diff --git a/data/TopTagging/val.h5 b/data/TopTagging/val.h5 new file mode 100644 index 0000000..b7d9ff7 Binary files /dev/null and b/data/TopTagging/val.h5 differ diff --git a/load_data.py b/load_data.py index 288dc72..55ca1f3 100644 --- a/load_data.py +++ b/load_data.py @@ -12,19 +12,19 @@ def read_files(DATAPATH, dataset, verbose=True): if dataset in file: if verbose: print("Reading data from {}".format(file)) - events = pd.read_hdf(os.path.join(DATAPATH, file), key='table').values + events = pd.read_hdf(os.path.join(DATAPATH, file), key='data').values return events def Loader(dataset, batch_size, test): - datapath = './data/top_tagging' + datapath = './data/TopTagging' data = read_files(datapath, dataset) if test == True: split = int(len(data) * 0.01) else: - split = int(len(data) * 0.01) + split = int(len(data) * 1.0) events=data events_train = events[:split] diff --git a/train.py b/train.py index 00e294d..b1da5e9 100644 --- a/train.py +++ b/train.py @@ -20,8 +20,8 @@ print(model) print('Total parameters: %d' % sum([np.prod(p.size()) for p in model.params_trainable])) -train_loader, train_size, data_shape = Loader('train_img40_add', c.batch_size, False) -val_loader, val_size, data_shape = Loader('test_img40_add', c.batch_size, False) +train_loader, train_size, data_shape = Loader('train', c.batch_size, False) +val_loader, val_size, data_shape = Loader('val', c.batch_size, False) N_epochs = c.n_epochs t_start = time()