-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test.py
82 lines (67 loc) · 2.97 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from argparse import ArgumentParser
import os
from pathlib import Path
import yaml
import pandas as pd
from pytorch_lightning import Trainer
import torch
from eeg_online.utils.get_datamodule_cls import get_datamodule_cls
from eeg_online.utils.get_model_cls import get_model_cls
from eeg_online.utils.seed import seed_everything
CONFIG_DIR = os.path.join(Path(__file__).resolve().parents[1], "configs")
DEFAULT_CONFIG = "lee_basenet.yaml"
def train_and_test(config: dict):
model_cls = get_model_cls(model_name=config["model"])
datamodule_cls = get_datamodule_cls(config["datamodule"])
datamodule = datamodule_cls(
n_subjects=config.get("n_subjects"), n_folds=config.get("n_folds"),
preprocessing_dict=config.get("preprocessing").copy()
)
results_df = pd.DataFrame(index=datamodule.dataset.all_subject_ids,
columns=[f"run_{i}" for i in datamodule.dataset.test_run_ids])
for fold_idx in range(config.get("n_folds")):
seed_everything(config.get("seed"))
datamodule.setup_fold(fold_idx)
trainer = Trainer(
max_epochs=config.get("max_epochs"),
num_sanity_val_steps=0,
accelerator="auto",
strategy="auto",
enable_checkpointing=config.get("log_model", False),
logger=None
)
model = model_cls(**config.get("model_kwargs"),
max_epochs=config.get("max_epochs"))
trainer.fit(model, datamodule=datamodule)
# run-wise results
# prediction probability per window (n_trials x n_windows)
y_pred = torch.concat(
trainer.predict(model, datamodule.predict_dataloader()), dim=-1).T
# overall accuracies (trial-wise)
y_test = datamodule.test_dataset.tensors[1]
taccs = ((y_pred.mean(dim=-1) > 0.5).float() == y_test).float()
# write to dataframe
test_subject_ids = datamodule.get_test_subject_ids(fold_idx)
trials_counter = 0
trials_per_run = {
subject_id: [
len(datamodule.dataset.data_dict[subject_id]["labels"][f"run_{i}"])
for i in datamodule.dataset.test_run_ids]
for subject_id in test_subject_ids}
for subject_id in test_subject_ids:
for run_idx, run in enumerate([f"run_{i}" for i in datamodule.dataset.test_run_ids]):
results_df.at[subject_id, run] = taccs[trials_counter:trials_counter + trials_per_run[subject_id][run_idx]].mean().item()
trials_counter += trials_per_run[subject_id][run_idx]
print("results per subject")
print(results_df.mean(1))
print("results per run")
print(results_df.mean(0))
if __name__ == "__main__":
# parse arguments
parser = ArgumentParser()
parser.add_argument("--config", default=DEFAULT_CONFIG)
args = parser.parse_args()
# load config
with open(os.path.join(CONFIG_DIR, args.config)) as f:
config = yaml.safe_load(f)
train_and_test(config)