-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdata_prepair.py
48 lines (35 loc) · 1.36 KB
/
data_prepair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import json
from sklearn.model_selection import train_test_split
from glob import glob
def export_data(data_folder="datasets"):
data = []
# Training data from BKAI
BKAI_img_folder = os.path.join(data_folder, "training_img/")
BKAI_gt_folder = os.path.join(data_folder, "training_gt/")
for gt_file in os.listdir(BKAI_gt_folder):
image_file = gt_file[3:-4] + ".jpg"
item = {}
item["image_path"] = os.path.join(BKAI_img_folder, image_file)
item["gt_path"] = os.path.join(BKAI_gt_folder, gt_file)
data.append(item)
# Training data from VINAI
VINAI_gt_folder = os.path.join(data_folder, "vietnamese/labels/")
list_images = glob(os.path.join(data_folder, "vietnamese") + "/*/*.jpg")
for image_file in list_images:
image_idx = int(image_file.split("/")[-1][:-4])
gt_file = "".join([str(image_idx), ".txt"])
item = {}
item["image_path"] = image_file
item["gt_path"] = os.path.join(VINAI_gt_folder, gt_file)
data.append(item)
return data
if __name__ == '__main__':
data = export_data('data')
train_data, test_data = train_test_split(data, test_size=0.2, random_state=1)
with open('data/data.json', 'w') as f:
json.dump(data, f)
with open('data/train_data.json', 'w') as f:
json.dump(train_data, f)
with open('data/test_data.json', 'w') as f:
json.dump(test_data, f)