-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
279 lines (222 loc) · 12.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import torch
import torch.nn as nn
import math
class SingleHeadAttention(nn.Module):
def __init__(self, embedding_dim):
super(SingleHeadAttention, self).__init__()
self.input_dim = embedding_dim
self.embedding_dim = embedding_dim
self.value_dim = embedding_dim
self.key_dim = self.value_dim
self.tanh_clipping = 10
self.norm_factor = 1 / math.sqrt(self.key_dim)
self.w_query = nn.Parameter(torch.Tensor(self.input_dim, self.key_dim))
self.w_key = nn.Parameter(torch.Tensor(self.input_dim, self.key_dim))
self.init_parameters()
def init_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, q, k, mask=None):
n_batch, n_key, n_dim = k.size()
n_query = q.size(1)
k_flat = k.reshape(-1, n_dim)
q_flat = q.reshape(-1, n_dim)
shape_k = (n_batch, n_key, -1)
shape_q = (n_batch, n_query, -1)
Q = torch.matmul(q_flat, self.w_query).view(shape_q)
K = torch.matmul(k_flat, self.w_key).view(shape_k)
U = self.norm_factor * torch.matmul(Q, K.transpose(1, 2))
U = self.tanh_clipping * torch.tanh(U)
if mask is not None:
U = U.masked_fill(mask == 1, -1e8)
attention = torch.log_softmax(U, dim=-1)
return attention
# standard multi head attention layer
class MultiHeadAttention(nn.Module):
def __init__(self, embedding_dim, n_heads=8):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.input_dim = embedding_dim
self.embedding_dim = embedding_dim
self.value_dim = self.embedding_dim // self.n_heads
self.key_dim = self.value_dim
self.norm_factor = 1 / math.sqrt(self.key_dim)
self.w_query = nn.Parameter(torch.Tensor(self.n_heads, self.input_dim, self.key_dim))
self.w_key = nn.Parameter(torch.Tensor(self.n_heads, self.input_dim, self.key_dim))
self.w_value = nn.Parameter(torch.Tensor(self.n_heads, self.input_dim, self.value_dim))
self.w_out = nn.Parameter(torch.Tensor(self.n_heads, self.value_dim, self.embedding_dim))
self.init_parameters()
def init_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, q, k=None, v=None, key_padding_mask=None, attn_mask=None):
if k is None:
k = q
if v is None:
v = q
n_batch, n_key, n_dim = k.size()
n_query = q.size(1)
n_value = v.size(1)
k_flat = k.contiguous().view(-1, n_dim)
v_flat = v.contiguous().view(-1, n_dim)
q_flat = q.contiguous().view(-1, n_dim)
shape_v = (self.n_heads, n_batch, n_value, -1)
shape_k = (self.n_heads, n_batch, n_key, -1)
shape_q = (self.n_heads, n_batch, n_query, -1)
Q = torch.matmul(q_flat, self.w_query).view(shape_q)
K = torch.matmul(k_flat, self.w_key).view(shape_k)
V = torch.matmul(v_flat, self.w_value).view(shape_v)
U = self.norm_factor * torch.matmul(Q, K.transpose(2, 3))
if attn_mask is not None:
attn_mask = attn_mask.view(1, n_batch, n_query, n_key).expand_as(U)
if key_padding_mask is not None:
key_padding_mask = key_padding_mask.repeat(1, n_query, 1)
key_padding_mask = key_padding_mask.view(1, n_batch, n_query, n_key).expand_as(U) # copy for n_heads times
if attn_mask is not None and key_padding_mask is not None:
mask = (attn_mask + key_padding_mask)
elif attn_mask is not None:
mask = attn_mask
elif key_padding_mask is not None:
mask = key_padding_mask
else:
mask = None
if mask is not None:
U = U.masked_fill(mask > 0, -1e8)
attention = torch.softmax(U, dim=-1)
heads = torch.matmul(attention, V)
out = torch.mm(
heads.permute(1, 2, 0, 3).reshape(-1, self.n_heads * self.value_dim),
self.w_out.view(-1, self.embedding_dim)
).view(-1, n_query, self.embedding_dim)
return out, attention
class Normalization(nn.Module):
def __init__(self, embedding_dim):
super(Normalization, self).__init__()
self.normalizer = nn.LayerNorm(embedding_dim)
def forward(self, input):
return self.normalizer(input.view(-1, input.size(-1))).view(*input.size())
class EncoderLayer(nn.Module):
def __init__(self, embedding_dim, n_head):
super(EncoderLayer, self).__init__()
self.multiHeadAttention = MultiHeadAttention(embedding_dim, n_head)
self.normalization1 = Normalization(embedding_dim)
self.feedForward = nn.Sequential(nn.Linear(embedding_dim, 512), nn.ReLU(inplace=True),
nn.Linear(512, embedding_dim))
self.normalization2 = Normalization(embedding_dim)
def forward(self, src, key_padding_mask=None, attn_mask=None):
h0 = src
h = self.normalization1(src)
h, _ = self.multiHeadAttention(q=h, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
h = h + h0
h1 = h
h = self.normalization2(h)
h = self.feedForward(h)
h2 = h + h1
return h2
class DecoderLayer(nn.Module):
def __init__(self, embedding_dim, n_head):
super(DecoderLayer, self).__init__()
self.multiHeadAttention = MultiHeadAttention(embedding_dim, n_head)
self.normalization1 = Normalization(embedding_dim)
self.feedForward = nn.Sequential(nn.Linear(embedding_dim, 512),
nn.ReLU(inplace=True),
nn.Linear(512, embedding_dim))
self.normalization2 = Normalization(embedding_dim)
def forward(self, tgt, memory, key_padding_mask=None, attn_mask=None):
h0 = tgt
tgt = self.normalization1(tgt)
memory = self.normalization1(memory)
h, w = self.multiHeadAttention(q=tgt, k=memory, v=memory, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
h = h + h0
h1 = h
h = self.normalization2(h)
h = self.feedForward(h)
h2 = h + h1
return h2, w
class Encoder(nn.Module):
def __init__(self, embedding_dim=128, n_head=8, n_layer=1):
super(Encoder, self).__init__()
self.layers = nn.ModuleList(EncoderLayer(embedding_dim, n_head) for i in range(n_layer))
def forward(self, src, key_padding_mask=None, attn_mask=None):
for layer in self.layers:
src = layer(src, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
return src
class Decoder(nn.Module):
def __init__(self, embedding_dim=128, n_head=8, n_layer=1):
super(Decoder, self).__init__()
self.layers = nn.ModuleList([DecoderLayer(embedding_dim, n_head) for i in range(n_layer)])
def forward(self, tgt, memory, key_padding_mask=None, attn_mask=None):
for layer in self.layers:
tgt, w = layer(tgt, memory, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
return tgt, w
class PolicyNet(nn.Module):
def __init__(self, input_dim, embedding_dim):
super(PolicyNet, self).__init__()
self.initial_embedding = nn.Linear(input_dim, embedding_dim) # layer for non-end position
self.current_embedding = nn.Linear(embedding_dim * 2, embedding_dim)
self.encoder = Encoder(embedding_dim=embedding_dim, n_head=8, n_layer=6)
self.decoder = Decoder(embedding_dim=embedding_dim, n_head=8, n_layer=1)
self.pointer = SingleHeadAttention(embedding_dim)
def encode_graph(self, node_inputs, node_padding_mask, edge_mask):
node_feature = self.initial_embedding(node_inputs)
enhanced_node_feature = self.encoder(src=node_feature, key_padding_mask=node_padding_mask, attn_mask=edge_mask)
return enhanced_node_feature
def output_policy(self, enhanced_node_feature, edge_inputs, current_index, edge_padding_mask, node_padding_mask):
current_edge = edge_inputs.permute(0, 2, 1)
embedding_dim = enhanced_node_feature.size()[2]
neigboring_feature = torch.gather(enhanced_node_feature, 1, current_edge.repeat(1, 1, embedding_dim))
current_node_feature = torch.gather(enhanced_node_feature, 1, current_index.repeat(1, 1, embedding_dim))
if edge_padding_mask is not None:
current_mask = edge_padding_mask
# print(current_mask)
else:
current_mask = None
current_mask[:,:,0] = 1 # don't stay at current position
enhanced_current_node_feature, _ = self.decoder(current_node_feature, enhanced_node_feature, node_padding_mask)
enhanced_current_node_feature = self.current_embedding(torch.cat((enhanced_current_node_feature, current_node_feature), dim=-1))
logp = self.pointer(enhanced_current_node_feature, neigboring_feature, current_mask)
logp= logp.squeeze(1)
return logp
def forward(self, node_inputs, edge_inputs, current_index, node_padding_mask=None, edge_padding_mask=None, edge_mask=None):
enhanced_node_feature = self.encode_graph(node_inputs, node_padding_mask, edge_mask)
logp = self.output_policy(enhanced_node_feature, edge_inputs, current_index, edge_padding_mask, node_padding_mask)
return logp
class QNet(nn.Module):
def __init__(self, input_dim, embedding_dim):
super(QNet, self).__init__()
self.initial_embedding = nn.Linear(input_dim, embedding_dim) # layer for non-end position
self.action_embedding = nn.Linear(embedding_dim*3, embedding_dim)
self.encoder = Encoder(embedding_dim=embedding_dim, n_head=8, n_layer=6)
self.decoder = Decoder(embedding_dim=embedding_dim, n_head=8, n_layer=1)
self.q_values_layer = nn.Linear(embedding_dim, 1)
def encode_graph(self, node_inputs, node_padding_mask, edge_mask):
embedding_feature = self.initial_embedding(node_inputs)
embedding_feature = self.encoder(src=embedding_feature, key_padding_mask=node_padding_mask, attn_mask=edge_mask)
return embedding_feature
def output_q_values(self, enhanced_node_feature, edge_inputs, current_index, edge_padding_mask, node_padding_mask):
k_size = edge_inputs.size()[2]
current_edge = edge_inputs
current_edge = current_edge.permute(0, 2, 1)
embedding_dim = enhanced_node_feature.size()[2]
neigboring_feature = torch.gather(enhanced_node_feature, 1, current_edge.repeat(1, 1, embedding_dim))
current_node_feature = torch.gather(enhanced_node_feature, 1, current_index.repeat(1, 1, embedding_dim))
enhanced_current_node_feature, attention_weights = self.decoder(current_node_feature, enhanced_node_feature, node_padding_mask)
action_features = torch.cat((enhanced_current_node_feature.repeat(1, k_size, 1), current_node_feature.repeat(1, k_size, 1), neigboring_feature), dim=-1)
action_features = self.action_embedding(action_features)
q_values = self.q_values_layer(action_features)
if edge_padding_mask is not None:
current_mask = edge_padding_mask
else:
current_mask = None
current_mask[:, :, 0] = 1 # don't stay at current position
current_mask = current_mask.permute(0, 2, 1)
zero = torch.zeros_like(q_values).to(q_values.device)
q_values = torch.where(current_mask == 1, zero, q_values)
return q_values, attention_weights
def forward(self, node_inputs, edge_inputs, current_index, node_padding_mask=None, edge_padding_mask=None,
edge_mask=None):
enhanced_node_feature = self.encode_graph(node_inputs, node_padding_mask, edge_mask)
q_values, attention_weights = self.output_q_values(enhanced_node_feature, edge_inputs, current_index, edge_padding_mask, node_padding_mask)
return q_values, attention_weights