 52.276004270 0.603751028 0.047374295 0.009433015 0.000000000
```
```{r}
# Dereplicate ----
# to be speed up the computation to not work on single reads?
# to combine identiical sequences into a unique sequence
sample.names <- readRDS("Robjects/sample.names.rds")
derepFs <- derepFastq(filtFs)
names(derepFs) <- sample.names
derepRs <- derepFastq(filtRs)
names(derepRs) <- sample.names
```
```{r}
# Sample inference ----
dadaFs <- dada(derepFs, err=errF)
dadaRs <- dada(derepRs, err=errR)
# saveRDS(dadaFs, file = "Robjects/dadaFs.rds")
# saveRDS(dadaRs, file = "Robjects/dadaRs.rds")
#inspect the returned data-class object
dadaFs[[1]]
# dada-class: object describing DADA2 denoising results
#703 sequence variants were inferred from 9507 input unique sequences.
# Key parameters: OMEGA_A = 1e-40, OMEGA_C = 1e-40, BAND_SIZE = 16
dadaRs[[1]]
# dada-class: object describing DADA2 denoising results
# 631 sequence variants were inferred from 11270 input unique sequences.
# Key parameters: OMEGA_A = 1e-40, OMEGA_C = 1e-40, BAND_SIZE = 16
```
```{r}
# Merge Paired Reads ----
mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs, verbose = TRUE)
save(mergers, file = "Robjects/mergers.Rdata")
saveRDS(mergers, file = "Robjects/mergers.rds") # RDS is better for saving than Rdata: https://fromthebottomoftheheap.net/2012/04/01/saving-and-loading-r-objects/
# mergers <- readRDS("Robjects/mergers.rds") #incase need to read to your R env from a folder/file from this step
#inspect the merger data.frame from the 9th sample to see matched number (nucleotides number attached from forward and reverse reads)
head(mergers[[9]])
# sequence
# 1 TAGGGAATATTGCACAATGGAGGAAACTCTGATGCAGCGACGTCGCGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTGTCTTTGGTGAAGAAAATGACGGTAACCAAAGAGGAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGGGAATAAGTTGAATGTTAAAACTATCGGCTCAACCGATAGCAGCGTTCAAAACTATTTCTCTTGAGTGGAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGTTTACTGGGCTCTAACTGACGCTGAGGCTCGAAAGCGTGGGTAGCAAACA
# 2 TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGAAGGGCAGTAAATTAATACTTTGCTGTTTTGACGTTACCGACAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCGTTAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCAAAACTGACGAGCTAGAGTATGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAAAGCGTGGGGAGCAAACA
# 3 GCCTACAAGAAATTAAACCGCTCTTTCCAGGAATAATTATCCAACTAAGATTTCTGTGGACAAGCGATACAAATACCCAGACAGTGTCTTTTAAGAGCCCAGATAACAATGTTGTCAGTATGTATGCACAATGCTCGCCCTCAAATAAAGATCACGTGGTAGCAGATGAGATGCACAGTAAGAGATAAATTTAAAAGTATTGGCCCTCCAAGACAATTTGCGATTTTTTTCTCAAATCATTAATTTGATACCCATTCTCATC
# 5 TGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGATGCCTAATACGCATCAGCTGTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAAAACTGTCCAGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACA
# 6 TGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAGGGAAGAATGCCTATGGGTTGTAAACCTCTTTTTTCAGGGAGGAATAAAATGACGTGTACCTGAAGAATAAGCATCGGCTAACTCCGTGCCAGCAGCCGCGGTAAGACGGAGGATGCAAGTGTTATCCGGAATCACTGGGCGTAAAGCGTCTGTAGGTGGTTTAATAAGTCAACTGTTAAATCTTGATGGCTCAACTTCAAAATCGCAGTCGAAACTATTAGACTAGAGTATAGTAGAGGTAAAGGGAATTTCCAGTGGAGCGGTGAAATGCGTAGATATTGGAAAGAACACCGATGGCGAAAGCACTTTACTGGGCTATTACTAACACTCAGAGACGAAAGCTAGGGTAGCAAATG
# 8 TGGGGAATTTTGCACAATGGGGGCAACCCTGATGCAGCGACGCCGCGTGATTTAGAAGGCCTTCGGGTTGTAAAAATCTTTTGTATAGGAAGAAAATGACAGTACTATACGAATAAGGTCCGGCTAATTACGTGCCAGCAGCCGCGGTAATACGTAAGGACCGAGCGTTGTCCGGAATCATTGGGCGTAAAGGGTACGTAGGCGGTTAAAAAAGTTAGAAGTGAAAGGCTATAGCTCAACTATAGTAAGCTTTTAAAACTGTTTAACTTGAGAGATGGAAGGGAAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGCAGATATTAGGAGGAATACCGGTGGCGAAGGCGACTTTCTGGCCATTATCTGACGCTGAGGTACGAAAGCGTGGGTAGCAAACA
# abundance forward reverse nmatch nmismatch nindel prefer accept
# 1 65107 1 1 69 0 0 1 TRUE
# 2 111 2 2 43 0 0 1 TRUE
# 3 59 3 3 208 0 0 2 TRUE
# 5 20 10 4 43 0 0 2 TRUE
# 6 19 11 10 63 0 0 1 TRUE
# 8 12 7 6 70 0 0 2 TRUE
```
```{r}
# Construct sequence table ----
seqtab <- makeSequenceTable(mergers)
dim(seqtab)
# [1] 137 14413
str(seqtab)
# inspect distribution of sequence lengths
seqtable <- table(nchar(getSequences(seqtab)))
write.table(seqtable, file = "tables/seqtab.txt", sep = "\t")
saveRDS(seqtable, file = "Robjects/seqtable.rds")
```
```{r}
# historgram
tiff("figures/distSeqLengthHist.tiff")
hist(nchar(getSequences(seqtab)), main="Distribution of sequence lengths",
xlab ="Sequence lengths (bp)",
xlim= c(250,450))
dev.off()
# X11cairo
# 2
# as amplicon size is known to be 444bp so
# remove others away from amplicon size (bp) excpet the two for forward and reverse
seqtab2 <- seqtab[,nchar(colnames(seqtab)) %in% seq(390, 450)]
dim(seqtab2)
# [1] 137 9553
write.table(seqtab2, file = "tables/seqtab2.txt", sep = "\t")
saveRDS(seqtab2, file = "Robjects/seqtab2.rds")
```
```{r}
# Remove chimeras ----
seqtab.nochim2 <- removeBimeraDenovo(seqtab2, method="consensus", verbose=TRUE)
# Identified 2070 bimeras out of 9553 input sequences.
dim(seqtab.nochim2)
# [1] 137 7483
sum(seqtab.nochim2)/sum(seqtab2) #see the percent after removal of chimera (above 90% is ok but still acc. to dataset)
# [1] 0.9963121
write.table(seqtab.nochim2, file = "tables/seqtab.nochim2.txt", sep = "\t")
saveRDS(seqtab.nochim2, file = "Robjects/seqtab.nochim2.rds")
# seqtab.nochim2 <- readRDS("Robjects/seqtab.nochim2.rds") # incase you want to work starting from this step
```
```{r}
# Track reads ----
out <- readRDS("Robjects/filteredAndTrimmed.rds") # import from the previous step if not already in your environment
getN <- function(x) sum(getUniques(x))
track <- cbind(out, sapply(dadaFs, getN), sapply(dadaRs, getN), sapply(mergers, getN), rowSums(seqtab.nochim2))
colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nochim")
rownames(track) <- sample.names
head(track)
# input filtered denoisedF denoisedR merged nochim
# feed-M-Rep1 342227 253406 252062 252671 249476 246023
# feed-M-Rep2 86234 63654 63219 63373 62395 61878
# feed-M-Rep3 102122 74159 73682 73893 72863 72267
# feed-V-Rep1 168993 122756 121985 122240 120358 118947
# feed-V-Rep2 175164 127289 126458 126740 124479 122043
# feed-V-Rep3 129146 90615 89940 90148 88059 86173
write.table(track, file = "tables/readInsAndreadOuts.txt", sep = "\t")
```
```{r}
# number of reads ----
# split readInsAndreadOuts.txt according to the group (look into folder tables of this step) and then import them as follow:
# importing data
# nutriProg (intes + feed + water)
nutriprog <- read.table("tables/readInsAndreadOuts_nutriprog.txt", header = TRUE)
# similarly for intes only
intes <- read.table("tables/readInsAndreadOuts_intes.txt", header = TRUE)
# similarly for intes at stim only
stim <- read.table("tables/readInsAndreadOuts_intes.stim.txt", header = TRUE)
# similarly for intes at interm only
interm <- read.table("tables/readInsAndreadOuts_intes.interm.txt", header = TRUE)
# similarly for intes at chall only
chall <- read.table("tables/readInsAndreadOuts_intes.chall.txt", header = TRUE)
# similarly for water only
water <- read.table("tables/readInsAndreadOuts_water.txt", header = TRUE)
# similarly for water at stim
wtrStim <- read.table("tables/readInsAndreadOuts_water.stim.txt", header = TRUE)
# similarly for water at interm
wtrInterm <- read.table("tables/readInsAndreadOuts_water.interm.txt", header = TRUE)
# similarly for water at chall
wtrChall <- read.table("tables/readInsAndreadOuts_water.chall.txt", header = TRUE)
# similarly for feed only
feed <- read.table("tables/readInsAndreadOuts_feed.txt", header = TRUE)
# similarly for control-+ only
control <- read.table("tables/readInsAndreadOuts_control-+.txt", header = TRUE)
# similarly for positive control only
control <- read.table("tables/readInsAndreadOuts_positive.txt", header = TRUE)
# similarly for negative control only
control <- read.table("tables/readInsAndreadOuts_negative.txt", header = TRUE)
is.data.frame(feed) #sanity check for any of these
# [1] TRUE
```
```{r}
# summary statistics ----
# nutriprog
summary(nutriprog[,1]) #input
summary(nutriprog[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 11736 26797 48754 85382 113018 382733
#
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 2457 7633 24732 59090 76326 325024
```
```{r}
# intes
summary(intes[,1]) #input
summary(intes[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 11736 24556 39450 75875 91041 382733
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 2457 7057 14868 51354 67213 325024
```
```{r}
# stim
summary(stim[,1]) #input
summary(stim[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 11736 17500 25900 34546 35125 176023
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 2525 5660 7499 9752 10807 26327
```
```{r}
# interm
summary(interm[,1]) #input
summary(interm[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 18345 28893 87480 117570 170019 382733
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 4735 12628 66328 93816 145170 325024
```
```{r}
# chall
summary(chall[,1]) #input
summary(chall[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 17198 29466 44446 75510 85116 286403
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 2457 6908 22065 50495 68677 246966
```
```{r}
# water
summary(water[,1]) #input
summary(water[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 30960 77095 84920 115113 113990 299781
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 23125 56670 62175 84538 84565 222355
```
```{r}
# wtrStim
summary(wtrStim[,1]) #input
summary(wtrStim[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 30960 37077 75920 76470 113990 125209
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 23125 25115 51006 55190 84565 93765
```
```{r}
# wtrInterm
summary(wtrInterm[,1]) #input
summary(wtrInterm[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 76925 81866 84920 118941 86545 298946
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 56823 60431 62175 87790 63606 221637
```
```{r}
# wtrChall
summary(wtrChall[,1]) #input
summary(wtrChall[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 55616 78487 85940 149928 243701 299781
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 41113 57201 63302 110634 179751 222355
```
```{r}
# feed
summary(feed[,1]) #input
summary(feed[,2]) #filtered
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 86234 108878 149070 167314 173621 342227
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 63654 78273 106686 121980 126156 253406
```
```{r}
# nutriprog
# total number of reads ----
sum(nutriprog[,1]) #input
sum(nutriprog[,2]) #filtered
sum(nutriprog[,3]) #denoisedF
sum(nutriprog[,4]) #denoisedR
sum(nutriprog[,5]) #merged
sum(nutriprog[,6]) #nochim
# [1] 11270437
# [1] 7799823
# [1] 7721323
# [1] 7725233
# [1] 7591556
# [1] 7467576
```
```{r}
# mean number of reads ----
mean(nutriprog[,1]) #input
mean(nutriprog[,2]) #filtered
mean(nutriprog[,3]) #denoisedF
mean(nutriprog[,4]) #denoisedR
mean(nutriprog[,5]) #merged
mean(nutriprog[,6]) #nochim
# [1] 85382.1
# [1] 59089.57
# [1] 58494.87
# [1] 58524.49
# [1] 57511.79
# [1] 56572.55
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- nutriprog[,1] #input
standard_error(x)
x <- nutriprog[,2] #filtered
standard_error(x)
x <- nutriprog[,3] #denoisedF
standard_error(x)
x <- nutriprog[,4] #denoisedR
standard_error(x)
x <- nutriprog[,5] #merged
standard_error(x)
x <- nutriprog[,6] #nochim
standard_error(x)
# [1] 7170.579
# [1] 6206.86
# [1] 6211.922
# [1] 6217.382
# [1] 6222.145
# [1] 6239.815
```
```{r}
# intes
sum(intes[,1]) #input
sum(intes[,2]) #filtered
sum(intes[,3]) #denoisedF
sum(intes[,4]) #denoisedR
sum(intes[,5]) #merged
sum(intes[,6]) #nochim
# [1] 8194517
# [1] 5546257
# [1] 5480136
# [1] 5479804
# [1] 5372991
# [1] 5263123
mean(intes[,1]) #input
mean(intes[,2]) #filtered
mean(intes[,3]) #denoisedF
mean(intes[,4]) #denoisedR
mean(intes[,5]) #merged
mean(intes[,6]) #nochim
# [1] 75875.16
# [1] 51354.23
# [1] 50742
# [1] 50738.93
# [1] 49749.92
# [1] 48732.62
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- intes[,1] #input
standard_error(x)
x <- intes[,2] #filtered
standard_error(x)
x <- intes[,3] #denoisedF
standard_error(x)
x <- intes[,4] #denoisedR
standard_error(x)
x <- intes[,5] #merged
standard_error(x)
x <- intes[,6] #nochim
standard_error(x)
# [1] 7498.841
# [1] 6757.968
# [1] 6769.631
# [1] 6772.477
# [1] 6793.471
# [1] 6823.508
```
```{r}
# stim
sum(stim[,1]) #input
sum(stim[,2]) #filtered
sum(stim[,3]) #denoisedF
sum(stim[,4]) #denoisedR
sum(stim[,5]) #merged
sum(stim[,6]) #nochim
# [1] 1243650
# [1] 351065
# [1] 325795
# [1] 325009
# [1] 288293
# [1] 244965
mean(stim[,1]) #input
mean(stim[,2]) #filtered
mean(stim[,3]) #denoisedF
mean(stim[,4]) #denoisedR
mean(stim[,5]) #merged
mean(stim[,6]) #nochim
# [1] 34545.83
# [1] 9751.806
# [1] 9049.861
# [1] 9028.028
# [1] 8008.139
# [1] 6804.583
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- stim[,1] #input
standard_error(x)
x <- stim[,2] #filtered
standard_error(x)
x <- stim[,3] #denoisedF
standard_error(x)
x <- stim[,4] #denoisedR
standard_error(x)
x <- stim[,5] #merged
standard_error(x)
x <- stim[,6] #nochim
standard_error(x)
# [1] 5972.229
# [1] 1060.434
# [1] 1067.492
# [1] 1069.274
# [1] 1056.473
# [1] 992.3775
```
```{r}
# interm
sum(interm[,1]) #input
sum(interm[,2]) #filtered
sum(interm[,3]) #denoisedF
sum(interm[,4]) #denoisedR
sum(interm[,5]) #merged
sum(interm[,6]) #nochim
# [1] 4232525
# [1] 3377375
# [1] 3361464
# [1] 3362305
# [1] 3337372
# [1] 3314132
mean(interm[,1]) #input
mean(interm[,2]) #filtered
mean(interm[,3]) #denoisedF
mean(interm[,4]) #denoisedR
mean(interm[,5]) #merged
mean(interm[,6]) #nochim
# [1] 117570.1
# [1] 93815.97
# [1] 93374
# [1] 93397.36
# [1] 92704.78
# [1] 92059.22
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- interm[,1] #input
standard_error(x)
x <- interm[,2] #filtered
standard_error(x)
x <- interm[,3] #denoisedF
standard_error(x)
x <- interm[,4] #denoisedR
standard_error(x)
x <- interm[,5] #merged
standard_error(x)
x <- interm[,6] #nochim
standard_error(x)
# [1] 15750.16
# [1] 14176.82
# [1] 14183.14
# [1] 14188.93
# [1] 14202.19
# [1] 14230.87
```
```{r}
# chall
sum(chall[,1]) #input
sum(chall[,2]) #filtered
sum(chall[,3]) #denoisedF
sum(chall[,4]) #denoisedR
sum(chall[,5]) #merged
sum(chall[,6]) #nochim
# [1] 2718342
# [1] 1817817
# [1] 1792877
# [1] 1792490
# [1] 1747326
# [1] 1704026
mean(chall[,1]) #input
mean(chall[,2]) #filtered
mean(chall[,3]) #denoisedF
mean(chall[,4]) #denoisedR
mean(chall[,5]) #merged
mean(chall[,6]) #nochim
# [1] 75509.5
# [1] 50494.92
# [1] 49802.14
# [1] 49791.39
# [1] 48536.83
# [1] 47334.06
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- chall[,1] #input
standard_error(x)
x <- chall[,2] #filtered
standard_error(x)
x <- chall[,3] #denoisedF
standard_error(x)
x <- chall[,4] #denoisedR
standard_error(x)
x <- chall[,5] #merged
standard_error(x)
x <- chall[,6] #nochim
standard_error(x)
# [1] 11555.12
# [1] 10759.55
# [1] 10788.38
# [1] 10791.88
# [1] 10858.76
# [1] 10936.37
```
```{r}
# water
sum(water[,1]) #input
sum(water[,2]) #filtered
sum(water[,3]) #denoisedF
sum(water[,4]) #denoisedR
sum(water[,5]) #merged
sum(water[,6]) #nochim
# [1] 2072034
# [1] 1521687
# [1] 1513841
# [1] 1516364
# [1] 1500935
# [1] 1497122
mean(water[,1]) #input
mean(water[,2]) #filtered
mean(water[,3]) #denoisedF
mean(water[,4]) #denoisedR
mean(water[,5]) #merged
mean(water[,6]) #nochim
# [1] 115113
# [1] 84538.17
# [1] 84102.28
# [1] 84242.44
# [1] 83385.28
# [1] 83173.44
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- water[,1] #input
standard_error(x)
x <- water[,2] #filtered
standard_error(x)
x <- water[,3] #denoisedF
standard_error(x)
x <- water[,4] #denoisedR
standard_error(x)
x <- water[,5] #merged
standard_error(x)
x <- water[,6] #nochim
standard_error(x)
# [1] 20642.71
# [1] 15401.74
# [1] 15341.56
# [1] 15369.8
# [1] 15243.54
# [1] 15192.07
```
```{r}
# wtrStim
sum(wtrStim[,1]) #input
sum(wtrStim[,2]) #filtered
sum(wtrStim[,3]) #denoisedF
sum(wtrStim[,4]) #denoisedR
sum(wtrStim[,5]) #merged
sum(wtrStim[,6]) #nochim
# [1] 458820
# [1] 331137
# [1] 329911
# [1] 330375
# [1] 327857
# [1] 326999
mean(wtrStim[,1]) #input
mean(wtrStim[,2]) #filtered
mean(wtrStim[,3]) #denoisedF
mean(wtrStim[,4]) #denoisedR
mean(wtrStim[,5]) #merged
mean(wtrStim[,6]) #nochim
# [1] 76470
# [1] 55189.5
# [1] 54985.17
# [1] 55062.5
# [1] 54642.83
# [1] 54499.83
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- wtrStim[,1] #input
standard_error(x)
x <- wtrStim[,2] #filtered
standard_error(x)
x <- wtrStim[,3] #denoisedF
standard_error(x)
x <- wtrStim[,4] #denoisedR
standard_error(x)
x <- wtrStim[,5] #merged
standard_error(x)
x <- wtrStim[,6] #nochim
standard_error(x)
# [1] 17659.83
# [1] 13724.72
# [1] 13709.77
# [1] 13727.21
# [1] 13699.07
# [1] 13655.63
```
```{r}
# wtrInterm
sum(wtrInterm[,1]) #input
sum(wtrInterm[,2]) #filtered
sum(wtrInterm[,3]) #denoisedF
sum(wtrInterm[,4]) #denoisedR
sum(wtrInterm[,5]) #merged
sum(wtrInterm[,6]) #nochim
# [1] 713646
# [1] 526743
# [1] 523540
# [1] 524544
# [1] 518311
# [1] 517046
mean(wtrInterm[,1]) #input
mean(wtrInterm[,2]) #filtered
mean(wtrInterm[,3]) #denoisedF
mean(wtrInterm[,4]) #denoisedR
mean(wtrInterm[,5]) #merged
mean(wtrInterm[,6]) #nochim
# [1] 118941
# [1] 87790.5
# [1] 87256.67
# [1] 87424
# [1] 86385.17
# [1] 86174.33
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- wtrInterm[,1] #input
standard_error(x)
x <- wtrInterm[,2] #filtered
standard_error(x)
x <- wtrInterm[,3] #denoisedF
standard_error(x)
x <- wtrInterm[,4] #denoisedR
standard_error(x)
x <- wtrInterm[,5] #merged
standard_error(x)
x <- wtrInterm[,6] #nochim
standard_error(x)
# [1] 36030.56
# [1] 26788.9
# [1] 26674.78
# [1] 26745.52
# [1] 26502.03
# [1] 26389.01
```
```{r}
# wtrChall
sum(wtrChall[,1]) #input
sum(wtrChall[,2]) #filtered
sum(wtrChall[,3]) #denoisedF
sum(wtrChall[,4]) #denoisedR
sum(wtrChall[,5]) #merged
sum(wtrChall[,6]) #nochim
# [1] 899568
# [1] 663807
# [1] 660390
# [1] 661445
# [1] 654767
# [1] 653077
mean(wtrChall[,1]) #input
mean(wtrChall[,2]) #filtered
mean(wtrChall[,3]) #denoisedF
mean(wtrChall[,4]) #denoisedR
mean(wtrChall[,5]) #merged
mean(wtrChall[,6]) #nochim
# [1] 149928
# [1] 110634.5
# [1] 110065
# [1] 110240.8
# [1] 109127.8
# [1] 108846.2
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- wtrChall[,1] #input
standard_error(x)
x <- wtrChall[,2] #filtered
standard_error(x)
x <- wtrChall[,3] #denoisedF
standard_error(x)
x <- wtrChall[,4] #denoisedR
standard_error(x)
x <- wtrChall[,5] #merged
standard_error(x)
x <- wtrChall[,6] #nochim
standard_error(x)
# [1] 46822.69
# [1] 34683.97
# [1] 34566.47
# [1] 34616.37
# [1] 34359.06
# [1] 34252.57
```
```{r}
# feed
sum(feed[,1]) #input
sum(feed[,2]) #filtered
sum(feed[,3]) #denoisedF
sum(feed[,4]) #denoisedR
sum(feed[,5]) #merged
sum(feed[,6]) #nochim
# [1] 1003886
# [1] 731879
# [1] 727346
# [1] 729065
# [1] 717630
# [1] 707331
mean(feed[,1]) #input
mean(feed[,2]) #filtered
mean(feed[,3]) #denoisedF
mean(feed[,4]) #denoisedR
mean(feed[,5]) #merged
mean(feed[,6]) #nochim
# [1] 167314.3
# [1] 121979.8
# [1] 121224.3
# [1] 121510.8
# [1] 119605
# [1] 117888.5
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- feed[,1] #input
standard_error(x)
x <- feed[,2] #filtered
standard_error(x)
x <- feed[,3] #denoisedF
standard_error(x)
x <- feed[,4] #denoisedR
standard_error(x)
x <- feed[,5] #merged
standard_error(x)
x <- feed[,6] #nochim
standard_error(x)
# [1] 37832.86
# [1] 28269.01
# [1] 28136.61
# [1] 28202.81
# [1] 27894.89
# [1] 27484.06
```
```{r}
# control
sum(control[,1]) #input
sum(control[,2]) #filtered
sum(control[,3]) #denoisedF
sum(control[,4]) #denoisedR
sum(control[,5]) #merged
sum(control[,6]) #nochim
# [1] 1046
# [1] 280
# [1] 226
# [1] 215
# [1] 213
# [1] 213
mean(control[,1]) #input
mean(control[,2]) #filtered
mean(control[,3]) #denoisedF
mean(control[,4]) #denoisedR
mean(control[,5]) #merged
mean(control[,6]) #nochim
# [1] 348.6667
# [1] 93.33333
# [1] 75.33333
# [1] 71.66667
# [1] 71
# [1] 71
standard_error <- function(x) sd(x) / sqrt(length(x)) # Create own function
x <- control[,1] #input
standard_error(x)
x <- control[,2] #filtered
standard_error(x)
x <- control[,3] #denoisedF
standard_error(x)
x <- control[,4] #denoisedR
standard_error(x)
x <- control[,5] #merged
standard_error(x)
x <- control[,6] #nochim
standard_error(x)
# [1] 113.4274
# [1] 51.71825
# [1] 51.79876
# [1] 53.29895
# [1] 53.59415
# [1] 53.59415
```
```{r}
sessionInfo()
```