forked from facebookresearch/CodeGen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranslate.py
290 lines (259 loc) · 9.82 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright (c) 2019-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# Translate sentences from the input stream.
# The model will be faster is sentences are sorted by length.
# Input sentences must have the same tokenization and BPE codes than the ones used in the model.
#
import os
import argparse
from pathlib import Path
import sys
import torch
from codegen_sources.model.src.logger import create_logger
from codegen_sources.preprocessing.lang_processors.cpp_processor import CppProcessor
from codegen_sources.preprocessing.lang_processors.java_processor import JavaProcessor
from codegen_sources.preprocessing.lang_processors.python_processor import (
PythonProcessor,
)
from codegen_sources.preprocessing.lang_processors.lang_processor import LangProcessor
from codegen_sources.preprocessing.bpe_modes.fast_bpe_mode import FastBPEMode
from codegen_sources.preprocessing.bpe_modes.roberta_bpe_mode import RobertaBPEMode
from codegen_sources.model.src.data.dictionary import (
Dictionary,
BOS_WORD,
EOS_WORD,
PAD_WORD,
UNK_WORD,
MASK_WORD,
)
from codegen_sources.model.src.utils import restore_roberta_segmentation_sentence
from codegen_sources.model.src.model import build_model
from codegen_sources.model.src.utils import AttrDict, TREE_SITTER_ROOT
SUPPORTED_LANGUAGES = ["cpp", "java", "python"]
logger = create_logger(None, 0)
def get_parser():
"""
Generate a parameters parser.
"""
# parse parameters
parser = argparse.ArgumentParser(description="Translate sentences")
# model
parser.add_argument("--model_path", type=str, default="", help="Model path")
parser.add_argument(
"--src_lang",
type=str,
default="",
help=f"Source language, should be either {', '.join(SUPPORTED_LANGUAGES[:-1])} or {SUPPORTED_LANGUAGES[-1]}",
)
parser.add_argument(
"--tgt_lang",
type=str,
default="",
help=f"Target language, should be either {', '.join(SUPPORTED_LANGUAGES[:-1])} or {SUPPORTED_LANGUAGES[-1]}",
)
parser.add_argument(
"--BPE_path",
type=str,
default=str(
Path(__file__).parents[2].joinpath("data/bpe/cpp-java-python/codes")
),
help="Path to BPE codes.",
)
parser.add_argument(
"--beam_size",
type=int,
default=1,
help="Beam size. The beams will be printed in order of decreasing likelihood.",
)
parser.add_argument(
"--input", type=str, default=None, help="input path",
)
return parser
class Translator:
def __init__(self, model_path, BPE_path):
# reload model
reloaded = torch.load(model_path, map_location="cpu")
# change params of the reloaded model so that it will
# relaod its own weights and not the MLM or DOBF pretrained model
reloaded["params"]["reload_model"] = ",".join([model_path] * 2)
reloaded["params"]["lgs_mapping"] = ""
reloaded["params"]["reload_encoder_for_decoder"] = False
self.reloaded_params = AttrDict(reloaded["params"])
# build dictionary / update parameters
self.dico = Dictionary(
reloaded["dico_id2word"], reloaded["dico_word2id"], reloaded["dico_counts"]
)
assert self.reloaded_params.n_words == len(self.dico)
assert self.reloaded_params.bos_index == self.dico.index(BOS_WORD)
assert self.reloaded_params.eos_index == self.dico.index(EOS_WORD)
assert self.reloaded_params.pad_index == self.dico.index(PAD_WORD)
assert self.reloaded_params.unk_index == self.dico.index(UNK_WORD)
assert self.reloaded_params.mask_index == self.dico.index(MASK_WORD)
# build model / reload weights (in the build_model method)
encoder, decoder = build_model(self.reloaded_params, self.dico)
self.encoder = encoder[0]
self.decoder = decoder[0]
self.encoder.cuda()
self.decoder.cuda()
self.encoder.eval()
self.decoder.eval()
# reload bpe
if getattr(self.reloaded_params, "roberta_mode", False):
self.bpe_model = RobertaBPEMode()
else:
self.bpe_model = FastBPEMode(
codes=os.path.abspath(BPE_path), vocab_path=None
)
def translate(
self,
input_code,
lang1,
lang2,
suffix1="_sa",
suffix2="_sa",
n=1,
beam_size=1,
sample_temperature=None,
device="cuda:0",
tokenized=False,
detokenize=True,
max_tokens=None,
length_penalty=0.5,
max_len=None,
):
# Build language processors
assert lang1 in SUPPORTED_LANGUAGES, lang1
assert lang2 in SUPPORTED_LANGUAGES, lang2
src_lang_processor = LangProcessor.processors[lang1](
root_folder=TREE_SITTER_ROOT
)
tokenizer = src_lang_processor.tokenize_code
tgt_lang_processor = LangProcessor.processors[lang2](
root_folder=TREE_SITTER_ROOT
)
detokenizer = tgt_lang_processor.detokenize_code
lang1 += suffix1
lang2 += suffix2
assert (
lang1 in self.reloaded_params.lang2id.keys()
), f"{lang1} should be in {self.reloaded_params.lang2id.keys()}"
assert (
lang2 in self.reloaded_params.lang2id.keys()
), f"{lang2} should be in {self.reloaded_params.lang2id.keys()}"
with torch.no_grad():
lang1_id = self.reloaded_params.lang2id[lang1]
lang2_id = self.reloaded_params.lang2id[lang2]
# Convert source code to ids
if tokenized:
tokens = input_code.strip().split()
else:
tokens = [t for t in tokenizer(input_code)]
print(f"Tokenized {lang1} function:")
print(tokens)
tokens = self.bpe_model.apply_bpe(" ".join(tokens)).split()
tokens = ["</s>"] + tokens + ["</s>"]
input_code = " ".join(tokens)
if max_tokens is not None and len(input_code.split()) > max_tokens:
logger.info(
f"Ignoring long input sentence of size {len(input_code.split())}"
)
return [f"Error: input too long: {len(input_code.split())}"] * max(
n, beam_size
)
# Create torch batch
len1 = len(input_code.split())
len1 = torch.LongTensor(1).fill_(len1).to(device)
x1 = torch.LongTensor([self.dico.index(w) for w in input_code.split()]).to(
device
)[:, None]
langs1 = x1.clone().fill_(lang1_id)
# Encode
enc1 = self.encoder("fwd", x=x1, lengths=len1, langs=langs1, causal=False)
enc1 = enc1.transpose(0, 1)
if n > 1:
enc1 = enc1.repeat(n, 1, 1)
len1 = len1.expand(n)
# Decode
if max_len is None:
max_len = int(
min(self.reloaded_params.max_len, 3 * len1.max().item() + 10)
)
if beam_size == 1:
x2, len2 = self.decoder.generate(
enc1,
len1,
lang2_id,
max_len=max_len,
sample_temperature=sample_temperature,
)
else:
x2, len2, _ = self.decoder.generate_beam(
enc1,
len1,
lang2_id,
max_len=max_len,
early_stopping=False,
length_penalty=length_penalty,
beam_size=beam_size,
)
# Convert out ids to text
tok = []
for i in range(x2.shape[1]):
wid = [self.dico[x2[j, i].item()] for j in range(len(x2))][1:]
wid = wid[: wid.index(EOS_WORD)] if EOS_WORD in wid else wid
if getattr(self.reloaded_params, "roberta_mode", False):
tok.append(restore_roberta_segmentation_sentence(" ".join(wid)))
else:
tok.append(" ".join(wid).replace("@@ ", ""))
if not detokenize:
return tok
results = []
for t in tok:
results.append(detokenizer(t))
return results
if __name__ == "__main__":
# generate parser / parse parameters
parser = get_parser()
params = parser.parse_args()
# check parameters
assert os.path.isfile(
params.model_path
), f"The path to the model checkpoint is incorrect: {params.model_path}"
assert params.input is None or os.path.isfile(
params.input
), f"The path to the input file is incorrect: {params.input}"
assert os.path.isfile(
params.BPE_path
), f"The path to the BPE tokens is incorrect: {params.BPE_path}"
assert (
params.src_lang in SUPPORTED_LANGUAGES
), f"The source language should be in {SUPPORTED_LANGUAGES}."
assert (
params.tgt_lang in SUPPORTED_LANGUAGES
), f"The target language should be in {SUPPORTED_LANGUAGES}."
# Initialize translator
translator = Translator(params.model_path, params.BPE_path)
# read input code from stdin
src_sent = []
input = (
open(params.input).read().strip()
if params.input is not None
else sys.stdin.read().strip()
)
print(f"Input {params.src_lang} function:")
print(input)
with torch.no_grad():
output = translator.translate(
input,
lang1=params.src_lang,
lang2=params.tgt_lang,
beam_size=params.beam_size,
)
print(f"Translated {params.tgt_lang} function:")
for out in output:
print("=" * 20)
print(out)