-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathenv.py
168 lines (154 loc) · 8.9 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import matplotlib.pyplot as plt
import os
import math
import skimage.io
from skimage.measure import block_reduce
from scipy import *
from sensor import *
from graph_generator import *
from node import *
import time
class Env():
def __init__(self, map_index, k_size=20, plot=False, test=False):
self.test = test
if self.test:
self.map_dir = f'DungeonMaps/pp/test'
else:
self.map_dir = f'DungeonMaps/pp/train'
self.map_list = os.listdir(self.map_dir)
self.map_list.sort(reverse=True)
self.map_index = map_index % np.size(self.map_list)
self.ground_truth, self.start_position, self.target_position = self.import_ground_truth_pp(
self.map_dir + '/' + self.map_list[self.map_index])
self.ground_truth_size = np.shape(self.ground_truth)
self.robot_belief = np.ones(self.ground_truth_size) * 127 # unexplored
self.downsampled_belief = None
self.old_robot_belief = copy.deepcopy(self.robot_belief)
self.resolution = 4 # downsample belief
self.sensor_range = 80
self.explored_rate = 0
self.frontiers = None
self.graph_generator = Graph_generator(map_size=self.ground_truth_size, sensor_range=self.sensor_range, k_size=k_size, target_position = self.target_position, plot=plot)
self.graph_generator.route_node.append(self.start_position)
self.node_coords, self.graph, self.node_utility, self.indicator, self.direction_vector = None, None, None, None, None
self.begin()
self.plot = plot
self.frame_files = []
if self.plot:
self.xPoints = [self.start_position[0]]
self.yPoints = [self.start_position[1]]
self.xTarget = [self.target_position[0]]
self.yTarget = [self.target_position[1]]
def find_index_from_coords(self, position):
index = np.argmin(np.linalg.norm(self.node_coords - position, axis=1))
return index
def begin(self):
self.robot_belief = self.update_robot_belief(self.start_position, self.sensor_range, self.robot_belief,
self.ground_truth)
self.downsampled_belief = block_reduce(self.robot_belief.copy(), block_size=(self.resolution, self.resolution),
func=np.min)
self.frontiers = self.find_frontier()
self.old_robot_belief = copy.deepcopy(self.robot_belief)
self.node_coords, self.graph, self.node_utility, self.indicator, self.direction_vector = self.graph_generator.generate_graph(
self.start_position, self.ground_truth, self.robot_belief, self.frontiers)
def step(self, robot_position, next_position, travel_dist):
dist = np.linalg.norm(robot_position - next_position)
dist_to_target = np.linalg.norm(next_position - self.target_position)
astar_dist_cur_to_target, _ = self.graph_generator.find_shortest_path(robot_position, self.target_position,
self.graph_generator.ground_truth_node_coords, self.graph_generator.ground_truth_graph)
astar_dist_next_to_target, _ = self.graph_generator.find_shortest_path(next_position, self.target_position,
self.graph_generator.ground_truth_node_coords, self.graph_generator.ground_truth_graph)
travel_dist += dist
robot_position = next_position
self.graph_generator.route_node.append(robot_position)
next_node_index = self.find_index_from_coords(robot_position)
self.graph_generator.nodes_list[next_node_index].set_visited()
self.robot_belief = self.update_robot_belief(robot_position, self.sensor_range, self.robot_belief,
self.ground_truth)
self.downsampled_belief = block_reduce(self.robot_belief.copy(), block_size=(self.resolution, self.resolution),
func=np.min)
frontiers = self.find_frontier()
self.explored_rate = self.evaluate_exploration_rate()
reward, done = self.calculate_reward(astar_dist_cur_to_target, astar_dist_next_to_target, dist_to_target)
if self.plot:
self.xPoints.append(robot_position[0])
self.yPoints.append(robot_position[1])
self.node_coords, self.graph, self.node_utility, self.indicator, self.direction_vector = self.graph_generator.update_graph(
robot_position, self.robot_belief, self.old_robot_belief, frontiers, self.frontiers)
self.old_robot_belief = copy.deepcopy(self.robot_belief)
self.frontiers = frontiers
return reward, done, robot_position, travel_dist
def import_ground_truth_pp(self, map_index):
ground_truth = (skimage.io.imread(map_index, 1) * 255).astype(int)
robot_location = np.nonzero(ground_truth == 209)
robot_location = np.array([np.array(robot_location)[1, 127], np.array(robot_location)[0, 127]])
target_location = np.nonzero(ground_truth == 68)
target_location = np.array([np.array(target_location)[1, 127], np.array(target_location)[0, 127]])
ground_truth = (ground_truth > 150)|((ground_truth<=80)&(ground_truth>=60))
ground_truth = ground_truth * 254 + 1
return ground_truth, robot_location, target_location
def free_cells(self):
index = np.where(self.ground_truth == 255)
free = np.asarray([index[1], index[0]]).T
return free
def update_robot_belief(self, robot_position, sensor_range, robot_belief, ground_truth):
robot_belief = sensor_work(robot_position, sensor_range, robot_belief, ground_truth)
return robot_belief
def calculate_reward(self, astar_dist_cur_to_target, astar_dist_next_to_target, dist_to_target):
reward = 0
done = False
reward -= 0.5
reward += (astar_dist_cur_to_target - astar_dist_next_to_target) / 64
if dist_to_target == 0:
reward += 20
done = True
return reward, done
def evaluate_exploration_rate(self):
rate = np.sum(self.robot_belief == 255) / np.sum(self.ground_truth == 255)
return rate
def find_frontier(self):
y_len = self.downsampled_belief.shape[0]
x_len = self.downsampled_belief.shape[1]
mapping = self.downsampled_belief.copy()
belief = self.downsampled_belief.copy()
mapping = (mapping == 127) * 1
mapping = np.lib.pad(mapping, ((1, 1), (1, 1)), 'constant', constant_values=0)
fro_map = mapping[2:][:, 1:x_len + 1] + mapping[:y_len][:, 1:x_len + 1] + mapping[1:y_len + 1][:, 2:] + \
mapping[1:y_len + 1][:, :x_len] + mapping[:y_len][:, 2:] + mapping[2:][:, :x_len] + mapping[2:][:,
2:] + \
mapping[:y_len][:, :x_len]
ind_free = np.where(belief.ravel(order='F') == 255)[0]
ind_fron_1 = np.where(1 < fro_map.ravel(order='F'))[0]
ind_fron_2 = np.where(fro_map.ravel(order='F') < 8)[0]
ind_fron = np.intersect1d(ind_fron_1, ind_fron_2)
ind_to = np.intersect1d(ind_free, ind_fron)
map_x = x_len
map_y = y_len
x = np.linspace(0, map_x - 1, map_x)
y = np.linspace(0, map_y - 1, map_y)
t1, t2 = np.meshgrid(x, y)
points = np.vstack([t1.T.ravel(), t2.T.ravel()]).T
f = points[ind_to]
f = f.astype(int)
f = f * self.resolution
return f
def plot_env(self, n, path, step, travel_dist):
plt.switch_backend('agg')
# plt.ion()
plt.cla()
plt.imshow(self.robot_belief, cmap='gray')
plt.axis((0, self.ground_truth_size[1], self.ground_truth_size[0], 0))
# for i in range(len(self.graph_generator.x)):
# plt.plot(self.graph_generator.x[i], self.graph_generator.y[i], 'tan', zorder=1) # plot edges will take long time
plt.scatter(self.node_coords[:, 0], self.node_coords[:, 1], c=self.node_utility, zorder=5)
plt.scatter(self.frontiers[:, 0], self.frontiers[:, 1], c='r', s=2, zorder=3)
plt.plot(self.xTarget, self.yTarget, 'o', markersize = 20)
plt.plot(self.xPoints, self.yPoints, 'b', linewidth=2)
plt.plot(self.xPoints[-1], self.yPoints[-1], 'mo', markersize=8)
plt.plot(self.xPoints[0], self.yPoints[0], 'co', markersize=8)
plt.suptitle('Explored ratio: {:.4g} Travel distance: {:.4g}'.format(self.explored_rate, travel_dist))
plt.tight_layout()
plt.savefig('{}/{}_{}_samples.png'.format(path, n, step, dpi=150))
plt.show()
frame = '{}/{}_{}_samples.png'.format(path, n, step)
self.frame_files.append(frame)