-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
177 lines (144 loc) · 6.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import torch
import tqdm
import logger
import numpy as np
import torch.nn as nn
import pickle
import metrics
from skimage import io
from skimage import transform
from model import FusionNet, DilationCNN, UNet
from dataset import NucleiDataset, HPADataset, NeuroDataset, HPASingleDataset,get_augmenter
from torch.utils.data import DataLoader
from loss import dice_loss
import imageio
import torchvision
import glob
import os
import PIL
from imgaug import augmenters as iaa
def main(args):
# tensorboard
logger_tb = logger.Logger(log_dir=args.experiment_name)
# get dataset
if args.dataset == "nuclei":
train_dataset = NucleiDataset(args.train_data, 'train', args.transform, args.target_channels)
elif args.dataset == "hpa":
train_dataset = HPADataset(args.train_data, 'train', args.transform, args.max_mean, args.target_channels)
elif args.dataset == "hpa_single":
train_dataset = HPASingleDataset(args.train_data, 'train', args.transform)
else:
train_dataset = NeuroDataset(args.train_data, 'train', args.transform)
# create dataloader
train_params = {'batch_size': args.batch_size,
'shuffle': False,
'num_workers': args.num_workers}
train_dataloader = DataLoader(train_dataset, **train_params)
# device
device = torch.device(args.device)
# model
if args.model == "fusion":
model = FusionNet(args, train_dataset.dim)
elif args.model == "dilation":
model = DilationCNN(train_dataset.dim)
elif args.model == "unet":
model = UNet(args.num_kernel, args.kernel_size, train_dataset.dim, train_dataset.target_dim)
if args.device == "cuda":
# parse gpu_ids for data paralle
if ',' in args.gpu_ids:
gpu_ids = [int(ids) for ids in args.gpu_ids.split(',')]
else:
gpu_ids = int(args.gpu_ids)
# parallelize computation
if type(gpu_ids) is not int:
model = nn.DataParallel(model, gpu_ids)
model.to(device)
# optimizer
parameters = model.parameters()
if args.optimizer == "adam":
optimizer = torch.optim.Adam(parameters, args.lr)
else:
optimizer = torch.optim.SGD(parameters, args.lr)
# loss
loss_function = dice_loss
count = 0
# train model
for epoch in range(args.epoch):
model.train()
with tqdm.tqdm(total=len(train_dataloader.dataset), unit=f"epoch {epoch} itr") as progress_bar:
total_loss = []
total_iou = []
total_precision = []
for i, (x_train, y_train) in enumerate(train_dataloader):
with torch.set_grad_enabled(True):
# send data and label to device
x = torch.Tensor(x_train.float()).to(device)
y = torch.Tensor(y_train.float()).to(device)
# predict segmentation
pred = model.forward(x)
# calculate loss
loss = loss_function(pred, y)
total_loss.append(loss.item())
# calculate IoU precision
predictions = pred.clone().squeeze().detach().cpu().numpy()
gt = y.clone().squeeze().detach().cpu().numpy()
ious = [metrics.get_ious(p, g, 0.5) for p,g in zip(predictions, gt)]
total_iou.append(np.mean(ious))
# back prop
optimizer.zero_grad()
loss.backward()
optimizer.step()
# log loss and iou
avg_loss = np.mean(total_loss)
avg_iou = np.mean(total_iou)
logger_tb.update_value('train loss', avg_loss, count)
logger_tb.update_value('train iou', avg_iou, count)
# display segmentation on tensorboard
if i == 0:
original = x_train[0].squeeze()
truth = y_train[0].squeeze()
seg = pred[0].cpu().squeeze().detach().numpy()
# TODO display segmentations based on number of ouput
logger_tb.update_image("truth", truth, count)
logger_tb.update_image("segmentation", seg, count)
logger_tb.update_image("original", original, count)
count += 1
progress_bar.update(len(x))
# save model
ckpt_dict = {'model_name': model.__class__.__name__,
'model_args': model.args_dict(),
'model_state': model.to('cpu').state_dict()}
experiment_name = f"{model.__class__.__name__}_{args.dataset}_{train_dataset.target_dim}c"
if args.dataset == "HPA":
experiment_name += f"_{args.max_mean}"
experiment_name += f"_{args.num_kernel}"
ckpt_path = os.path.join(args.save_dir, f"{experiment_name}.pth")
torch.save(ckpt_dict, ckpt_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--num_kernel', type=int, default=8)
parser.add_argument('--kernel_size', type=int, default=3)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--train_data', type=str, default="PATH_TO_TRAIN_DATA")
parser.add_argument('--save_dir', type=str, default="./")
parser.add_argument('--dataset', type=str, default="Hpa")
parser.add_argument('--device', type=str, default="cuda")
parser.add_argument('--optimizer', type=str, default='adam')
parser.add_argument('--model', type=str, default='unet')
parser.add_argument('--max_mean', type=str, default='max')
parser.add_argument('--target_channels', type=str, default='0,2,3')
parser.add_argument('--batch_size', type=int, default='8')
parser.add_argument('--shuffle', type=bool, default=False)
parser.add_argument('--gpu_ids', type=str, default='0')
parser.add_argument('--num_workers', type=int, default='16')
parser.add_argument('--experiment_name', type=str, default='test')
# agumentations
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
parser.add_argument('--transform', type=boolean_string, default="False")
args = parser.parse_args()
main(args)