diff --git a/16_11_18 delay.ipynb b/16_11_18 delay.ipynb new file mode 100644 index 0000000..9c1fa7f --- /dev/null +++ b/16_11_18 delay.ipynb @@ -0,0 +1,83 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAIXCAYAAABkVPiMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X9s1Hl+5/nXt1yF2buCOOLOzkDtLjrh7ouwW8mSjeES\nyXVSjqvCRRd/BINt6LZh2/HopIvLbKRkJTiq/7i9yKDTYWu3HVjQxO7Cg+nmSBcz9uy4XNiT6sW5\n7tig2yiM1U1bQWs84Bkk0/aBXZ/7Y5hOTw8/jO3yp348H/+MMeWq5x/MMG++78/36xhjBAAAAACA\nDS7bAQAAAACAwsVQCgAAAACwhqEUAAAAAGANQykAAAAAwBqGUgAAAACANQylAAAAAABr3Et5keM4\ndyQ9lJSW9MQY87uO4/y6pO9K+ueS7kiqNcY8zFAnAAAAACAPLfVKaVqS3xjz28aY3336vT+V9ENj\nzOuSEpL+LBOBAAAAAID8tdSh1HnGa8OSvvP06+9I2rdaUQAAAACAwrDUodRI+o+O4/yN4zj/6un3\nyowx9yTJGDMlqTQTgQAAAACA/LWkM6WSfs8Y818cx/lvJf3AcZy/188H1a/75q8BAAAAAHihJQ2l\nxpj/8vQ/f+I4zv8t6Xcl3XMcp8wYc89xnN+QNP2sn3Uch2EVAAAAAPKYMcZZ7s++dCh1HOe/kuQy\nxsw6jvNfS9otKSrpryQ1SvpzSW9LuvqCwOX2AVnj5MmTOnnypO0MYEX4c4x8wZ9l5AP+HCNfOM6y\n51FJS7tSWibpytMrnm5J7xtjfuA4zv8j6ZLjOEckfSGpdkUlAAAAAICC89Kh1BjzuaTfesb3ZyT9\nQSaiAAAAAACFYal33wUKnt/vt50ArBh/jpEv+LOMfMCfY+DnnEyf93Qcx3CmFAAAAADyk+M4K7rR\nEVdKAQAAAADWMJQCAAAAAKxhKAUAAAAA/Iq1OobJUAoAwBKMT43r0IeHbGcAALAmFtILerP3Tf3w\nsx9m/LOW8pxSAAAK2uTDSe2J7dGjx49spwAAkHHGGLXEW7SYXlT1P6/O+OdxpRQAgBeYmZtRoCeg\nlh0tWkgv2M4BACDjotejGpsa06X9l+Qp8mT88xhKAQB4jvmFeYV7wwpuC+pPfu9P9CT9xHYSAAAZ\nde7Tc+q+2a1r9dfkXeddk89kfRcAgGdYTC/q0IeHtGXDFrXvbpcxRk8WGUoBAPkrfjuu40PHNdw4\nrDJv2Zp9LkMpAADfYIxRZCCiB3MP1N/QL5fjkp4+Ejxt0j//NQAAeWT07qiarjYpXhdX+abyNf1s\nhlIAAL7hVOqUhu4MaaRpRMXu4q++73a59WTxyS99DwCAXDcxM6Fwb1gXwhdU5ata889nKAUA4Gti\nt2LqGO1Q6mhKJetLfun3PEUePUk/UbEYSgEA+WH60bQCPQFF/VGFXgtZaWAoBQDgqcHPBtXa36rE\n2wn5Nvp+5fc9Lg934AUA5I3Zx7OqidWovrJezTuarXVwKAYAAEnjU+Oq+6BOl/ZfUkVpxTNf84v1\nXQAAct2TxSeq7atVZWmlov6o1RaGUgBAwZt8OKnQxZA693TKv9X/3Nf9Yn0XAIBcZozRt699W0ZG\nXaEuOY5jtYf1XQBAQZuZm1GgJ6C2nW2q3V77wteyvgsAyAfR61GNTY0p2ZiUp8hjO4ehFABQuOYX\n5hXuDSu4LajIrshLX8/6LgAg15395Ky6b3YrdSQl7zqv7RxJDKUAgAK1mF7UoQ8PacuGLWrf3b6k\nn2F9FwCQy+K34zqRPKHhxmGVects53yFoRQAUHCMMYoMRPRg7oH6G/rlcpZ2iwXWdwEAuWr07qia\nrjYpXhdX+aZy2zm/hKEUAFBwTqVOaejOkEaaRlTsXvozR1nfBQDkoomZCYV7w7oQvqAqX5XtnF/B\nUAoAKCixWzF1jHYodTSlkvUlr/SzrO8CAHLN9KNpBXoCivqjCr0Wsp3zTAylAICCMfjZoFr7W5V4\nOyHfRt8r/7zb5WZ9FwCQM2Yfz6omVqP6yno172i2nfNcPKcUAFAQxqfGVfdBnfr296mitGJZ7+Fx\neVjfBQDkhIX0gg5cPqDK0kpF/VHbOS/EUAoAyHuTDycVuhhS555OVW+tXvb7eIq40REAIPsZY9QS\nb5ExRl2hLjmOYzvphVjfBQDktZm5GQV6Amrb2aba7bUrei+3y82ZUgBA1otej2psakzJxqQ8RR7b\nOS/FUAoAyFvzC/MK94YV2BZQZFdkxe/H+i4AINud+/Scum92K3UkJe86r+2cJWEoBQDkpcX0og59\neEhbNmzRqd2nVuU9Wd8FAGSza7ev6fjQcQ03DqvMW2Y7Z8kYSgEAeccYo8hARA/mHqi/oV8uZ3Vu\nocD6LgAgW43eHVXT1SZ9VPeRyjeV2855JQylAIC8cyp1SkN3hjTSNKJid/GqvS/ruwCAbDQxM6Fw\nb1jnw+dV5auynfPKGEoBAHkldiumjtEOpY6mVLK+ZFXfm/VdAEC2mX40rUBPQO/631XotZDtnGVh\nKAUA5I3E5wlFBiIafGtQvo2+VX9/t8P6LgAge8w+nlVNrEYNlQ16Z8c7tnOWjaEUAJAXbt67qYOX\nD6pvf58qSisy8hmeItZ3AQDZYSG9oAOXD+iN0jd00n/Sds6KrM6dHwAAsGjy4aRqYjXq3NOp6q3V\nGfscj4v1XQCAfcYYtcRbZIzRe6H35DiO7aQV4UopACCn/XTupwr0BNS2s02122sz+lncfRcAkA2i\n16MamxpTsjEpT5HHds6KMZQCAHLW/MK8wr1hBbcFFdkVyfjnsb4LALDt3Kfn1H2zW6kjKXnXeW3n\nrAqGUgBATkqbtA5fOaxvbfiW2ne3r8lnsr4LALApfjuu40PHNdw4rDJvme2cVcNQCgDIOcYYRfoj\nuv/lffU39MvlrM0tEljfBQDYMnp3VE1XmxSvi6t8U7ntnFXFUAoAyDmnPz6txJ2ERppGVOwuXrPP\n9RR5NL8wv2afBwCAJE3MTCjcG9aF8AVV+aps56w6hlIAQE6J3YrpzI0zSh1NqWR9yZp+ttvl5kwp\nAGBN3Zu9p0BPQO/631XotZDtnIxgKAUA5IzE5wlFBiIafGtQvo2+Nf98j8vD+i4AYM3MPp5V6GJI\nDZUNemfHO7ZzMoahFACQE27eu6mDlw+qb3+fKkorrDR4irjREQBgbTxZfKLavlq9UfqGTvpP2s7J\nqLW5MwQAACsw+XBSNbEade7pVPXWamsdrO8CANaCMUYt8RZJ0nuh9+Q4juWizOJKKQAgq83MzSjQ\nE9CxXcdUu73WagvruwCAtRC9HtX4vXElG5PyFHls52QcQykAIGvNL8xrX+8+BbcF1bqz1XYO67sA\ngIw7+8lZdd/sVupISt51Xts5a4KhFACQlRbTizp85bA2b9is9t3ttnMk8ZxSAEBmxW/HdSJ5QsON\nwyrzltnOWTMMpQCArGOMUdtAm+5/eV/9Df1yOdlxCwSPy8OZUgBARtz4hxtqutqkeF1c5ZvKbees\nKYZSAEDWOf3xaSXuJDTSNKJid7HtnK+wvgsAyIQfP/ix9n13n86/eV5VvirbOWuOoRQAkFVit2I6\nc+OMUkdTKllfYjvnl7C+CwBYbfdm7yn4flBRf1R7X99rO8cKhlIAQNZIfJ5QZCCiwbcG5dvos53z\nK1jfBQCsptnHswpdDKm+sl7NO5pt51jDUAoAyArjU+M6ePmg+vb3qaK0wnbOM7G+CwBYLU8Wn6i2\nr1aVpZWK+qO2c6zKjjtHAAAK2uTDSYUuhtS5p1PVW6tt5zwX67sAgNVgjFFLvEWS1BXqkuM4lovs\n4kopAMCqmbkZBXoCatvZptrttbZzXsjj4kopAGDlotejGr83rmRjUp4ij+0c6xhKAQDWzC/Ma1/v\nPgW3BRXZFbGd81Jul5szpQCAFTn7yVl13+xW6khK3nVe2zlZgaEUAGDFYnpRh68c1uYNm9W+u912\nzpJ4ijys7wIAli1+O64TyRMabhxWmbfMdk7WYCgFAKw5Y4zaBtp0/8v76m/ol8vJjVscsL4LAFiu\n0bujarrapHhdXOWbym3nZBWGUgDAmjv98Wkl7iQ00jSiYnex7ZwlY30XALAcEzMTCveGdSF8QVW+\nKts5WYehFACwpmK3Yjpz44xSR1MqWV9iO+eVsL4LAHhV04+mFegJ6F3/uwq9FrKdk5UYSgEAaybx\neUKRgYgG3xqUb6PPds4rY30XAPAqZh/PqiZWo4bKBr2z4x3bOVmLoRQAsCbGp8Z18PJB9e3vU0Vp\nhe2cZWF9FwCwVE8Wn6i2r1ZvlL6hk/6TtnOyWm7cWQIAkNMmH04qdDGkzj2dqt5abTtn2VjfBQAs\nhTFGLfEWSdJ7offkOI7louzGlVIAQEbNzM0o0BPQsV3HVLu91nbOirC+CwBYiuj1qMbvjSvZmJSn\nyGM7J+sxlAIAMmZ+YV7h3rCC24Jq3dlqO2fFWN8FALzM2U/Oqvtmt1JHUvKu89rOyQkMpQCAjFhM\nL+rQh4e0ZcMWte9ut52zKljfBQC8SPx2XCeSJzTcOKwyb5ntnJzBUAoAWHXGGEUGInow90D9Df1y\nOflxCwPWdwEAz3PjH26o6WqT4nVxlW8qt52TUxhKAQCr7lTqlIbuDGmkaUTF7mLbOavG5biUNmml\nTTpvBm0AwMr9+MGPte+7+3QhfEFVvirbOTmHoRQAsKpit2LqGO1Q6mhKJetLbOesKsdx5HF59GTx\nSV4N2wCA5bs3e0/B94OK+qMKvRaynZOT+GdeAMCqGfxsUJGBiL7f8H35Nvps52SE2+VmhRcAIEma\nfTyr0MWQ6ivr1byj2XZOzuJKKQBgVYxPjavugzr17e/T9tLttnMyhpsdAQAk6cniE9X21aqytFJR\nf9R2Tk7jSikAYMW++NkXqonVqHNPp6q3VtvOyShudgQAMMaoJd4iI6OuUJccx7GdlNO4UgoAWJGZ\nuRkF3w/q2K5jqt1eazsn43hWKQAgej2q8XvjSjYm5Sny2M7JeQylAIBlm1+YV7g3rOC2oCK7IrZz\n1gTruwBQ2M5+clbdN7uVOpKSd53Xdk5eYCgFACzLYnpRhz48pC0btqh9d7vtnDXD+i4AFK5rt6/p\nRPKEhhuHVeYts52TNxhKAQCvzBijyEBED+YeqL+hv6Ce2cn6LgAUptG7o2q62qSP6j5S+aZy2zl5\nhaEUAPDKTqVOaejOkEaaRgrueZ2s7wJA4ZmYmVC4N6zz4fOq8lXZzsk7DKUAgFcSuxVTx2iHUkdT\nKllfYjtnzbG+CwCFZfrRtAI9AUX9UYVeC9nOyUsMpQCAJRv8bFCt/a0afGtQvo0+2zlWsL4LAIXj\n0eNHCsVCqq+sV/OOZts5eatwDgEBAFZkfGpcdR/U6dL+S6osq7SdYw3ruwBQGBbSC6q9XKuK0gpF\n/VHbOXmNoRQA8FKTDydVE6tRR7BD/q1+2zlWsb4LAPnPGKOWeIvSJq2uUJccx7GdlNdY3wUAvNDM\n3IwCPQEd23VMByoO2M6xjvVdAMh/0etRjU2NKdmYlKfIYzsn7zGUAgCea35hXvt69ym4LajIrojt\nnKzA+i4A5Ldzn55T981upY6k5F3ntZ1TEBhKAQDPtJhe1OErh7V5w2a17263nZM1WN8FgPx17fY1\nHR86ruHGYZV5y2znFAyGUgDArzDGqG2gTfe/vK/+hn65HG5B8Aus7wJAfhq9O6rGq42K18VVvqnc\ndk5BYSgFAPyK0x+fVuJOQiNNIyp2F9vOySqeIq6UAkC+mZiZULg3rPNvnleVr8p2TsFhKAUA/JLY\nrZjO3Dij1NGUStaX2M7JOm6XmzOlAJBHph9NK9ATUNQf1d7X99rOKUgMpQCAryQ+TygyENHgW4Py\nbfTZzslKHpeH9V0AyBOzj2cVioVUX1mv5h3NtnMKFkMpAECSND41roOXD6pvf58qSits52QtbnQE\nAPlhIb2gA5cPaHvpdkX9Uds5BY07VwAANPlwUqGLIXXu6VT11mrbOVmN9V0AyH3GGLXEW5Q2af1F\n6C/kOI7tpILGlVIAKHAzczMK9ATUtrNNtdtrbedkPU8R67sAkOui16MamxpTsjEpT5HHdk7BYygF\ngAI2vzCvfb37FNwWVGRXxHZOTmB9FwBy29lPzqr7ZrdSR1LyrvPazoEYSgGgYC2mF3X4ymFt3rBZ\n7bvbbefkDNZ3ASB3xW/HdSJ5QsONwyrzltnOwVMMpQBQgIwxigxEdP/L++pv6JfL4RYDS8X6LgDk\nptG7o2q62qR4XVzlm8pt5+Brlvz/QhzHcTmO86njOH/19Ne/7jjODxzH+XvHcQYcx/m1zGUCAFbT\nqdQpDd0Z0pUDV1TsLradk1NY3wWA3DMxM6Fwb1gXwhdU5auynYNveJV/Gv9jSf/5a7/+U0k/NMa8\nLikh6c9WMwwAkBmxWzF1jHbo+w3fV8n6Ets5OYf1XQDILdOPphXoCSjqjyr0Wsh2Dp5hSUOp4zg+\nSXsknfvat8OSvvP06+9I2re6aQCA1Tb42aBa+1v1vYbvybfRZzsnJ7G+CwC5Y/bxrGpiNaqvrFfz\njmbbOXiOpV4p/T8l/Ykk87XvlRlj7kmSMWZKUukqtwEAVtH41LjqPqhT3/4+VZRW2M7JWazvAkBu\nWEgv6MDlA6osrVTUH7Wdgxd46Y2OHMepkXTPGDPmOI7/BS81z/uNkydPfvW13++X3/+itwEArLYv\nfvaFamI16gh2qHprte2cnMb6LgBkP2OMWuItMsaoK9Qlx3FsJ+WVZDKpZDK5au/nGPPcWfLnL3Cc\n/13SIUkLkv6JpA2Srkj6HUl+Y8w9x3F+Q9KQMeY3n/Hz5mWfAQDInJm5Gf3++d/XO//iHZ5Fugr+\n3d/8O926d0v/PvTvbacAAJ7jZPKk4rfjSjYmeRbpGnAcR8aYZU/+L13fNcb8G2PMPzPG/HeSDkpK\nGGMOS/pIUuPTl70t6epyIwAAmTG/MK9wb1jBbUEG0lXidrlZ3wWALHbu03Pqvtmta/XXGEhzxEqe\nU/p/SLrkOM4RSV9Iql2dJADAalhML+rQh4e0ZcMWte9ut52TNzwuD+u7AJCl4rfjOj50XMONwyrz\nltnOwRK90lBqjLku6frTr2ck/UEmogAAK2OMUWQgogdzD9Tf0C+X8ypPAMOLeIq40REAZKPRu6Nq\nutqkeF1c5ZvKbefgFazkSikAIEudSp3S0J0hjTSNqNhdbDsnr3CjIwDIPhMzEwr3hnUhfEFVvirb\nOXhFDKUAkGdit2LqGO1Q6mhKJetLbOfkHY+L55QCQDa5N3tPgZ6Aov6oQq+FbOdgGRhKASCPDH42\nqNb+ViXeTsi30Wc7Jy+xvgsA2WP28axCF0Oqr6xX845m2zlYJg4ZAUCeGJ8aV90Hdbq0/5IqSits\n5+Qt1ncBIDs8WXyi2r5aVZZWKuqP2s7BCjCUAkAemHw4qZpYjTqCHfJv9dvOyWus7wKAfcYYffva\nt2Vk1BXqkuMs+xGZyAKs7wJAjpuZm1GgJ6Bju47pQMUB2zl5j/VdALAvej2qsakxJRuT8hR5bOdg\nhRhKASCHzS/Ma1/vPgW3BRXZFbGdUxBY3wUAu85+clbdN7uVOpKSd53Xdg5WAUMpAOSoxfSiDl85\nrM0bNqt9d7vtnILB+i4A2BO/HdeJ5AkNNw6rzFtmOwerhKEUAHKQMUaRgYjuf3lf/Q39cjncImCt\nsL4LAHaM3h1V09UmxeviKt9UbjsHq4ihFABy0KnUKQ3dGdJI04iK3cW2cwoK67sAsPYmZiYU7g3r\n/JvnVeWrsp2DVcZQCgA5JnYrpo7RDqWOplSyvsR2TsFhfRcA1tb0o2kFegKK+qPa+/pe2znIAIZS\nAMghg58NqrW/VYm3E/Jt9NnOKUis7wLA2nn0+JFCsZDqK+vVvKPZdg4yhENIAJAjxqfGVfdBnfr2\n96mitMJ2TsFifRcA1sZCekG1l2tVUVqhqD9qOwcZxFAKADlg8uGkQhdD6tzTqeqt1bZzCprHxZVS\nAMg0Y4xa4i1Km7S6Ql1yHMd2EjKI9V0AyHI/nfupAj0BHdt1TLXba23nFDy3y82ZUgDIsHevv6ux\nqTElG5PyFHls5yDDGEoBIIvNL8wr3BtWcFtQrTtbbedAPz9TyvouAGTOuU/P6S9v/qVSR1LyrvPa\nzsEaYCgFgCy1mF7U4SuHtXnDZrXvbredg6dY3wWAzLl2+5qODx3XcOOwyrxltnOwRhhKASALGWPU\nNtCm+1/eV39Dv1wOtwDIFqzvAkBmjN4dVePVRsXr4irfVG47B2uIoRQAstDpj08rcSehkaYRFbuL\nbefga1jfBYDVNzEzoXBvWOffPK8qX5XtHKwxhlIAyDKxWzGduXFGqaMplawvsZ2DbyhyipQ2aaVN\nmivYALAKph9NK9ATUNQf1d7X99rOgQX8bQoAWSTxeUKRgYi+1/A9+Tb6bOfgGRzHkdvl5lwpAKyC\nR48fKRQLqb6yXs07mm3nwBKGUgDIEjfv3dTBywd16Q8vqaK0wnYOXsDj8nCuFABWaCG9oNrLtaoo\nrVDUH7WdA4sYSgEgC0w+nFRNrEadezpVvbXadg5ewlPEHXgBYCWMMWqJt8gYo65QlxzHsZ0EizhT\nCgCW/XTupwr0BNS2s02122tt52AJ3C43NzsCgBWIXo9qbGpMycakPEUe2zmwjKEUACyaX5hXuDes\n4LagIrsitnOwRKzvAsDynfv0nLpvdit1JCXvOq/tHGQBhlIAsGQxvajDVw5r84bNat/dbjsHr4D1\nXQBYnvjtuI4PHddw47DKvGW2c5AlGEoBwAJjjNoG2nT/y/vqb+jn0SI5hvVdAHh1o3dH1XS1SfG6\nuMo3ldvOQRZhKAUAC05/fFqJOwmNNI2o2F1sOwevyOPiSikAvIqJmQmFe8O6EL6gKl+V7RxkGYZS\nAFhjsVsxnblxRqmjKZWsL7Gdg2Vwu9ycKQWAJZp+NK1AT0BRf1Sh10K2c5CFGEoBYA0lPk8oMhDR\n4FuD8m302c7BMnmKPKzvAsASzD6eVU2sRvWV9Wre0Ww7B1mKoRQA1sj41LgOXj6ovv19qiitsJ2D\nFWB9FwBe7sniE9X21aqytFJRf9R2DrIYd9YAgDUw+XBSoYshde7pVPXWats5WCHWdwHgxYwxaom3\nSJK6Ql1yHMdyEbIZV0oBIMNm5mYU6Ano2K5jqt1eazsHq4D1XQB4sej1qMbvjSvZmJSnyGM7B1mO\noRQAMmh+YV7h3rCC24Jq3dlqOwerhPVdAHi+s5+cVffNbqWOpORd57WdgxzAUAoAGbKYXtShDw9p\ny4Ytat/dbjsHq4j1XQB4tvjtuE4kT2i4cVhl3jLbOcgRDKUAkAHGGEUGInow90D9Df1yORzhzyes\n7wLAr7rxDzfUdLVJ8bq4yjeV285BDmEoBYAMOJU6paE7QxppGlGxu9h2DlYZ67sA8Mt+/ODH2vfd\nfboQvqAqX5XtHOQYhlIAWGWxWzF1jHYodTSlkvUltnOQAazvAsA/mn40reD7QUX9UYVeC9nOQQ5i\nKAWAVTT42aBa+1uVeDsh30af7RxkCOu7APBzs49nVROrUX1lvZp3NNvOQY7ikBMArJLxqXHVfVCn\nvv19qiitsJ2DDGJ9FwCkhfSCDlw+oMrSSkX9Uds5yGEMpQCwCiYfTip0MaTOPZ2q3lptOwcZxvou\ngEJnjFFLvEVpk1ZXqEuO49hOQg5jfRcAVmhmbkaBnoDadrapdnut7RysAY+L9V0AhS16PaqxqTEl\nG5PyFHls5yDHMZQCwArML8xrX+8+BbcFFdkVsZ2DNeJ2uVnfBVCwzn16Tt03u5U6kpJ3ndd2DvIA\nQykALNNielGHrxzW5g2b1b673XYO1pCnyMP6LoCCdO32NR0fOq7hxmGVects5yBPMJQCwDIYY9Q2\n0KafPPqJBg4NyOVwRL+QcKMjAIXob+7+jRqvNipeF1f5pnLbOcgjDKUAsAynPz6twc8H9aMjP1Kx\nu9h2DtaY2+XmTCmAgjIxM6E3e9/U+TfPq8pXZTsHeYahFABeUexWTGdunFHqaEol60ts58AC1ncB\nFJLpR9MK9AQU9Ue19/W9tnOQhxhKAeAVDH42qNb+ViXeTsi30Wc7B5Z4XB49XnxsOwMAMu7R40cK\nxUKqr6xX845m2znIUxyCAoAlGp8aV90Hdbq0/5IqSits58Ai1ncBFIKF9IJqL9eqorRCUX/Udg7y\nGEMpACzB5MNJ1cRq1BHskH+r33YOLGN9F0C+M8aoJd6itEmrK9Qlx3FsJyGPsb4LAC8xMzejQE9A\nx3Yd04GKA7ZzkAW4+y6AfBe9HtXY1JiSjUl5ijy2c5DnGEoB4AXmF+a1r3efgtuCiuyK2M5BlmB9\nF0A+O/fpOXXf7FbqSEredV7bOSgADKUA8ByL6UUdvnJYmzdsVvvudts5yCKs7wLIV9duX9PxoeMa\nbhxWmbfMdg4KBEMpADyDMUZtA226/+V99Tf0y+VwBB//yOPyaMGwvgsgv4zeHVXj1UbF6+Iq31Ru\nOwcFhKEUAJ7h9MenlbiT0EjTiIrdxbZzkGXcLjdXSgHklYmZCYV7wzr/5nlV+aps56DAMJQCwDfE\nbsV05sYZpY6mVLK+xHYOspCnyMOZUgB5Y/rRtAI9AZ2sPqm9r++1nYMCxFAKAF+T+DyhyEBEg28N\nyrfRZzsHWYq77wLIF7OPZ1UTq1F9Zb3+6Hf+yHYOChRDKQA8NT41roOXD6pvf58qSits5yCLsb4L\nIB8spBd04PIBVZZWKuqP2s5BAePOHQAgafLhpEIXQ+rc06nqrdW2c5DlPEVcKQWQ24wxaom3KG3S\n6gp1yXEc20koYFwpBVDwZuZmFOgJqG1nm2q319rOQQ7gOaUAcl30elRjU2NKNiblKfLYzkGBYygF\nUNDmF+a1r3efgtuCiuyK2M5BjvC4eE4pgNx17tNz6r7ZrdSRlLzrvLZzAIZSAIVrMb2ow1cOa/OG\nzWrf3W47BzmE9V0Auera7Ws6PnRcw43DKvOW2c4BJDGUAihQxhhFBiK6/+V99Tf0y+VwxB5Lx/ou\ngFw0encQqnpNAAAgAElEQVRUTVeb9FHdRyrfVG47B/gKQymAgnQqdUpDd4Y00jSiYnex7RzkGNZ3\nAeSaiZkJhXvDOh8+rypfle0c4JcwlAIoOLFbMXWMdih1NKWS9SW2c5CDWN8FkEumH00r0BNQ1B9V\n6LWQ7RzgVzCUAigoic8Tau1vVeLthHwbfbZzkKNY3wWQK2YfzyoUC6m+sl7NO5pt5wDPxCEqAAVj\nfGpcBy8f1KX9l1RRWmE7BzmM9V0AuWAhvaADlw+oorRCUX/Udg7wXAylAArCFz/7QjWxGnXu6ZR/\nq992DnIc67sAsp0xRi3xFhlj1BXqkuM4tpOA52J9F0Dem5mbUfD9oI7tOqba7bW2c5AHWN8FkO2i\n16MamxpTsjEpT5HHdg7wQgylAPLa/MK8wr1hBbcFFdkVsZ2DPMH6LoBsdu7Tc+q+2a3UkZS867y2\nc4CXYigFkLcW04s69OEhbdmwRe27223nII+wvgsgW8Vvx3V86LiGG4dV5i2znQMsCUMpgLxkjFFk\nIKIHcw/U39Avl8MReqwe1ncBZKPRu6NqutqkeF1c5ZvKbecAS8ZQCiAvnUqd0tCdIY00jajYXWw7\nB3mG9V0A2WZiZkLh3rAuhC+oyldlOwd4JQylAPJO7FZMHaMdSh1NqWR9ie0c5CG3y836LoCscW/2\nngI9Ab3rf1eh10K2c4BXxlAKIK8Mfjao1v5WJd5OyLfRZzsHecrtcmvRLMoYw2MWAFg1+3hWoYsh\nNVQ26J0d79jOAZaFQ1YA8sb41LjqPqhT3/4+VZRW2M5BHnMch6ulAKx7svhEtX21eqP0DZ30n7Sd\nAywbQymAvDD5cFKhiyF17ulU9dZq2zkoANzsCIBNxhi1xFskSe+F3mNrAzmN9V0AOW9mbkaBnoCO\n7Tqm2u21tnNQIL662RHPpAdgQfR6VOP3xpVsTMpTxP8QIbcxlALIafML89rXu0/BbUG17my1nYMC\nwrNKAdhy7tNz6r7ZrdSRlLzrvLZzgBVjKAWQsxbTizp85bA2b9is9t3ttnNQYFjfBWDDtdvXdHzo\nuIYbh1XmLbOdA6wKhlIAOckYo7aBNt3/8r76G/rlcjgij7XFs0oBrLXRu6Nqutqkj+o+Uvmmcts5\nwKphKAWQk05/fFqJOwmNNI2o2F1sOwcFiPVdAGtpYmZC4d6wzofPq8pXZTsHWFUMpQByTuxWTGdu\nnFHqaEol60ts56BAsb4LYK1MP5pWoCegqD+q0Gsh2znAqmMoBZBTEp8nFBmIaPCtQfk2+mznoICx\nvgtgLTx6/EihWEj1lfVq3tFsOwfICIZSADljfGpcBy8fVN/+PlWUVtjOQYFjfRdApi2kF1R7uVYV\npRWK+qO2c4CM4c4gAHLC5MNJhS6G1BHsUPXWats5AOu7ADLKGKNvx7+ttEmrK9Qlx3FsJwEZw5VS\nAFlvZm5GgZ6A2na26UDFAds5gCTWdwFk1rvX39XfTv2tko1JeYo8tnOAjGIoBZDV5hfmta93n4Lb\ngorsitjOAb7C+i6ATDn36Tn95c2/VOpISt51Xts5QMYxlALIWovpRR2+clibN2xW++522znAL2F9\nF0AmXLt9TceHjmu4cVhl3jLbOcCaYCgFkJWMMWobaNP9L++rv6FfLocj8MguHhdXSgGsrtG7o2q8\n2qh4XVzlm8pt5wBrhqEUQFY6/fFpJe4kNNI0omJ3se0c4Fe4XW7OlAJYNRMzEwr3hnX+zfOq8lXZ\nzgHW1EsvPTiOU+w4zg3Hcf7WcZxbjuP8b0+//+uO4/zAcZy/dxxnwHGcX8t8LoBCELsV05kbZ/T9\nhu+rZH2J7RzgmTxFHtZ3AayK6UfTCvQEFPVHtff1vbZzgDX30qHUGPP/SfofjTG/Lem3JAUdx/ld\nSX8q6YfGmNclJST9WUZLARSExOcJRQYi+l7D9+Tb6LOdAzwX67sAVsOjx48UioVUX1mv5h3NtnMA\nK5Z0SMsY8+XTL4v185VfIyks6TtPv/8dSftWvQ5AQbl576YOXj6oS394SRWlFbZzgBdifRfASi2k\nF1R7uVYVpRWK+qO2cwBrljSUOo7jchznbyVNSfqPxpi/kVRmjLknScaYKUmlmcsEkO8mH06qJlaj\nzj2dqt5abTsHeCnWdwGshDFGLfEWGWPUFeqS4zi2kwBrlnSjI2NMWtJvO46zUdIVx3G26+dXS3/p\nZc/7+ZMnT371td/vl9/vf+VQAPnrp3M/VfD9oNp2tql2e63tHGBJWN8FsBLR61GNTY0p2ZiUp8hj\nOwd4JclkUslkctXezzHmubPks3/AcY5L+lLSv5LkN8bccxznNyQNGWN+8xmvN6/6GQAKx/zCvHZ3\n79a/3Pwvdfp/Pm07B1iy5o+ateNbO/RHv/NHtlMA5Jhzn57Tv/3Rv1XqSIpnkSIvOI4jY8yyL/cv\n5e67/80v7qzrOM4/kfQ/Sfo7SX8lqfHpy96WdHW5EQAK02J6UYevHNbmDZvVvrvddg7wSjwu1ncB\nvLr47biODx1Xf0M/Aynw1FLWd78l6TuO47j08yH2u8aY7zmO858kXXIc54ikLySxcwdgyYwxahto\n0/0v76u/oV8uZ0lH3IGs4SlifRfAqxm9O6qmq02K18VVvqncdg6QNV46lBpjbkn6F8/4/oykP8hE\nFID8d/rj00rcSWikaUTF7mLbOcAr4+67AF7FxMyEwr1hXQhfUJWvynYOkFWWdKMjAFhNsVsxnblx\nRqmjKZWsL7GdAywL67sAlmr60bQCPQFF/VGFXgvZzgGyDkMpgDWV+DyhyEBEg28NyrfRZzsHWDbW\ndwEsxezjWdXEalRfWa/mHc22c4CsxFAKYM2MT43r4OWD6tvfp4rSCts5wIqwvgvgZZ4sPlFtX60q\nSysV9Udt5wBZizuLAFgTkw8nFboYUueeTlVvrbadA6wYzykF8CLGGLXEW2Rk1BXqkuMs+2kZQN7j\nSimAjJuZm1GgJ6Bju46pdjs36kZ+cLvcnCkF8FzR61GN3xtXsjEpT5HHdg6Q1RhKAWTU/MK8wr1h\nBbcF1bqz1XYOsGo8RR7WdwE807lPz6n7ZrdSR1LyrvPazgGyHkMpgIxZTC/q0IeHtGXDFrXvbred\nA6wq1ncBPEv8dlzHh45ruHFYZd4y2zlATmAoBZARxhhFBiJ6MPdA/Q39cjkcYUd+YX0XwDfd+Icb\narrapHhdXOWbym3nADmDoRRARpxKndLQnSGNNI2o2F1sOwdYdZ4inlMK4B/9+MGPte+7+3QhfEFV\nvirbOUBOYSgFsOpit2LqGO1Q6mhKJetLbOcAGcH6LoBfuDd7T8H3g4r6owq9FrKdA+QchlIAq2rw\ns0G19rcq8XZCvo0+2zlAxvCcUgCSNPt4VqGLITVUNqh5R7PtHCAnccgLwKoZnxpX3Qd16tvfp4rS\nCts5QEaxvgvgyeIT1fbV6o3SN3TSf9J2DpCzGEoBrIovfvaFamI16tzTqeqt1bZzgIxjfRcobMYY\ntcRbJEnvhd6T4ziWi4DcxfougBWbmZtR8P2g/vX/8K9Vu73Wdg6wJljfBQpb9HpU4/fGlWxMylPk\nsZ0D5DSGUgArMr8wr3BvWMFtQbXubLWdA6wZ1neBwnX2k7Pqvtmt1JGUvOu8tnOAnMdQCmDZFtOL\nOvThIW3ZsEXtu9tt5wBrivVdoDBdu31NJ5InNNw4rDJvme0cIC8wlAJYFmOMIgMRPZh7oP6Gfrkc\njqijsLC+CxSe0bujarzaqHhdXOWbym3nAHmDoRTAspxKndLQnSGNNI2o2F1sOwdYc6zvAoVlYmZC\n4d6wLoQvqMpXZTsHyCsMpQBeWexWTB2jHUodTalkfYntHMAKt8vN+i5QIKYfTSvQE1DUH1XotZDt\nHCDvMJQCeCWDnw2qtb9VibcT8m302c4BrPG4PKzvAgVg9vGsamI1qq+sV/OOZts5QF7iEBiAJRuf\nGlfdB3Xq29+nitIK2zmAVZ4ibnQE5LuF9IIOXD6gytJKRf1R2zlA3mIoBbAkkw8nFboYUueeTlVv\nrbadA1jndrk5UwrkMWOMWuItSpu0ukJdchzHdhKQt1jfBfBSM3MzCvQE1LazTbXba23nAFmB9V0g\nv0WvRzU2NaZkY1KeIo/tHCCvMZQCeKH5hXnt692n4LagIrsitnOArMH6LpC/zn16Tt03u5U6kpJ3\nndd2DpD3GEoBPNdielGHrxzW5g2b1b673XYOkFVY3wXyU/x2XMeHjmu4cVhl3jLbOUBBYCgF8EzG\nGLUNtOknj36igUMDcjkcQQe+jvVdIP+M3h1V09UmxeviKt9UbjsHKBgMpQCe6fTHp5W4k9BI04iK\n3cW2c4Csw/oukF8mZiYU7g3r/JvnVeWrsp0DFBSGUgC/InYrpjM3zih1NKWS9SW2c4CsxPoukD+m\nH00r0BNQ1B/V3tf32s4BCg5DKYBfkvg8ochARINvDcq30Wc7B8harO8C+WH28axqYjWqr6xX845m\n2zlAQeKQGICvjE+N6+Dlg7r0h5dUUVphOwfIam6XW4tmUcYY2ykAlmkhvaADlw+osrRSUX/Udg5Q\nsBhKAUiSJh9OKnQxpM49nareWm07B8h6juOoyCniXCmQo4wxaom3KG3S6gp1yXEc20lAwWJ9F4Bm\n5mYU6AmobWebarfX2s4BcoanyKMn6SfyFHlspwB4RdHrUY1NjSnZmOS/w4BlDKVAgZtfmNe+3n0K\nbgsqsitiOwfIKR4Xd+AFctG5T8+p+2a3UkdS8q7z2s4BCh5DKVDAFtOLOnzlsDZv2Kz23e22c4Cc\n43a5udkRkGOu3b6m40PHNdw4rDJvme0cAGIoBQqWMUaRgYjuf3lf/Q39cjkcMQdeFc8qBXLL6N1R\nNV1t0kd1H6l8U7ntHABPMZQCBepU6pSG7gxppGlExe5i2zlATuJZpUDumJiZULg3rP/w5n9Qla/K\ndg6Ar2EoBQpQ7FZMHaMdSh1NqWR9ie0cIGfxrFIgN0w/mlagJ6CoP6q9r++1nQPgGxhKgQIz+Nmg\nWvtblXg7Id9Gn+0cIKexvgtkv9nHs6qJ1ai+sl7NO5pt5wB4Bg6RAQVkfGpcdR/U6dL+S6oorbCd\nA+Q81neB7LaQXtCBywdUWVqpqD9qOwfAczCUAgVi8uGkQhdD6tzTKf9Wv+0cIC+wvgtkL2OMWuIt\nMsaoK9Qlx3FsJwF4DtZ3gQIwMzejQE9AbTvbVLu91nYOkDdY3wWyV/R6VGNTY0o2JuUp8tjOAfAC\nDKVAnptfmNe+3n0KbgsqsitiOwfIK6zvAtnp3Kfn1H2zW6kjKXnXeW3nAHgJhlIgjy2mF3X4ymFt\n3rBZ7bvbbecAeYf1XSD7xG/HdXzouIYbh1XmLbOdA2AJGEqBPGWMUdtAm+5/eV/9Df1yORwhB1Yb\n67tAdhm9O6qmq02K18VVvqncdg6AJWIoBfLU6Y9PK3EnoZGmERW7i23nAHmJ9V0ge0zMTCjcG9aF\n8AVV+aps5wB4BQylQB6K3YrpzI0zSh1NqWR9ie0cIG+xvgtkh+lH0wr0BPSu/12FXgvZzgHwihhK\ngTwz+NmgWvtblXg7Id9Gn+0cIK+xvgvYN/t4VjWxGtVX1uudHe/YzgGwDBwyA/LI+NS46j6oU9/+\nPlWUVtjOAfIe67uAXU8Wn6i2r1ZvlL6hqD9qOwfAMjGUAnli8uGkQhdD6tzTqeqt1bZzgILA+i5g\njzFGLfEWSdJ7offkOI7lIgDLxfoukAdm5mYU6AmobWebarfX2s4BCobb5WZ9F7Akej2q8XvjSjYm\n5Sny2M4BsAIMpUCOm1+YV7g3rOC2oCK7IrZzgILiKfKwvgtYcPaTs+q+2a3UkZS867y2cwCsEEMp\nkMMW04s69OEhbdmwRe27223nAAXH4+JGR8Bai9+O60TyhIYbh1XmLbOdA2AVMJQCOcoYo8hARPe/\nvK+BQwNyORwRB9aa2+XmTCmwhkbvjqrpapPidXGVbyq3nQNglTCUAjnqVOqUEp8n9KMjP1Kxu9h2\nDlCQPC7Wd4G1MjEzoXBvWOffPK8qX5XtHACriKEUyEGxWzF1jHbor4/8tUrWl9jOAQoWzykF1sb0\no2kFegKK+qPa+/pe2zkAVhlDKZBjBj8bVGt/qwbfGtQ//bV/ajsHKGis7wKZN/t4VqFYSPWV9Wre\n0Ww7B0AGMJQCOWR8alwHPziovv19qiyrtJ0DFDzWd4HMWkgv6MDlA9peul1Rf9R2DoAM4c4oQI74\n4mdfqCZWo85gp/xb/bZzAIj1XSCTjDFqibcobdL6i9BfyHEc20kAMoQrpUAOmJmbUfD9oI7tOqYD\nFQds5wB4yu1ya+7JnO0MIC9Fr0c1NjWmZGNSniKP7RwAGcRQCmS5+YV57evdp8C2gCK7IrZzAHwN\n67tAZpz79Jy6b3YrdSQl7zqv7RwAGcZQCmSxxfSiDl85rG9t+JZO7T5lOwfAN7C+C6y+a7ev6fjQ\ncQ03DqvMW2Y7B8AaYCgFspQxRm0DbfrJo59o4NCAXA5HwIFsw913gdU1endUjVcbFa+Lq3xTue0c\nAGuEoRTIUqc/Pq3Bzwf1oyM/UrG72HYOgGdgfRdYPRMzEwr3hnX+zfOq8lXZzgGwhhhKgSwUuxXT\nmRtnlDqaUsn6Ets5AJ6D9V1gdUw/mlagJ6CoP6q9r++1nQNgjTGUAlkm8XlCrf2tSrydkG+jz3YO\ngBdwu9xcKQVWaPbxrGpiNaqvrFfzjmbbOQAs4JAakEVu3rupg5cP6tL+S6oorbCdA+AlPC6ulAIr\nsZBe0IHLB1RZWqmoP2o7B4AlDKVAlph8OKmaWI06gh3yb/XbzgGwBNzoCFg+Y4xa4i1Km7S6Ql1y\nHMd2EgBLWN8FssBP536qQE9AbTvbdKDigO0cAEvkKeJGR8ByRa9HNTY1pmRjUp4ij+0cABYxlAKW\nzS/MK9wbVnBbUJFdEds5AF4B67vA8pz79Jy6b3YrdSQl7zqv7RwAljGUAhYtphd1+Mphbd6wWe27\n223nAHhFrO8Cry5+O67jQ8c13DisMm+Z7RwAWYChFLDEGKO2gTbd//K++hv65XI44g3kGtZ3gVcz\nendUTVebFK+Lq3xTue0cAFmCoRSw5PTHp5W4k9BI04iK3cW2cwAsA+u7wNJNzEwo3BvWhfAFVfmq\nbOcAyCIMpYAFsVsxnblxRqmjKZWsL7GdA2CZWN8Flmb60bQCPQFF/VGFXgvZzgGQZRhKgTWW+Dyh\nyEBEg28NyrfRZzsHwAqwvgu83OzjWdXEalRfWa/mHc22cwBkIYZSYA2NT43r4OWD6tvfp4rSCts5\nAFaI9V3gxZ4sPlFtX60qSysV9Udt5wDIUtxZBVgjkw8nFboYUueeTlVvrbadA2AVsL4LPJ8xRt++\n9m0ZGXWFuuQ4ju0kAFmKK6XAGpiZm1GgJ6Bju46pdnut7RwAq4T1XeD5otejGpsaU7IxKU+Rx3YO\ngCzGUApk2PzCvMK9YQW3BdW6s9V2DoBVxPou8GxnPzmr7pvdSh1JybvOazsHQJZjKAUyaDG9qEMf\nHtKWDVvUvrvddg6AVcb6LvCr4rfjOpE8oeHGYZV5y2znAMgBDKVAhhhjFBmI6MHcA/U39MvlcIQb\nyDeeIq6UAl83endUTVebFK+Lq3xTue0cADmCoRTIkFOpUxq6M6SRphEVu4tt5wDIALfLzZlS4KmJ\nmQmFe8O6EL6gKl+V7RwAOYShFMiA2K2YOkY7lDqaUsn6Ets5ADLE4/KwvgtImn40rUBPQFF/VKHX\nQrZzAOQYhlJglQ1+NqjW/lYl3k7It9FnOwdABrG+C0izj2dVE6tRQ2WDmnc0284BkIM45AasovGp\ncdV9UKe+/X2qKK2wnQMgw1jfRaFbSC/owOUDeqP0DZ30n7SdAyBHMZQCq+SLn32hmliNOvd0qnpr\nte0cAGvgF4+EMcbYTgHWnDFGLfEWGWP0Xug9OY5jOwlAjmJ9F1gFM3MzCr4f1LFdx1S7vdZ2DoA1\n4jiOipwiLZpFuR3+SkVhiV6PamxqTMnGpDxFHts5AHIYf4MCKzS/MK9wb1iBbQFFdkVs5wBYY794\nVqnbxV+pKBxnPzmr7pvdSh1JybvOazsHQI5jfRdYgcX0og59eEhbNmzRqd2nbOcAsMBT5OFcKQpK\n/HZcJ5In1N/QrzJvme0cAHmAf9YFlskYo8hARA/mHqi/oV8uh3/jAQrRL86VAoVg9O6omq42KV4X\nV/mmcts5APIEQymwTKdSpzR0Z0gjTSMqdhfbzgFgyS/Wd4F8NzEzoXBvWBfCF1Tlq7KdAyCPMJQC\nyxC7FVPHaIdSR1MqWV9iOweARazvohDcm72nQE9AUX9UoddCtnMA5BmGUuAVDX42qNb+ViXeTsi3\n0Wc7B4BlrO8i380+nlXoYkj1lfVq3tFsOwdAHnrpITjHcXyO4yQcx/l/Hce55TjO//r0+7/uOM4P\nHMf5e8dxBhzH+bXM5wJ2jU+Nq+6DOvXt71NFaYXtHABZgPVd5LMni09U21erytJKRf1R2zkA8tRS\n7syyIKnNGLNd0i5J/4vjOP+9pD+V9ENjzOuSEpL+LHOZgH1f/OwL1cRq1LmnU9Vbq23nAMgSrO8i\nXxlj1BJvkZFRV6hLjuPYTgKQp146lBpjpowxY0+/npX0d5J8ksKSvvP0Zd+RtC9TkYBtM3MzCr4f\n1LFdx1S7vdZ2DoAswvou8tXJ5EmN3xtX3/4+eYo8tnMA5LFXOlPqOM5WSb8l6T9JKjPG3JN+Prg6\njlO66nVAFphfmNe+3n0KbgsqsitiOwdAlmF9F/no7Cdn1XOrR6kjKXnXeW3nAMhzSx5KHcfxSros\n6Y+NMbOO45hvvOSbv/7KyZMnv/ra7/fL7/e/WiVgyWJ6UYc+PKRvbfiW2ne3284BkIU8RVwpRX6J\n347r+NBxDTcNq8xbZjsHQBZKJpNKJpOr9n6OMc+dJf/xRY7jlhSX9H1jzP/19Ht/J8lvjLnnOM5v\nSBoyxvzmM37WLOUzgGxjjNEf9/+xbk3fUn9DP88iBfBMv3f+9/Tnf/Dn+v1/9vu2U4AVu/EPNxS6\nGNJHdR9pp2+n7RwAOcJxHBljln3wfCk3OpKk85L+8y8G0qf+SlLj06/flnR1uRFANjqVOqWhO0O6\ncuAKAymA5/K4PKzvIi/8+MGPte+7+3T+zfMMpADW1EvXdx3H+T1JDZJuOY7zt/r5mu6/kfTnki45\njnNE0heSuPsL8kbsVkwdox1KHU2pZH2J7RwAWYz1XeSD6UfTCr4fVNQf1d7X99rOAVBgXjqUGmP+\nWlLRc377D1Y3B7Bv8LNBtfa3KvF2Qr6NPts5ALKc2+XmkTDIabOPZ1UTq1F9Zb2adzTbzgFQgJa6\nvgsUhPGpcdV9UKdL+y+porTCdg6AHMD6LnLZQnpBBy4fUGVppaL+qO0cAAWKoRR4avLhpGpiNeoI\ndsi/1W87B0COYH0XucoYo5Z4i9Imra5Qlxxn2fcoAYAVeaXnlAL5amZuRoGegI7tOqYDFQds5wDI\nIazvIldFr0c1NjWmZGNSniKP7RwABYyhFAVvfmFe4d6wAtsCiuyK2M4BkGNY30UuOvfpOXXf7Fbq\nSEredV7bOQAKHEMpCtpielGHPjykzRs26/9n79zjoyqP///ZXAhogGgwoRCVVsBaEttKW8DaklZL\nExMNtpKYBJRopfTb1iaxF7XFura1VaC/ClilUFCDISVAQHJFEkKQKFGQgPWCkUs0EkIIt9xIsjm/\nP8ZTwrKXs2fPOc85m3m/Xr6U7O7JODw7z8w8M/MsmrFItDgMw1gQLt9lrEbJwRIs2L4ANXNrEB0e\nLVochmEYDkqZwYskScipyEFrZysqZlcgyMYt1gzD+E6Ijct3GetQ11SHrM1Z2JK+BRMiJ4gWh2EY\nBgAHpcwgZlHtImw/sh07s3YiLCRMtDgMw1iU0GAu32WsQUNbA1IKUrAqZRWmxEwRLQ7DMMz/4KCU\nGZTkH8jH0rqlqH2gFhFDI0SLwzCMhQkN4vJdxvy0dLQgYU0C7PF2JE9MFi0OwzDMRXBQygw6Kg9V\nIrs8G1X3VSFmRIxocRiGsTg8fZcxO+097UjKT0JGXAbmTZ4nWhyGYZhL4CY6ZlBR31yP9A3pWDdr\nHWKjYkWLwzBMAMCDjhgz09ffh7T1aYiLioM93i5aHIZhGJdwUMoMGhrPNCJ5bTKW3b4M8ePiRYvD\nMEyAEBIUwj2ljCmRJAnzi+dDkiQsT14Om80mWiSGYRiXcPkuMyho62pDwpoE5E7NReqkVNHiMAwT\nQIQGhXL5LmNK7Dvs2Ne8D9VzqxEaHCpaHIZhGLdwUMoEPN193ZhZMBOJ4xORMy1HtDgMwwQYocGh\nON9zXrQYDHMRK/euRN7+PNTeX4vwIeGixWEYhvEIB6VMQOPod2BO0RyMGT4GC2csFC0OwzABCJfv\nMmaj+GAxFmxfgJq5NYgOjxYtDsMwjFc4KGUCFkmSkFuRi9bOVpRnliPIxi3UDMNoD5fvMmairqkO\nWZuzUJxejAmRE0SLwzAMowgOSpmAZfEbi1F1pAo7s3YiLCRMtDgMwwQoPH2XMQsNbQ1IKUjB6pTV\nmBIzRbQ4DMMwiuGglAlI8g/kY8nuJah9oBYRQyNEi8MwTADD5buMGWjpaEHCmgQ8Gf8kkicmixaH\nYRjGJzgoZQKOykOVyC7PRtV9VYgZESNaHIZhAhwu32VE097TjqT8JGTGZeLByQ+KFodhGMZnuMmO\nCSjqm+uRviEdhbMKERsVK1ochmEGAVy+y4ikr78PaevTcGPUjXgi/gnR4jAMw6iCg1ImYGg804jk\ntclYdvsyTB83XbQ4DMMMEkKCQviklBGCJEmYXzwfkiThheQXYLPZRIvEMAyjCi7fZQKCtq42JKxJ\nQO7UXKROShUtDsMwg4jQoFDuKWWEYN9hx77mfaieW43Q4FDR4jAMw6iGg1LG8nT3dSOlIAWJ4xOR\nM8gl2TsAACAASURBVC1HtDgMwwwyuHyXEcHKvSuRtz8PtffXInxIuGhxGIZh/IKDUsbSOPodmL1x\nNsYOH4uFMxaKFodhmEEIl+8yRlNysAQLti9AzdwaRIdHixaHYRjGbzgoZSyLJEnIqcjBya6TKM8s\nR5CNW6QZhjEeLt9ljKSuqQ5Zm7OwJX0LJkROEC0OwzCMJnBQyliWRbWLsP3IduzM2omwkDDR4jAM\nM0gJCQrh8l3GEBraGpBSkIJVKaswJWaKaHEYhmE0g4NSxpLkH8jH0rql2HX/LkQMjRAtDsMwg5jQ\nYL6nlNGflo4WJKxJgD3ejuSJyaLFYRiG0RQOShnLUXmoEtnl2ai6rwpXj7xatDgMwwxyQoN40BGj\nL+097UjKT0JGXAbmTZ4nWhyGYRjN4SY8xlLUN9cjfUM61s1ah9ioWNHiMAzD0KAj7illdKKvvw9p\n69MQFxUHe7xdtDgMwzC6wEEpYxkazzQieW0ylt2+DPHj4kWLwzAMA4DLdxn9kCQJ84vnQ5IkLE9e\nDpvNJlokhmEYXeDyXcYStHW1IWFNAnKn5iJ1UqpocRiGYf4Hl+8yemHfYce+5n2onluN0OBQ0eIw\nDMPoBgeljOnp7uvGzIKZSByfiJxpOaLFYRiGuQgu32X0YOXelcjbn4fa+2sRPiRctDgMwzC6wkEp\nY2oc/Q7MKZqDMcPHYOGMhaLFYRiGuQQu32W0puRgCRZsX4CauTWIDo8WLQ7DMIzucFDKmBZJkpBb\nkYvWzlaUZ5YjyMYt0AzDmA8u32W0pK6pDlmbs7AlfQsmRE4QLQ7DMIwhcFDKmJbFbyxG1ZEq7Mza\nibCQMNHiMAzDuITLdxmtaGhrQEpBClalrMKUmCmixWEYhjEMDkoZU7L2wFos2b0EtQ/UImJohGhx\nGIZh3MLlu4wWtHS0IGFNAuzxdiRPTBYtDsMwjKFwUMqYjqrDVfhV+a9QdV8VYkbEiBaHYRjGI1y+\ny/hLR08HkvOTkRGXgXmT54kWh2EYxnC4SY8xFfuP78c96+/BulnrEBsVK1ochmEYr3D5LuMPff19\nSF2fitioWNjj7aLFYRiGEQIHpYxpaDzTiKT8JCy7fRnix8WLFodhGEYRXL7LqEWSJMwvno9+qR/L\nk5fDZrOJFolhGEYIXL7LmIJTXaeQsCYBuVNzkTopVbQ4DMMwigkJCkFffx8kSeKggvEJ+w479jXv\nQ/XcaoQGh4oWh2EYRhgclDLC6e7rRkpBChLHJyJnWo5ocRiGYXwiyBaEIFsQHJIDITbeVhllrNy7\nEnn781B7fy3Ch4SLFodhGEYovHsyQnH0OzCnaA7GDB+DhTMWihaHYRhGFfKwo5Ag3lYZ7xQfLMaC\n7QtQM7cG0eHRosVhGIYRDu+ejDAkSUJuRS5aO1tRnlmOIBu3ODMMY03kYUdDQ4aKFoUxOXVNdcja\nnIXi9GJMiJwgWhyGYRhTwEEpI4zFbyxG1ZEq7MzaibCQMNHiMAzDqIaHHTFKaGhrQEpBClbduQpT\nYqaIFodhGMY0cFDKCCH/QD6W7F6C2gdqETE0QrQ4DMMwfsF3lTLeaOloQcKaBNjj7bjj+jtEi8Mw\nDGMqOChlDKfqcBVyKnJQeW8lYkbEiBaHYRjGb/iuUsYT7T3tSMpPQkZcBuZNnidaHIZhGNPBQSlj\nKPXN9bhn/T0onFWI2KhY0eIwDMNoApfvMu7odfQitTAVcVFxsMfbRYvDMAxjSniyDGMYjWcakbw2\nGctuX4bp46aLFodhGEYzuHyXcYUkSZhfPB8SJCxPXs732DIMw7iBT0oZQ2jrakPCmgQ8PO1hpE5K\nFS0OwzCMpnD5LuMK+w476o/Xo3puNUKDQ0WLwzAMY1o4KGV0p7uvGykFKUgcn4jsqdmixWEYhtEc\nLt9lnFmxZwXy9ueh9v5ahA8JFy0OwzCMqeGglNEVR78DszfOxtjhY7FwxkLR4jAMw+gCl+8yAyk+\nWIzHqx9HzdwaRIdHixaHYRjG9HBQyuiGJEnIqcjBya6TKM8sR5CNW5gZhglMuHyXkalrqkPW5iwU\npxdjQuQE0eIwDMNYAg5KGd1YVLsI249sx86snQgLCRMtDsMwjG5w+S4DAA1tDUgpSMHqlNWYEjNF\ntDgMwzCWgYNSRhfyD+Rjad1S1D5Qi4ihEaLFYRiG0RUu32VaOlqQsCYB9ng7kicmixaHYRjGUnBQ\nymhO5aFKZJdno+q+KsSMiBEtDsMwjO5w+e7gpr2nHUn5SciMy8S8yfNEi8MwDGM5uMmP0ZT65nqk\nb0hH4axCxEbFihaHYRjGELh8d/DS19+HtPVpuDHqRjwR/4RocRiGYSwJB6WMZhw9fRRJ+UlYmrgU\n08dNFy0OwzCMYYQEhXD57iBEkiTML54PSZLwQvILsNlsokViGIaxJFy+y2hCW1cbEl9JxMPTHkZa\nbJpocRiGYQwlNCiUy3cHIfYdduxr3ofqudUIDQ4VLQ7DMIxl4aCU8Zvuvm6kFKQgcXwicqbliBaH\nYRjGcEKDedDRYGPFnhXI25+H2vtrET4kXLQ4DMMwloaDUsYvHP0OzN44G2OHj8XCGQtFi8MwDCOE\nkKAQ7ikdRBQfLMbj1Y+jZm4NosOjRYvDMAxjeTgoZVQjSRJyKnJwsuskyjPLEWTjFmWGYQYnXL47\neKhrqkPW5iwUpxdjQuQE0eIwDMMEBByUMqpZVLsI249sx86snQgLCRMtDsMwjDD4ntLBQUNbA1IK\nUrA6ZTWmxEwRLQ7DMEzAwEEpo4r8A/lYWrcUtQ/UImJohGhxGIZhhMLlu4HP8fbjSFiTAHu8HckT\nk0WLwzAME1BwUMr4TOWhSmSXZ6PqvirEjIgRLQ7DMIxwQoO5fDeQae9pR/LaZGTEZWDe5HmixWEY\nhgk4uAmQ8Yn65nqkb0hH4axCxEbFihaHYRjGFHD5buDS6+hFamEq4qLiYI+3ixaHYRgmIOGglFFM\n45lGJK9NxrLbl2H6uOmixWEYhjENXL4bmEiShPnF8yFBwvLk5bDZbKJFYhiGCUi4fJdRRFtXGxLW\nJCB3ai5SJ6WKFodhGMZUcPluYGLfYUf98XpUz61GaHCoaHEYhmECFg5KGa9093UjpSAFieMTkTMt\nR7Q4DMMwpoPLdwOPFXtWIG9/Hmrvr0X4kHDR4jAMwwQ0XL7LeMTR78DsjbMxdvhYLJyxULQ4DMMw\npoTLdwOL4oPFeLz6cZRnliM6PFq0OAzDMAEPn5QybpEkCTkVOTjZdRLlmeUIsnEOg2EYxhWhwaHo\n7eagNBCoa6pD1uYsFKcXY0LkBNHiMAzDDAo4KGXcsqh2EbYf2Y6dWTsRFhImWhyGYRjTwuW7gUFD\nWwNSClKwOmU1psRMES0OwzDMoIGDUsYl+QfysbRuKWofqEXE0AjR4jAMw5gaLt+1Pi0dLUhYkwB7\nvB3JE5NFi8MwDDOo4KCUuYTKQ5XILs9G1X1ViBkRI1ochmEY0xMazCelVqa9px1J+UnIiMvAvMnz\nRIvDMAwz6OAmQeYi6pvrkb4hHetmrUNsVKxocRiGYSxBSFAIXwljUfr6+5C2Pg1xUXGwx9tFi8Mw\nDDMo4aCU+R+NZxqRlJ+EpYlLET8uXrQ4DMMwliE0KJTLdy2IJEmYXzwf/VI/licvh81mEy0SwzDM\noITLdxkAwKmuU0hYk4CHpz2MtNg00eIwDMNYCi7ftSZP7ngS+5r3oXpuNUKDQ0WLwzAMM2jhoJRB\nd183UgpSkDA+ATnTckSLwzAMYzl40JH1WLl3JV7e/zJq769F+JBw0eIwDMMMajgoHeQ4+h2YUzQH\nXxj+BSyasUi0OAzDMJYkNCiUe0otRMnBEizYvgA1c2sQHR4tWhyGYZhBDwelgxhJkpBbkYvWzlaU\nZ5YjyMYtxgzDMGrg8l3rUNdUh7mb56I4vRgTIieIFodhGIYBB6WDmsVvLEbVkSrszNqJsJAw0eIw\nDMNYFi7ftQYNbQ1IKUjBqjtXYUrMFNHiMAzDMJ/DQekgJf9APpbsXoLaB2oRMTRCtDgMwzCWhst3\nzU9LRwsS1iTAHm/HHdffIVochmEYZgAclA5Cqg5XIbs8G1X3VSFmRIxocRiGYSwPl++am/aediTl\nJyEjLgPzJs8TLQ7DMAzjBDcRDjL2H9+Pe9bfg3Wz1iE2Kla0OAzDMAEBl++al77+PqStT0NcVBzs\n8XbR4jAMwzAu4KB0ENF4phFJ+UlYdvsyxI+LFy0OwzBMwMDlu+ZEkiTML56Pfqkfy5OXw2aziRaJ\nYRiGcQGX7w4S2rrakLAmAblTc5E6KVW0OAzDMAEFl++aE/sOO/Y170P13GqEBoeKFodhGIZxAwel\ng4Duvm7MLJiJxPGJyJmWI1ochmGYgIPLd83Hyr0rkbc/D7X31yJ8SLhocRiGYRgPcFAa4Dj6HZhT\nNAdjho/BwhkLRYvDMAwTkIQG8UmpmSg+WIw/VP0BNVk1iA6PFi0OwzAM4wUOSgMYSZKQW5GL1s5W\nlGeWI8jGLcQMwzB6EBIUwj2lJqGuqQ5Zm7NQnF6MiZETRYvDMAzDKICD0gBm8RuLUXWkCjuzdiIs\nJEy0OAzDMAFLaHAol++agIa2BqQUpGDVnaswJWaKaHEYhmEYhXBQGqDkH8jHkt1LUPtALSKGRogW\nh2EYJqDh8l3xtHS0IGFNAuzxdtxx/R2ixWEYhmF8gIPSAKTyUCWyy7NRdV8VYkbEiBaHYRgm4OHy\nXbG097QjKT8JGXEZmDd5nmhxGIZhGB/hJsMAo765Hukb0lE4qxCxUbGixWEYhhkUcPmuOPr6+5C2\nPg1xUXGwx9tFi8MwDMOowGtQarPZ/m2z2Y7bbLb9A352hc1m22qz2T602WwVNpttpL5iMkpoPNOI\n5LXJWHb7MkwfN120OAzDMIMGLt8VgyRJmF88H/1SP5YnL4fNZhMtEsMwDKMCJSelqwH80OlnjwDY\nJknS9QCqADyqtWCMb7R1tSFhTQJyp+YidVKqaHEYhmEGFVy+Kwb7Djv2Ne9D4axChAaHihaHYRiG\nUYnXoFSSpNcBnHL6cQqAlz7/75cAzNRYLsYHuvu6kVKQgsTxiciZliNaHIZhmEGHXL4rSZJoUQYN\nK/euRN7+PJRklCB8SLhocRiGYRg/UDvoKEqSpOMAIElSs81mi9JQJsYHHP0OzN44G2OHj8XCGQtF\ni8MwDDMoCbIFIcgWhH6pH8G2YNHiBDwlB0uwYPsC1MytQXR4tGhxGIZhGD/Ravqux9TwE0888b//\njo+PR3x8vEa/dnAjSRJyKnLQ2tmKitkVCLLx3CqGYRhRhASFoLe/F8FBHJTqSV1THbI2Z2FL+hZM\niJwgWhyGYZhBSXV1NaqrqzV7nk1JqZHNZrsWwBZJkm78/M/vA4iXJOm4zWYbDWC7JEk3uPmsxOVM\n+rBw10K8vP9l7MzayXeRMgzDCCb8qXAce/gYhocNFy1KwNLQ1oDvrP4OVtyxAskTk0WLwzAMw3yO\nzWaDJEmqp80pPVqzff6PzKsA5n7+3/cB2KxWAEYd+QfysbRuKcoyyzggZRiGMQGhwTyBV09aOlqQ\nsCYB9ng7B6QMwzABhpIrYfIB1AKYaLPZGm02WxaAvwH4gc1m+xDArZ//mTGIykOVyC7PRmlmKWJG\nxIgWh2EYhsGF8l1Ge9p72pGUn4TMuEzMmzxPtDgMwzCMxnjtKZUkKcPNS7dpLAujgPrmeqRvSEfh\nrELERsWKFodhGIb5nNCgUL4WRgf6+vuQtj4NN0bdiCfinxAtDsMwDKMDPBnHQjSeaUTy2mQsu30Z\npo+bLlochmEYZgAhQSFcvqsxkiRhfvF8SJKEF5JfgM2mul2JYRiGMTFaTd9ldKatqw0JaxKQOzUX\nqZNSRYvDMAzDOCHfVcpoh32HHfua96F6bjVCg0NFi8MwDMPoBAelFqC7rxszC2YicXwicqbliBaH\nYRiGcUFoEA860pIVe1Ygb38eau+vRfiQcNHiMAzDMDrCQanJcfQ7MKdoDsYMH4OFMxaKFodhGIZx\nQ0hQCPeUakTxwWI8Xv04aubWIDo8WrQ4DMMwjM5wT6mJkSQJD5XmoLWzFS/NfAlBNv7r0oOeHtES\nBD69vQBfV6wv/f2kZ0ZfPNkLLt/Vhl1H6pC1OQub0jZhQuQE0eIEJH19gMMhWorAh/0L/WEd68+J\nE+Rj6A1HOSbmF/mLsLp6O4rSihAWEiZanICkpwe4+mqgtVW0JIFNRgbwn/+IliKwWb0aePBB0VIE\nNocPA+PHu3+dy3f9p6GtAfEvpGBB3CpMiZkiWpyA5ZFHgEWLREsR2Lz2GpCYKFqKwKajAxgzBmhv\nFy1JYJORAWzZov/v4aDUpOQfyEfewaUYtqEMEUMjRIsTsNTUAC0twCefiJYkcOnuBkpLyaFn9GPj\nRtax3hQXk63o6nL9Opfv+sfx9uO4dXUC+l57Etd03yFanIBFktheGEFREXDokGgpApvKSuDkSaCp\nSbQkgcvZs8CbbwLf/77+v4uDUhNSeagS2eXZGFVRirYjMVySpyPFxfTvY8fEyhHIVFcDnZ2sYz3p\n7ASqqljHeiPbi+Zm169z+a562nvakbw2GV/uyQT2PshrWUc++IACUtaxfkgS2Ytjx7h1RU/Yh9Of\n114Dbr4ZGD5c/9/FQanJqG+uR/qGdPy/mwvR3RiL0aOB48dFSxWYSBKVI9x0Exs0PSkuZh3rTVUV\n8JWvsI715Nw5oLYWmDTJvZ65fFcdvY5epBam4saoG9G77Qm2FzrDNll/DhwAQkOBoUOB06dFSxOY\nyIE/r2V9KS4GkpON+V0clJqIxjONSF6bjGW3L0Pr29ORlES18p99JlqywOTDD6mn9Ic/ZB3rhbxp\nPPgg61hPioup58PhoOCJ0Z5t24Bp04CJE92vZS7f9R1JkjC/eD4A4OnvvIC337Jhzhy2F3rCNll/\nZEf+C19gPevFO+/Q6d13v8s61ov+fmq/Skoy5vdxUGoS2rrakLAmAQ9Pexipk1JRXEyL4Atf4AyQ\nXsg6HjOGdawX//0v/fu221jHeiEH/rIDxHrWByU2mct3fce+w4764/VYN2sdtleG4tvfBq67jtex\nXrS1kTOfnk7zFIyYqDkYYR9Of1jH+vP228CoUcCXvmTM7+Og1AR093VjZsFMJI5PRPbU7P81Fd92\nGwdMeiI78qxj/XAOlri3Rnvq64Fhw+gEj9eyPvT3AyUl3u0Fl+/6xoo9K5C3Pw8lGSUIHxLONtkA\nKiqA+Hhg5EhgxAiePK8HJ05QQnb6dF7LesL2Qn/kwN8oOCgVjKPfgTlFczBm+BgsnLEQADUVf/vb\nQHg4Z4D04tQpYM8emibG5TX6IW8al18ODBkCnDkjWqLAQ9axzcb2Qi/27AGuuIJO8DzZCy7fVU7x\nwWI8Xv04yjPLER0eDYfjQpkYr2P9GNgfxnrWh7Iy4NZbgbAw9i/0orkZOHgQuOUWXsd6YmQ/KcBB\nqVAkSUJuRS5aO1vx0syXEGSjvw7nTYMNmvZs3UpZzMsuY4OmF62twP79lJUHeC3rBdsL/ZFPSQEu\n39WCuqY6ZG3Owqa0TZgQOQEA8NZbwOjRwLhxQFQU2Y8+PnTWlL4+oLz8wskH2wt9UGovGPWUlQEz\nZlCym9exPjQ1AUeO0ORdoxhUQanZSgcXv7EYVUeqUJRWhLCQMACXNhVbrSxBksynZ1c4O/LHj1tD\nbhkryFpeTifRQ4fSn624ls1OSwtd7/Cd79CfWcf6MNBeWLF810x6bmhrQEpBClbduQpTYqb87+cD\ndRwSQn1MLS2ChFSBmXTsjjfeAK69Fhg7lv7M9kJ7ensp6X377fRnK+rYCnpWapPNihV0XFICJCSQ\nPTaKQROUNjRQBvbjj0VLQqw9sBZLdi9BWWYZIoZG/O/nb78NXHUV8MUv0p+tlGU7f54yVytWiJbE\nMw4HZdnkwD8sjEqlT54UK5dS/vQnYNYs0VJ4Z2C2GLDWWt6xA7j6aprObGbKyqj3fMgQ+rOVdHzi\nBF2vUlMjWhLPfPYZcOjQhWyxJx2brXy3vx+4917gD38QLQnR0tGChDUJsMfbccf1d1z0mnOZmJXW\n8osv0mRms1NScnF/mJV0/N57wDXX0OmNmXn9dWDCBDr1B6yl485OmmT7yiuiJfHM+fM0DT0xkf48\nciTt1R0dYuVSymOPAffdJ1oK7xhdugsMkqC0pYWi/Y4O4P33RUsDVB2uQnZFNkozSxEzIuai11xt\nzFYoS5Cdn3feoZJNM/Pmm0BMDAUdMlbR87//DSxZAuzbJ1oSz/T20kANOVsMWEfH774LpKYCZ88C\nn3wiWhrPWNVedHSQ3C0tdJ+fmSktpWujQkPpz6NGUW+0q4SF2U5Kf/c7kt8MNrm9px1J+UnIiMvA\nvMnzLnrtk0+ATz8Fpk698DOrrOWyMuCRR8gmm32SrVXtRVMT7SWdnXSVm5mxqo77+mgi8/vvm8Ne\neKKmhhKaV11Ff7bSPIWlS4F//cv8PlxXF1BdTbGTkQR8UNreTpnBzExyNI8cESvP/uP7cc/6e7Du\n7nWIjYq95HXnSVfR0dRb43AYKKQKfv1rMgj//Kd4HXvD1TQxKxi00lI68aiqIifOzGuitpZO+8eM\nufAzK+j400/J+fl//w+YPNnca7mnh4aiydliwBplTH19wD33ADfcQHbDzDoGLrUXQUHU89jcfOl7\nQ4JCTNNT+uyzdDJWWChex339fUhbn4a4qDjY4+2XvC6XiQUHX/iZFezF22/TiUdRERARYW55Dx+m\n6oRvfvPCz6xgL86cIZv8s58Bd9whfi17w9leWGHyvCQBv/gF0N0N/P3v1tMxYA17sWED8PTTdMp7\n5Ii510R1NfC1rwFXXmns7w3ooLSvD0hLA268EXjiCXKSDx8WJ0/jmUYk5Sdh2e3LMH3c9Eteb2oC\njh69uAwoNJQWhZl7a/7+dzoV27yZHE2ROlaCq5IEs2/Ob70FzJ0LbNoExMUBkZHmzr5aUcenT1OA\n98tfAhkZ4u2FN3buBL78ZUpcyZh9Y5Yk4P/+j07SV6ygu8/MrOPubkoCOWeL3a3l0OBQU5TvFhYC\nixZRX/fXv046FuUASZKE+cXz0S/1Y3nycthstkveY0V7cegQcOedtI6nTTO/vSgpoeAuaIDXZ3Z7\n0dMD/OhH1DP/29+aX8cffQScO0ffOZnhw0nn586Jk8sbTz0F1NUB69fT1WJm1vHAe7kHYnZ7sXMn\nJVaKiynYCwqiO4PNitFXwcgEbFAqScD8+VRO88ILdLw/bpy4L9uprlNIWJOA3Km5SJ2U6vI97pqK\nzbxx/Oc/dKpUVkZXJowbZ+4M0NGjdMLxrW9d/HMzl9g0NJDz8+9/A1M+nwsi69msuNo0zLyOz58H\n7roL+N736PQOEGsvlOBKx1dcQYFUZ6cYmbzx5z/T9SqFhZRwM/s63rGDkpqjRl38c3f2wgzluzU1\nwM9/TuvjmmvoBC80VFzPvH2HHfua96FwViFCg0Mveb2zk2T+4Q8v/rmZ7cWJE7RXL1gApKTQz8y+\nlq1mk/v7gaws6hd89tkLPpyZdSz37AY5edZm9i9efBFYuZJkHz7c/Dr+8ENKVtx448U/N/Nafu89\n4O67qVf3a1+jn5lZz+4CfyMI2KDUbqeabdn5ASjLJmIRdPd1I6UgBYnjE5EzLcft+9wtArMatOpq\nOlUqKSHnByCjNmwYbdpmRM4WDywTA8xr0Fpa6PTuiSeodEnGzBnjhga6B3by5It/btZ13N9PJXiR\nkZRgkQ9yRNkLJUgSsGXLpZlMm40GbJhxLa9aBaxefcH5Acy9jgHPNtmVjkWX7/73vzQEbe1a4Ktf\nvfBzUXpeuXcl8vbnoSSjBOFDwl2+Z/t24KabKKEyELPaC7kfetYsOvmQMfNabm8Hdu0CfvCDi39u\n5tLSRx6hJPIrr1zYr82sY8B3eyGa8nLSc1kZyQhQ5U1HB60ZMzLwXu6BmNVeNDWRD7do0cXfPzOv\n5XffpcTKV75i/O8OyKB0xQogL4+cn/AB+6CIk49+qR9ziuZgzPAxWDhjodv3yU3FztliwJxlCQcO\nUI9uQcGlGSszZ4DcbRpm1LHs/NxzD/DTn178mpl17C5bbEYdA8BvfkMbx5o1FycrzHxSevAg2Qw5\n6zoQM+q5tJQmDpaVXZhKCdAJ5PnzNFTKbHjKFpuxfFceBvP3vwO33nrxayLsRcnBEizYvgDlmeWI\nDo92+z4r2WS5H/rLX6ZT/4GY2SZv20ZVNiNGXPzzYcPorm6zlREuWUJJt82bSUYZM+v47Flg9+5L\nv3uAOdfynj00nHLjRlrPMjYbXRtkVj1byV7I/dDz5wNz5lz8mpnXsrvA3wgCLigtLgYef5wyQNFO\n+2BkJG0qp08bI4skScgpz0FrZytemvkSgmzu1b19O/UhuGoqNluW7ZNPKOh49lm6h9IZs2aAOjpo\nXPuMGZe+ZjYdy/3QkyYBTz556etm1THgftOQT8fM1Fsjl55v3nzhPlUZM5+Ueto0zLaW33rrwjCY\n66+/+DUzl+S99x4FppMmXfqaOx2LKt89c4ay8T//OQ31c8Zoe1HXVIeszVnYlLYJEyInuH2fp8Df\nbOtY7ofu6aFyR+fvnhVtMmA+Pa9fDzzzDNnlyMiLXxs7lqqwzp8XI5sntm4Fbrnl4oMQGbPpWO6H\n/te/Llx1NRCzruVTp4C9e137nWbTsdwPfcstdBrtjFl1DIgr3QUCLCitq6MehE2b6J4oZ4x2gBa/\nsRhVR6pQlFaEsJAwj+91vtNxIGYqS5CHwTz0EI0Pd4VZnczKSpo8OHLkpa+ZSceSRGVhDgdtGq4C\nD7Pq+Nw5unLntttcv24mPa9bByxeTAksd8mgtjY6kTQbVrEXH39MPXcrV7q/x9Gsa9lb4O9KxyLK\nd+V+6OnT6dTfFUbquKGtASkFKViVsgpTYqZ4fO/+/XRPtHOyAqCkckuLeaaM//nPNG13/foLmZ3X\nRAAAIABJREFULUEDMes67u+nSgUr2IudOynwLy4mfToTHEzXuTU2Gi6aV7wF/mbRcWsr9UP//vfA\nzJmu32PWtVxRQXZu4Om5jJl0LPdDjxhBp/5W8uFaW6l8d/qls1gNIWCC0oYGcn5WrbowDMYVRp1+\n5B/Ix5LdS1CWWYaIoREe3ytni91NujJLBuj8eTJit90GPPyw+/eZNQPkTcfNzeborXnySbrvdWA/\ntDNm1fFrr1HwIZ+KOmOWtbxjB43AH9gP7UxwMN1lazYH6PRpco5dlYkB5iljkofB/PGPF4bBuMKs\na1mNTTa6fLe/n6ZyX3EF8I9/uC+3MkrHLR0tSFiTAHu8HckTvafaZR27knvIEEogtrbqIKiPrF5N\n/5SWurdt11xDJdR95rmmFgDtJSNGAOPHu37dLPZCHgaTn++6LUHGjPZCDvzN7sN1dlLgfPfdFPy7\nw4w6BqzhJwPAo49SnJGff+n8Ehmz6ri8nAY+OleOGUXABKX33kt3OA4cBuMKI/rEqg5XIaciB6WZ\npYgZEeP1/e++Swv3hhtcv26WTePpp2mS49//7rnW3Iy9eJLk+XTpsssoY29Uabc76uouTMJzVQYk\nc/XVlBXsFX/7xEV4K/sww1ru7aV+6Pz8i4fBuMKMa3nrVroi4bLLXL9uls35oYeofMm5H9oZM+q4\nrQ2or6fN2RVue0oNLt/Ny6NSPOd+aGeM0HF7TzuS85OREZeBeZPnKfqMJ5sMmMNefPIJTeR27od2\nJiwMuOoquuvYTHizyWaxFxkZ5GO4q7KRMaO9eOsturvY1ekuYI51DFDC+4tfBP7yF8/vM6OOHQ4K\nmNwFpZGR1KLV3W2sXM5s304HCq++6vpEV8asN1WILN0FAiQoPXYMeP99YJ6CfVDvk9L9x/fjnvX3\nYN3d6xAbFavoM96ais2yaRQV0ebsPMDGGTP24u3bB1x+Od3B5Q4zlH8UFVH/nXM/tDNDhpCDZCYH\nqL//wpAjd5hhLe/aRUG9N+cHMOda9nZ/mBl03NNDTrynigoZM+rYW7Y4KoquWHE+FTO6fLeoiIJ/\nT84PQA7Q0aP6OUB9/X1IW5+G2KhY2OPtij5z4gRNC/7ud92/xwxrubiYhpW4KjF2xoxr2Qr24tAh\nkuHee72/16w69hb4i/YtALIXv/mN9wE2ZtTxm29S6fbVV7t+XZ4839xsrFzOFBUBP/nJpf3Qzgwf\nTonllhZj5FJCby+VSN9+uzgZAiIoLS2l4TXuSh0HoueReeOZRiTlJ2HZ7cswfZzygmxvBm30aOD4\ncXL6RfHpp1TGOHWq9/fKDpBIeZ1Rkv0xw+bsS5bKbOUfb79Nhvi669y/xwybs5V17HB4LhMDzKHj\nmhqq/IiK8v5es+kY8L5GgoNpcvDx4xf/3Mjy3e5uysonJHh/b3g4OUF6OGySJGF+8XxIkoTlycth\nUziysayMEkNhHsYtmGEtW9leHDtGrU233OL+PWbQsbuJ7a4wm44Ba5xGf/QRXfPy9a97f68VdQyI\nX8u+3u9pNj3v2kX+25gx4mQIiKDUWwnQQPRqLm7rakPCmgTkTs1F6qRUxZ9T0lQcFkY9ISJ7a0pL\nacBRSIj39w4bRmW+ojNWA1FiKESX2Bw9Sk7uN7+p7P1ma5S3go4Bc9gLtezeTTq89lr377Gqjs1S\nxtTXRyel3rLFrvQcGhSKPsmY8t0dO+g6Lm8ZeRm91rJ9hx37mvdh3ax1CA1WkBn+HCvYi85OGr7j\n6qo2V5jNXihJ2IvWMWBtm6wkYT9yJNkVkXd/yoG/kpzRlVdSAlR0O9NArGAvPviA/p7j4pS932xr\nWXTpLhAAQen58zRVNTFR2fvlWnktHaDuvm7MLJiJxPGJyJmW49Nny8poYImnbDEgPtPmrQTIGTNl\ngI4fp3sdPWWLAfFZtpIScoQ99YYNxEw6BqxxGt3QQBvtTTcpe78VdRwZSVOQRV2bIEl0x6BSe3HF\nFeQonTqlr1xKqa2lv/exYz2/z5W9CAkKMeyk1FcHQo+1vGLPCuTtz0NJRgnCh3hogneip4eGonkL\n/EXbi6oqYPJkSrIqwYr2QrSO29vphOYHP1D2frPpuKTEe8LeZhOvZ198OJvNXHo+ckRZwt4MOvbl\nfk8z6RjgoFQTduyge+RGjVL2/ogIMh5aXRbt6HdgTtEcjBk+BgtnLPT580ozhCIDpq4uoLpaebYY\nMFcGqLSUNrwhQzy/zwwGzZfA30w6bmoiWVzdeTYQswT+SsrEAHPpGFBmL4KCqCdZ1Fo+eJBKS70N\nkRqImfSsdGN2ZS9Cg0MN6Sn1NrHdFVrruPhgMR6vfhzlmeWIDvfSBO/E669Tf7+33nnR9kK0jv3h\n/HkKqr0l7GUdi6pU2LaNThndTTV2JjoaOHuWTrHNgD/2wijOnqUqG3cT211hprWsNGHP9kI9DQ10\n37XShL1eWD4oVRPZa5WdkCQJuRW5aO1sxUszX0KQzTd1+tJULNKgbd9OfQiu7nJ0h5kyQEoNhUgd\nd3SQozZjhvLPmEnHpaWUtPBW3m2GwN8XexEdTZl8kWVXMo2NtOF6uvJKRmQZk6/ZYsBca9kfexES\nFGLI9N333qMgYtIk5Z/RUsd1TXXI2pyFTWmbMCHSxaXgXrCCTfa1Pwww1zresQOIjfWesA8Pp/Le\nM2eMkcsZX3UcFETtC2Zw5ru6SM9KEvYi1/LWrVQp5mmivzNmWstWsBdtbXT90ve/r/wzZtKxrwl7\nvbB0UKpm0wC0y04sfmMxqo5UoSitCGEhXupvXbBrF90d5mnMvIwZnExfMEsGqKdHeXm3SB1XVlJp\nysiRyj9jFh0DytdIRAT9nYjIcp89SxP8lEzdlbHZyAE6elQ/uZRSUkJDbZSUd4vcnK1sLw4doqm6\n3/iG9/e66yk1onxXTeCvlY4b2hqQUpCC1SmrMSVGQYbEBUorhETa5Pp6mr6sZOquTEwMTdPs6dFP\nLqX4cmojyl7IE9utai/khP0VV3h/L/tw6ujoIF9ZScJepI4rKmg2jLdJ6AMxi44Bc5TuAhYPSt9/\n37emYhktshP5B/KxZPcSlGWWIWKowoYTJ3xZBKI2DbWBv1kyQL5MARVZ+qFGx2PH0rUKonoHZbq6\nlE8BFdlb89prVF6stExMxixr2Qr24vRpYM8e37LFgHl07MsUUFf2IjTYmHtKRdnk4+3HkbAmAfZ4\nO5InqvNgDh5UPgVUvuJBRGmpmsA/JIQc48ZG/eRSgq/7tih7sXcvJSo9TWx3hVnsha86FuFfKJnY\n7gqz6NiXhL0Vk7GNjeJvqlCTsNcLSwelcobNl00D8D87UXmoEtnl2SjNLEXMiBjVz7GCQTtwgEp7\nvvxl3z5nlgyQmo3ZaAdIbeAfEkKBqWgHqLqa+geVTgEVtZbVZOQBc6zljg5KsCjt6x4zRoyOKyro\n3snLLvPtc2bQMeC/I2/EPaUnTwL79wPx8b597tprgU8+ISdVDe097Uhem4yMuAzMm6zgUnA3+DIF\ndOhQul/65EnVv041VrYXvibsRdkLtaczZtCxVQL/t96iNpRx43z7nBl0DFjDT5Yntvsa+Ms3VYie\nfq02Ya8Hlg5K1Ro0fzJA9c31SN+QjsJZhYiNilX3ENCG19mpLFsMiDNocgmQr4H/NdfQqHS1DpAW\nNDUB//kPcOedyt4/fDj9f547p69czrzzDv3uCb63ZgnPZvb1Ac8+C6SkKP+MiLUsl4n5umkA4nUM\nAM8/T8NAlE4BFW0vfMUMOt6zB6irUz4F1OWgIwPKd8vLge99jwI2Xxg6lBJHapy2XkcvUgtTERcV\nB3u83fcHfM7Zs8CKFea3Fy0tFNh997u+f1b0WpYkYPFiYOZM5fs22wvfWb+evlNKE/ZW07EeN1X4\nypEjQFERcMcdyt5/1VXUG210+fybb5LPG6PijEr0Wu7pAZYs8c0m64llg1K5qfh73/P9s2ozQEdP\nH0VSfhKW3b4M08d5uFjUC2+9BcydSwGT0qZiUbXyarPFYWFkIJqatJdJCWfOUB9pdrZv5d0iMsZq\ndQyIzWZKEvB//0cB30MPKf+ciLX89ts08ONLX/L9s6IzxuvXA//4BznzShHhADkc6rLFgPi7Sg8d\nIsdn1Srl2eLRoyl4GZh4M6J812h7IUkS5hfPhwQJy5OXw+ZrhvJzenqAH/2ITniVDPeTEWEvysqo\nlM3bxHZXiLYXf/0rlcX++c/KPyPCXhw7Bnz8MfDtb/v+WdE6fv112vsKCpQH/qJOo9Xai4gIqpIT\nUaUA0O9NSAAef5xmryghKIhatY4f11c2Z/zpxxTtwz3wAJVGz1Nf/KIplg1KKypoc/OlqVhGjQPU\n1tWGxFcS8eubf43USam+/9LP+fhjykisXAlMm6b8cyJKS1tbgXffpeZtNYjKAJ0/D9x1F8n929/6\n9lkRm7M/Bk1klu3Pf6Zgb8MG35w3ESU2VtXxzp3k/BQX+1Z+JULHu3eT43XNNb5/dvhwsuUnTmgv\nlzdaW8n5+f3vyW4oJTSUBpwMlFnv8t2+PuUT212hZi3bd9hRf7wehbMKERocqur39vcD999Pf89L\nl/pWecP2QjkvvUTJq5ISYMQI5Z8ToWN5YnuoiiUlUsfvvw/8+MfAK6/4dn2GCN/i00+pvWfqVHWf\nF6Xnri5KEqakAL/8pW+fZXuhnMceAz76iJIr3m5OMArLBqVqSxIAGot9+eWU5VZCd183UgpSkDg+\nEdlTs9X9UpDzImd+fD0qHzaM/tHqflUllJXRvVZhvg8WBiAmA9TfD2RlUZbvH//wvezY6I3j+HEa\n/HHLLeo+LyrLtno1nSqVlPjehyAq8FdrL0Tp+L33gLvvJufna1/z7bMiTpf8nd4nQs+dneT8/PjH\nwM9/7vvnndey3uW7tbWkpzFj1H3eVx2v2LMCefvzUJJRgvAhPtwn4cRjj9FpdH6+sunRAzHaXvT0\nUI+VkontrhBlLyoqKAlbWur7+rCavRg1ipLPZ89qK5M3PvuM1sUzz/h2fRtAV+p1dlLAZRQlJSSv\n2oBDxFp2OICMDKpq+utfff+80fbi8GGKJb75TXWfF2UvnnuODhSKi32fAaEnlgxK1TYVD0RpdsLR\n78DsjbMxdvhYLJyxUPXv6+ggA5yWBsyfr+4ZRm8c/jqZIjJAv/sdZQZfecV35wcwXselpdTDpiZb\nDIjRcVkZ8Oij9O8vfMH3zxut46YmMvo336zu85GRdKewkff4NTWRM7FokfIex4FcdRVw6hTJbRRW\nsxd9fUB6OvVyP/WUumc4r2W9y3eN1HHxwWI8Xv04yjPLER0erfp3Ll0KbNoEbNmirrLJaHuxcydd\nAxOt8n9ZhE3euxeYPRvYuJGmzfuK0Y58dzdQVaVsYrsrbDbjnfmzZ6lCYd484L77fP+8PHm+uVl7\n2dxhNZssSdQKdO4cJb3V3JlptL3w935PEfaiqAj4y18ojvJ2j7HRWDIo9aepWEaJQZMkCTkVOTjZ\ndRIvzXwJQTZ16urrA+65hzaLP/1J1SMAGLtx9PbShctqy8QA4zeNZ58lI/zqq+qcH8D40g+rnS69\n/TZw773k/Pg6kVnGaAeotJScH7XZYqMdoDNn6Hv3s58Bc+aoe0ZwMAWmRvXWHD1Kf6ff+pb6Zxip\nY0kCfvELOrlYudL3igoZZ3uhd/muUfairqkOWZuzsCltEyZEqpjA9jkbNgB/+xs5P0qncztjtL3w\np2cXIHnb2ow7ETt8mE77//Uvdf2ZgPE63rGDZj344xAbaS/kfuhp0yghqxYj/YvOTtKz0ontrjDa\nv/jb3+hO0o0b1fVzA9azF0breNcuSqxs2aJuxobeWDIo1eKSVyXZiUW1i7D9yHYUpRUhLERdDas8\nDKa3l3o91Do/gLEG7fXX6QRh9Gj1zzAyA1RYCCxcSM7PlVeqf46RBu38eWDbNvVlYgDJe/o0bUB6\nc+gQTTJesUL9qSNgvcAfMG4ty87Pd75Dp/7+YORgDTlbrKY6QcZIe/HUU9QD62s/tDNGlu9+/DEF\nO5Mnq3+GEh03tDUgpSAFq+5chSkxU1T/rtdfp8SKr/3QzljNXgQHU9L86FHtZHKH3A/96KO+9UM7\nM2IEtb4YNXneSjZZ7ocODweWLfPfhzPKv9i+nXper7hC/TOMtMkvvwwsX05JZF/6oZ0x0l60t5Od\n87WUeyDXXEOVUX36X2+NDz4g/yIvz799RE8GbVAqj7t2R/6BfCytW4qyzDJEDFV4D4ML/vxnumqg\nsFB9iaaMkQbNnx48GaMyQDU11A9WXEx38fmDkTquqQEmTaITLbUEBRnjAMn90AsW0FUD/hAZSeXs\n3d3ayOaJri7anNWWicl4sxdaIPdDjxxJp/7+OD8A2wt3vPginY766/wALoJSHct35SuN1JaJAcDV\nV5PD5s4BauloQcKaBNjj7bjjeoX3MLhAHgazZo3ya8/cYeQ6PniQbJOvPdzOGLGWOzspSXjXXXTq\n7w9yaakRepbv97SKvXjsMUoIqemHdoZtsmu2bgV+8xtqCVLbLy9jpI4rK4EpU/zbR4y6qeLYMToA\nefpp//0hPbFcUHr4MDnIapuKZb74RfdftspDlcguz0ZpZiliRqivEV61igbCqBkG4woja+W1CPyv\nvpr6J/Tsa/vvf4FZs2jD8NeRAIw9XdJCx4D+2Ux5GMzdd9PJh7/YbHQCb0RvTXU1rQt/Ts8Bz/ZC\nKx55hH6H2n5oZ4zanDs6qA/Pn2wxYExWvryc9Ky2H9oZZ3uhZ/muFvZiyBD67n3yyaWvtfe0Iyk/\nCRlxGZg3Wf39APIwmIUL/V8TgLGT52Ud+5sQ0nsty8NgrrtOfT+0M0bZi/feowRcrPpr3gEYYy+W\nLaP+uy1btBkGY5R/IQf+Whze6H1V1zvvUD/0hg3q+qGdsZqfDOi/luV+6AceoOsozYzlglJ/m4pl\n3J181DfXI31DOtbNWofYKPVWs6yMMmxlZf6VwA7EqE3jo4+ojMffDHdICMnsygHSgqYmWguLF9Od\nclpgdLZYC4OmZzZT7oe+/npqjNcKo/SspY713DSWLKFeaH/6oZ0xSsdVVZQkjFBfUAKAqhwaG8lh\n1YM9e6hHd8MG9f3QzhhVvnvuHM1S0MLOubIXvY5epBamIi4qDvZ4u+pnnz1LAelPf0q951pw+eUU\nTBsxaMwKNlmS6JqMjg7g3//23xeSMcpeyD14/gb+ep/ibdxI01+1HAZjlI4PHKDvjL92Ljyc/tFr\nNsGRI7QWnn9e/Q0Ezhil4/5+//tJZfRcyz09VLUyZQpde2Z2LBeUarVpXHstBUsDHaCjp48iKT8J\nSxOXIn5cvOpnt7WR81NURM68VhhVK69FmZiMnhmge++lScazZ2v3zJEj6WS3vV27Z7riww/p98TF\n+f8sPXX897/TSam//dDOGLGWtQz89TwpfeedC86P2mEwrjAqK6+Vji+7jL5/epygOxxUdr58ufph\nMK4wqnx32zYasqJFxY2zvZAkCT8r+RkkSFievBw2P77o2dkk5yOP+C/nQIywF2fO0CC3W2/1/1l6\n2uR166iPzd9+aGesZi9kHetxinfsGPDgg5Qk/OIXtXuu0clYLfZsPddyejpdY/TjH2v3zKgo6rXW\nu0fznXeobHf8eP+fpaeOn3qKSoT97Yc2CksFpe3tdE+bmisSnBk2jBrAZSPc1tWGxFcS8fC0h5EW\nm+bXs8vLaRDMtGn+yzkQo8oStNo0AP0yQCdO0MnHww9r+1ybzRg9y/0eWhgJPbNs69dTdk1L5wcw\nRsf//S8lVrQoCZJPSvVwgDZupASLP8NgXGGEA6Rl4A/ot5bffJNKuH/0I22fK1/xICc39Srf1aI/\nTMZZx/Ydduxr3ofCWYUIDVY/+KC3l65++eMftXd+jLAXW7fSaY0WZZp62+TcXP/7oZ0xwl60tQH7\n9gHf+57/z5IrM06f9v9ZzpSUkJ+p9TAYqwX+gH5r+ZNPqCrP335oZ0JC6GS7pUXb5zojH95ogd72\nYsEC9bcPGI2lgtLKSrpyQCtjLJ9+dPd1I6UgBQnjE5AzLcfv52ppEAZiRG/N2bM0lVKLbDGgXwao\nrIxk1DpYAozZnLVcI3rpuLmZNg2tymoGYqSOtXCQIyLIqLe1+f8sZ/S2F3qybx+VV06cqM3z9FrL\neuk4LIxOL0+epD+HBml/UiqXiWnlAA3U8Yo9K5C3Pw8lGSUIHxLu13Nra+mKAS16dZ1hm0z09ACv\nvebfxHZ3GKHj8nIKSIcO9f9ZNpv17IUROj5xghKy3/2uNs/TS8clJbSOtZif4AzbC0KrGTxGYqmg\nVGtDMW4c8PEhB2ZvnI0xw8dg0YxFfj+zr48Mr1YOxEDCw+kLrGdvzdatVN4W7p9/8j/0ygDptWkA\n+hu0U6fosvPvf1+b5+ml49JSGlTi79RoVxhRjqeHvdB64/j0U+qj1LqqAjAmK6/lCR5gfXsREhSi\neU/pnj10ynvdddo8T9Zx8cFiPF79OMozyxEdHu33c/XWsZ5r2eEge6fVWo6OpsourdtAdu6kPsFo\n//+6LoHtBdHdTX3yekwoHTWKEv89Pdo/W0ZO2Iepu8XwEqxqk/Vcy1on7PXSsVYzeIzEMqJq2VQs\nM+6LEp4/nIOTXSfx8syXEWTzXx21tbTAxo71Xz5X6B0waW0o9MgA9fZStvj227V9rozeOq6oAKZP\n126gTVQU9X1qfceclQP/1lYa9jB9unbP1KOvtKSEnB89Smuio0kPDof2z5axgr04epSciG99S9vn\nygxcy8FBlPZ39GundD10/GF7HbI2Z2FT2iZMiJygyXOtbC/q6uh3+HulmIzNpo+jaWUd65Gw18Ne\nVFcDN96o3XCjgQQF0X6t5+R5K9jkzk66Eu+HP9T2uTJ6r2WtE/byTRVaJyv0tBd6YZmgVMumYpmD\noxbhw57tKEorQliINmklrQNnZ/TsrdE6WwzoszG//jqVC+qRLQb0zxhrbSj0cIDOn6dyeT3KxAD9\ne8TKy+kkWosyMRk9Tkr1tBchIXTCpldvzfHjNLDrO9/R7pl62As5W6xHmRhwqb3QetiR1vaia1gD\nTtyWguWJqzAlZoomz/z4Y+rtu+kmTR53CXrbCz2cNw5KL0aPhL1e9kJvH04v/6Knh6rdtEzY66Hj\nqirq1/V3Yrs7rGYvQkJIZi1vqtByBo+RWCYo1XoR5B/IR033UtywpwwRQ7X7ZuidmdBz43jrLcri\naTltbswY6rfq7tbumVbWscOhT3m31tnMmhq6R06PbDFgvRN/QPuT0q4uysrrlS0G9NVzaSlteFr2\ndeuRlTfaXmg57Oizz0gfN9+syePQ0tGC5IIERO63Iy7sDm0eCm0ntrvCqvZCy7V88CDZjK9+Vbtn\nDuSKK2if7uzU5/lW0LHWg9tcoedalhP2Wl1DCFy4qkvLihu9A389daxXwl7rtVxZSdfAaD0QTW8G\nZVBaeagS2eXZePEHpTj2YYw2DwVw6BCVy33jG5o98hL0rJXXw1AEBwMxMWTUtELrvhRn9DRob75J\npRox2i07ANpnM/XW8VVX0cmKHr01vb3aZ4sB7U9Kt2+nu4CvvFK7ZzqjZ1ZeD3txzTXUZ6uVA9TR\nQY7ajBnaPM8Vet5VWlqqXXl3e087kvKTkBGXgRt751nKXui57zU20rOnaHNo/D/0sMlaDW5zhc2m\n796nh73QWsfvvUeB6aRJ2j3TGavpeNgw2qO0klkO/K1qL3bs0Cdhr5e9sBqWCEqbm6k8SIv75fYf\n34/0DelYN2sdbrsxFp99pt19RkY0FetZlqDXItYyA3TwIJUlfP3r2jzPFXo68lbQsSQBW7boa9Dk\n3ho9LuWuraWhMFpPAdX6pFTvjRnQzwHq6aG7M7XOFoeFUcKiqUmb51VWUpJw5EhtnucKPct3tbIX\nff19SFufhrioONjj7Zrai3PngDfeAG67TZvnuULPfa+0VJ8poFqffFjZXuiVsJcdea1uJNDyqjZ3\nDHb/Yv9+svPXX6/N81yhp73Q65RXSx1rPbHdSCwRlMplYv42FTeeaURSfhKW3b4M8ePiMWQIOcaf\nfqqNnEZkJvTaNOQpoFOnav9sLTNA8hdNz01Dz0ymXo6Fljr+4ANK1MTFafM8d+ilZ711rIUDZESZ\nGKCfjmtqaApoVJT2z9ZyLYvQsVblu93ddJru7xRQSZIwv3g++qV+LE9eDpvNpqmOX3uNyouHD9fm\nea6Qn631MDfAGjb59Gng7be1u6rNHXrZC70S9iNGUIDT2qrN86xskw8epO+HHgl7PWyyFX04OWFv\ndnuhxwweozB9UNrTA6xcCdzhZ/vLqa5TSHwlEblTc5E6KfV/P9fq9MOopmK9yhKef56yxXpMAdUy\nA2TEpnHlldRX09Wl7XN37tTvzig9dKznpgHos5ZPngT+8x//7YUrwsPpTk4tBgcdOEDftRtu8P9Z\nntAjKy9JZC/00DGg3VqWJP17lwD9yndffpn6B/0t77bvsGNf8z4UzipEaDBldq1mkwF97MWHH5Jd\n1qOvW0sdb91KA8Uuu0yb57lDD3vR1QWsWmV+e3HyJFBfT/eo6oleAdPzz+u3b1vNXkRH0z6t9eT5\nrVvpFFKPhL3VdKwXpg5K+/uB+++nBZaerv453X3dSClIQcJ1CciZlnPRa1r1iW3bRqeMejcV62HQ\nXnoJeOUV4JlntH2ujFYZoLNnaRiT3tlim40GBWg5tv3994G77yZHU48poFY7XQK0X8tdXeT4pKfT\nZD890MpeyMGSEYG/1vbisceovDYnx/t71aDVWt63j5IIEyf6/yxPyDqWT9C1KN997TVgwQLghRf8\nk23l3pXI25+HkowShA+5cPm0Vjo2skxM67Xc3Eyn0P/4hz5TQCMjqb/99Gn/n2VVm+xwAJmZVFUx\nc6Z2zx2IVmu5ooICUi0ntrtCD5v8wgv0PfzLX7R9roxWOm5pIV/ou9/1/1meGDKEWjZGaPWzAAAg\nAElEQVS0OkEHKGExZw75y3rs21b04fTA1EHpY49RL0J+vnpH3tHvwJyiORgzfAwWzlh4yetanZQa\ntQi0rpWvqAB++1u6cHnMGO2eOxCtMkBbt9JlxZdf7v+zvKFlxvizz+gU+pln9Bu4cuWV5CCeOuXf\nc9raqPRD72wxoO1adjiAjAzgS18C/vpXbZ7pCqvZC60doOeeAzZsIPn1OrXRyl4YpePLLiNHVv7u\n+Vu++8475MivXw985Svq5So5WIIF2xegPLMc0eEX35+llY7ffpsGfnzpS/4/yxta2otz56ic9P77\ngawsbZ7pjM2mjb1wOGh/tlrgL0nAr35FQfmLL+o3a8Nq9kLr0+jNm4Enn6Q1ctVV2j13IFrpuKyM\nes+1nNjuDi3txdGj9P1btkzbu88HIt9U4W+F3rFjQEODNjN4RGDaoHTpUmDTJqrfHjZM3TMkSUJu\nRS5aO1vx0syXEGS79H9Xi5MPOVtshEEbMYI2KS16a/buBWbPJidTzzJCrTJARgx6kNFqcz57lpyf\nefOA++7z/3nu0Oqu0ooKMrpqv3O+oJWOJQl46CH6Tqxape+gMS3sRWsr8O67+m1uA9FyYy4qokx8\nebl+VwUB2toLo7LFA9eyP+W7R46QzP/8p3/3v9Y11WHu5rnYlLYJEyInuJT39Gn/HSAr2uSeHqpa\n+eY3gT/8wf/neUKLtbx7N32Pr7lGC4k8o6W9eOYZ6j3fuJH6PvVCCx339ZFd03piuyuioij5q8WA\nzTfeAH7yE+DVV2m4n14MZh+urY0OFX79ayA11fv71RIcTDcz+HtTRWkptSP4O4NHFKYMSjdsAP72\nNzISkZHqn7P4jcWoOlKForQihIW4topaZDL37qXyHz2NgoxWY9sPH6ZSx+XL6fRRT0aPpuCso0P9\nMxwO+rJZyaD19AA/+hEwbRrw6KPayOUJLbKZRiVXAO16xP72N2DXLnJ+9M7AamEvysqoBF1PR01m\n9GiacNzf799zdu2ixMqWLfqfimmxjo8fp8Efets2mYuCUpXluydPUjnp735HQZNaGtoakFKQglV3\nrsKUGNf3nAQFUZDj71q2mr2QJODBB+m799xz+pfPD1abvGYNJVbKyvQpjR6IFjquraXnjB2rjUye\nCA6mpJ6/k+c//BC46y5qCdLzGkKAbEVTk3+BtDyx3YjAH9BmLXd3AykpFJRmZ2sjlyesZi/0wHRB\n6euvAz/7GWVUxo1T/5z8A/lYsnsJyjLLEDHUvVXU4uTD6Pptf7OZra3k/Dz6KAVNemOz0QXMR4+q\nf8Zbb1FvsT9rwhf8LbGR+6HDw6nkQ2/nB/A/m9nXZ1yZGKBNVv7llymxUlpqzCXRVrMXQ4aQXvzp\nrfngA7ITeXn69eoOJCaG+v16/ZgVJE9sN6JMDLjYXqgp3+3qAu68k/556CH1crR0tCBhTQLs8Xbc\ncb3nyTL+2oumJvou3Hyz+mf4ghb24g9/IGe+oECfoX7OaHHCJOrEXy3btgEPP0zfQSOCPKvpGPDf\nv2hupkDpqae0v5bLFUOGkP/lz00Vr79O/f3R0d7fqwX+2guHgyoJx44FFl7a+acL/q7l8+fpGjR/\nJ7aLxFRB6fvvAz/+MWXZ/BlrXXmoEtnl2SjNLEXMiBiP742Joebrnh71v8/IkgTAv42js5Mcn7vu\nAn7xC23l8oS/GSCjNw1/N+fHHqO7df3ph/YVf3X85puUEY3x/JXRDH91vHUr8Jvf6NsP7Yy/J6W9\nvSS3UdliwD89HztGTs/TTxu30YWGksyffKL+GSJtcmiQbyelcj/0tdfSqb9aOno6kJyfjIy4DMyb\nPM/r+/21F6WltCaMCO4A/+3F888DhYV02q/3FFsZf3Xc2EjBy7e+pZ1MnoiMpDaI8+fVfX7fPlrL\nhYXApEnayuaOceMo4e1PNYiVfLhz50jWuXMp8W0Ug8mHkyQa5HfyJA020rMlaCD+6njHDiA2Vt/2\nGr0xTVAqD4NZuNC/YTD1zfVI35COdbPWITYq1uv7Q0LIoVVbx33sGAUfRjYVqy1LGDgM5qmntJfL\nE/5mgIwuSfDHoC1bRv13Rjo/gP86NnrTiIqiEzw1JUHvvGNMP7Qz115LtkKtA7RrF90dNnq0tnJ5\nQm1WXu6HfuABcoCMxJ+13NND2WIjThBkBtqLkKAQxT2lcj/02bPA6tXqnZ++/j6krk9FbFQs7PF2\nRZ+xmr3wpxxv0ybgT3+iliC9hsG4Qot9LzHRuMRmUBDZJjV739GjtB6ee07/6aoDuewyqgZRWw57\n6BAFH3qXwA5ErX/R2wvMmkUVKwsWaC+XJwaTvVi0iO6ILioyps1Gxmo61gNTBKVnz5Lh/elPgXvv\nVf+cxjONSMpPwtLEpYgfF6/4c/6cfohoKlZj0CQJ+OUv6T5VvYfBuMKfDNCnn9KpydSp2srkCbWb\nxsaNNP1V72EwrtAik2lktjgkhDLzvt77KQ+Def5543oGZYYNA664Qn3CQsSmoWYt9/RQ1cqUKcDv\nf6+PXJ7wZy3X1FCiIipKW5k84dxTqrR89+mnqazNn2EwkiRhfvF89Ev9WJ68HDaFvQL+6Liri5w2\nI8vE1Nrk2lrqI331VWOmBA9E1rF8XZCvWMVetLXRWvjNbyhoMhp/1rJ8pZGRPpFaH+7BB8nX/Oc/\njWkJGog/Oj54kGaKfO1r2srkCbX2Ij+fBq0a0Q/tjD86liQOSjVBHgZzyy3AI4+of05bVxsS1iTg\n4WkPIy02zafP+tMnJmIRqKmV/+tfaXM2YhiMK/zJAJWU0IZnVLYYUHe69PrrlFjZsoWMi9HIOlbj\nAB0+TMHhN7+ptVSe8XUty8NgHn2UgiYRWM1e+Lo5SxJNdLzsMuP6oZ3xx16IssmyvVBavpuXR4mV\n0lK6U08t9h127Gveh8JZhQgNVp4d9UfH1dXAV79KV1EZRUQE+Qudnco/8+GHF/qhjTwJk4mIoH2r\nrc33z3Z0ADt36neNmDt8tRdyP3RyMl0BIwIr2wulLFhALW5G9UM746+Ok5KM3UvU+MmVlTTQqLTU\nuDamgfij4/ffp2rIWO8FoqZGeFD6+9/TMJglS9Qv2O6+bswsmImE8QnImeb7je5qsxPd3UBVlfFN\nxb5uGtu2Af/6l3HDYFzhTwZIxKYxahSd4CvtNT5z5kI/9E036SubO0aOpISDmqE2JSVUqmlk4A/4\nvpbvu48cICP7oZ1Ru5Y/+ojWlD/98mrwdXN+7jnKbK9dK8b5AdTrWJIoKSQy8FdSvvveezQMpqzM\nv2EwK/euRN7+PJRklCB8SLhPn7WaTfZ18nx/P8n417+KHfyhVs9VVRRIG31a46u9+PWv6SqLp5/W\nTyZvqNXxuXOUrP/BD7SXyRO+7ntbtlAwWlxszD3trrCavRg9mgZCKU3SnzgB3HMP9UOLCuxGj6Y1\n2d7u+2dlHYtIImuJ0KBUksjxeeYZ9c6wo9+B2Rtn4wvDv4BFMxapeoba7MSOHUBcnPFlmr7WyhcU\nALm5xg2DcYVaHXd2kp5/+EOtJfJMUBCV/zU3K3v/1q3U52G0nM6o1bOoMeK+rOW2Njo5ePJJfWXy\nhj86NrpMDPDdXqxdS/13RvZDO6NWxx9+SImkG2/UWiLPyE6mJCkr312/HpgzB/jKV9T/zpKDJViw\nfQHKM8sRHe77SMuoKLKvvt55LUnWsBdvv00l0VlZ+srkjUC2yQ4HsG4d+XBG27WBqNXxtm10Zdvw\n4VpL5Blfg9L8fKokNLIf2hm1Oj5zhr6Lt96qtUSeGTqUAviTJ5W9v7SU7g434v5wd/hzU4XVr4KR\nERqU1tdTj9bEieo+L0kScipycLLrJF6e+TKCbOr+d9RmgETVb/uaLZadYZGMGkUT/c6e9e1z27fT\nyeMVV+gjlyd82ZyN7sd0h5q13N5OpcdGl4kBvq3ligraMIYO1VcmbwSyvWhtBd5919hBJa7wV8dG\nZ4uHD6ffefassvJdf+1FXVMdsjZnYVPaJkyInKDqGTabOkfzv/+lz/oTUKvFl7VsZZsssj/MFx3v\n3k3J7quv1lcmb1jRJiv1LXp7ae8zcmK7K+SbKnydzLx1K7XniTjhHSz2oq2NJl9/73v6yGQkQoNS\nfw3CotpF2H5kO4rSihAWon5ElpqNWc4Wi1jEV15JpcNKemv27qXyn+uu018uT6h1gERmf5SWMTkc\nlGUzg0FTo+PKShpoI6K025dSMbM08avR8dmzQF2d8dliwLeNuayMZDRy4qArxoyhANlXB0hkAk5e\ny97Kd5ubqTxa7ZCuhrYGpBSkYFXKKkyJmaJSWkLNWhZZJjZY7IW/CXt/8NWRt6qO+/vF7dujR1O5\nqMPh/b21tRSoiKx0Ay7cVOHrVV0i14hSe9HTA7z2mvjAH1C3ls2SsNcCywal+QfysbRuKcoyyxAx\n1L+mizFjgFOnqGFfKSKbim025WPbzbJpAL5ngORssSgnU+nmXFdHfx/jxukuklfUZNlE61hJxriv\njyYamyHwV6Pj114Dbr6Z+ueNZmBpqTfMYi+Cg+n0xZcyptOngT17gO9/Xz+5PCHr2Vv5bmkpVSWo\nGTjX0tGChDUJsMfbkTzR/7+oQLUXTU20dqZN018mb6jVsUhH3pcKITPYi2uvpWBJSZAnIzJhHxpK\n1V8nTnh/r1l0DPi+lkUn7JXai507geuvB6J974LQHKvZC60RFpQePw588AHwne/4/tnKQ5XILs9G\naWYpYkb4PyIrKMh3B0h0U7HSgMlMi9XXDNCBA2S8v/xlvSTyjFKDZmUdy+XdouRXuo7feIMcD3+G\nwmjF1VfTuvDlflWRa2TYMOoP9TYBtLeXSq3MkC0GfF/LFRVUdiyqF1a2F97Kd9WuhfaediTlJyEz\nLhPzJs/zQ9IL+Krj1lZg/34gPl6TX+8zSu2FPLFd1KCugfhzGi0CpTo+epTe961v6S+TN8LCqEXI\nl9550fv2YPAv5IT9tdfqJZFnBoOfbKaEvRYIC0rLymjima/Z4vrmeqRvSEfhrELERml3TOlrdkL0\nIlZSlvDZZ3Qx9M03GyOTN9TqWFTgr7T0Q/RaGIivOn7nHeqHm6CuLc1vrKjjsDAaEvPpp8reL7JM\nTEbJ5vz667QORo82RiZvWNUmeyrfPX+eyuUTE317dl9/H9LWp+HGqBvxRPwT/gv7Ob7quLycTqJF\nlYlZ0V74elWXPwl7LbjqKqoc6/Vy1a6oie3usKq98MTHH9PfxeTJxsjkjUDUsaiJ7e7wVcdmSthr\ngbCgVM3pTOOZRiSvTcay25dh+jhtR2T5kp0wQ1OxEieztJSmwYYqv7pOV3zNAIk2aEp0/MknVCo2\ndaoxMnlDntym1AESrePoaBqe0N/v+X2i5XTGl7X81lvk6Im4u1ZGyeZsZR07HJToNEPgHxrkvny3\npgaYNMm3KZqSJGF+8XxIkoQXkl+ATcMsXSDa5K4uukdV9CR0meHD6fS+pUXZ+9Um7LUiOJiSbseP\ne36f6LXgjC9r2QwJeyVrWdTEdncEor04eJBsxte+ZoxM3rCajrVGyFKXm4p9yRa3dbUhYU0Ccqfm\nInVSquYy+ZKdKC+ngFRkU7GS0g8zTN0diC86PnGC7vITOQVU6aaRmGiebHF4ODlBSq+yEW3Qhgyh\n+1U99dYcPkxlg9/4hnFyecOXtSxax0Dg24s336TpkCKngA7sKXVXvqtmLdh32LGveR/WzVqH0GBt\nM4y+6NgMU0CVrOPqanIwr7zSEJEUEWj2oqND3MR2d/iiYzMk7JX4F2ZYCwPxRceNjeIT9kr3PTPd\n7zlqFMVIZ84oe7/Z1oi/CAlKd+6kPsGoKGXv7+7rxsyCmUgcn4icaTm6yORLdsIM9wF5M2jd3XT5\ntshLw53xpYypvFz8FFAlBs2MBkHpWm5uBhoa1E8B1Qpva1kuEzNLthgIPHvx0Uc0IfjrXzdOJm9Y\nUceffea+fFdNmdiKPSuQtz8PJRklCB+i/ZSsK6+kU+bTp72/t7aWhsKInAIaGUkBUXe3+/dY2Sb3\n9NDdmb6Wd2uNN3tRVUVJwpEjjZPJG1a1F+44d45KM2+7zTiZvOGLjktLxSfsrRj4+3JTxeHDdA+r\nmRL2/iLEzfNlETj6HZhTNAdjho/BwhkLdZNJaQaouZnKa0QPA/FWjrdjBxAXR1kXs3DFFfSFO3XK\n8/scDuDFF8UbiqgoKtV2N9Cms5PK8cxSJiajdC2/+CJlukWXd3tby2bbNADlOn7nHcoYiy7vVhL4\nm6lMDFCu4/Z2YN068WtEXsfuync/+IBOG+PilD2v5GAJHq9+HOWZ5YgO12cspM2mTM+SBKxaJV7H\n8uR5d5UgIu/39ITStbxhA3DDDcoT9nrhzV5YWceffGKOhL23fe+112h69PDhxsnkDaU3VfT2Ai+/\nLH6NeJs8f/o0tdeImtjuDqVrefVq8yXs/cXw/xVfssWSJCG3Ihetna14aeZLCLLpJ66SzMS5c7QA\ncnPFNxVbcdMAvOtZkoDsbPp3RoZRUrkmJISCene9NVVVwE030Vh5M6FkLW/eDCxZAjz1lBESecbT\nWm5vB3btoh4rM6FEx0ePAnfeCTz/vPgpoFYM/KOj6fTW033Mvb3ArFnUTjHFvys7/UZexyFBIS7L\nd30Z3FbXVIe5m+diU9omTIjUdwqZkrW8eDFdt5OdrasoivBkL959l05mbrjBWJm8oUTHu3cDv/oV\n8OyzRkjkGU/2wqyBvxIdnzpFp3d//COduovEij6ckpsqJAmYP5/8oh/9yDjZXHH55dQi5K4UdutW\nGih2+eXGyuUNJWu5oICCUrvdCImMw/Cg9OBBKr356le9v3fxG4tRdaQKRWlFCAvRt44zOprKgtrb\nXb/e2wvcfTeNP//973UVRRGeSj/MumkA3jNACxfSKW9RkdjSXRlPejZDCZArvOn4jTeAn/wEePVV\nMXe0OeNJx9u20SnjiBHGyuQNbzpuayPn59e/pqBJNJ50fPYsOcS33mqsTN4ICqLBXe42Z0kC5s2j\nIOT558X3BI0cSfuE5Ah1Wb6r1F40tDUgpSAFq1NWY0qM/pG2t7Wcn08JrPJycyTgPK1l0RPb3eFN\nxx99BMycSU6mGa5Y8aTjffvIiZ840ViZvHH11RTkuZsa3N1NOp4xgw4WRONJx2aY2O4Ob2v5iSfo\n2qh168RXYQHK7IXZ8Kbj6mpKYJWWip2joAeGB6XyxdveNo38A/lYsnsJyjLLEDFU/53QZnPvAEkS\nOfFhYcCyZebY8EaNopPb8+cvfe2990jmSZOMl8sbnjJAr7wCPPcclUebpVfFXcbYzIG/Jx1/+CFw\n111UWmOWPgRPWXmz6jjm/7d35tFR1cke/xYk7GGNCbcDGCCAI6AOzCjqcUBBSCAj/GNkc8FlxnPe\ngsHxzDgziDgrA/oOx+gMOoiMymKGx5YNZImoCIpo4DlsMxzZ3kujhGCCYEL4vT+qr+nc3E5Hktv3\n92vrc44HupPYZVmpW1W/qvr14W2aNTWNv3bxIjB5MndVzJ4de9ncaKoqv3kzzxV3af2RxRbTlC0/\n9RT7utWr/T+JBvi5EAgAF843XnR09iywd2/0NrFgdRCZr2fimTHPIHtwbAy/KR1v28ano0VFbPM6\nYKK/aErHwSC3kv72t/okIU35C111nJjIrd1uV3Vdvgzcdx9/fdGi2MvmhmXx/3u3zfMffcTz3joU\njZ00Zcsvv8xxXGGhPs+TSP6irk7fxL8pHe/fD9xzD5+UNncUxCRinpQ2p1q89ehWPFbyGIpmFKFP\n19g9CSNVJ379aw7mV63SI/gB+BQhNdV9tqa5ib8fRNLxli1cvSwq8r81OpxID+d9+7hIMWRI7GWK\nRiQdl5fz6d3vf+//Io1wIun48mX9NsLaJCTww+748Ybv19UBM2dyAP+nP/kjmxtNzdbY/kJHItny\nkiXsjzdu1Kv1yrKAr6oSGs2UbtoEjB4NdOwY+Wera6qRvTIb04dPxyMjH/FY0noi6XjfPmDqVD7x\nGNZ6V4K3mEj+4osvuH13dOveFtcqpKezr3AmINXV/Lt3773AQw/5Ipor0RJ/k/yFUhxbnD4NLF+u\nz/xd+/Y8L3rmTOOv6Zr4A5H9RUEBFwqLi/2fiQ4nkr/YvZvt/OqrYy9TNCLp+MQJ/t1bvNjfKym9\nJKa/npWVwJ49TbeJlZWXYdqaaci/Ox/DUmL7JHSrTvz5z0B+Pgc/nTrFVJyoRGpL0Nmhuen4k094\nfjQ/X7/T3UgOTdc2MYCd7IkTnCDZVFWxM3vgAeDBB30TzZVIdrx3L5+YZ2TEXqbm4LRlpYDcXA4y\nXn1Vn+AH4Kp1QkLj2Rqd28QAd3+xYQO3iJWU6BX8AGzL56sat+9G88m1dbXIyc/B8JThmD8mtkNC\nbjo+fpxt4vnngTFjYipOVCL5i+JiPonWYezDSceO3Poc/iyprQVycvj6mnnz/JPNjUg6Dga5QH/b\nbbGXqTm42fJzz3HRe906f6/xcyNafKEjbjrevRuYNYt1PMjbEfhvjclxcngRubKSDxNmz+ZiYbwS\n07DJHiqOlNwdqzyGSSsmIW9iHkanx77c6axOrFsH/OY3HPx8m8vOY4WbQ6uoAMrK9K2iOHV87Bg7\nhhde8PdO0kiY6NA6dOAlDrbc9jz0yJHA3Ln+yuZGpAezrjO7Nk5bXrQI2L5dn3loJ256/vBDTuz6\n9/dHpmg4dbxrF58o6TIP7cSygOovG7bvXrrECVOkxF8phUcLHoWCwpLsJaAYV7rS01nHdgBUUcHt\npHPmcJuYbsSDv1AK+OlPuaj5l7/oV9xMTeWT5/DCJsB2fOedvDxGR5z+YuVKPlUqLtZjHtqJW3xx\n6hT/N9xyiz8yRcOp4/B5aL+Xzblhor/o0YOL2hUV/Nqehx43To95aC+JaVLaVCBfcaECWW9k4fGb\nH0fO0JxYivUN4RWgnTuBRx7h4GfAAF/EiYpbi01JCSekulUEbcIrQHbw88QTeiyDccNNx59/Dhw4\noGcSbROu54cf5iDixRf1C34AfmiUlzduLdU58Qca+osVK3jeXNfgB3C3ZZN0fPgwP5iXLwd++EM/\npYpMIABUnWvYvrtrF9CvX+SZzKdLn0ZZsAz5d+cjsW3sN4N0787zeGfO1Ac/mZl86q8jbnZcW8st\n0n5f1dYU4bY8bx63Gr/5pj4jQeEkJHBh8/Tphu+b5C+2beNTpcJCfZfBuNlyURH//uloF0BDHdvz\n0M88o69duOn4+HEuBuiYRNvYer58Gbj/fi4eP/ecnjFcaxKzpLSuLnK1+OKli5i8ajKyMrKQe7N/\nT0K7AnToEK+y1mkZjBtuFSDdHxpJSdzKdOIEX5eRna3PMhg33HRcXMwt6LpWi4F6W547l+9H1Gke\n2kmHDjwXaFcFAdb5P/8J3Hqrf3JFw9bx1q0cwOu0DMYNE/2FrePycg5+fvc7vRMPywKqKhveU9rU\nXPTLH72M1/e/jsLphejSzr/NIP37A//6F882WpY+y2DccLPj997jNn/L8kem5mDb8ksvcRGroECv\neWgnTj3X1HAbrE77CJzYOrbnoVev1nsZjJst67pHwca+qaK8nJ8dM2fyAY6uRNJxZiZvbtcV25Z/\n9jPW9d/+ptdIkFfELEzdvZuNo1+/hu/XXa7DzP+eibSkNCwcvzBW4riSns6BcFYW8Ic/6O18Adbn\n++/Xv750iU9KF/qrxqikp7MzGzYMWLDAb2maxq29RvdAHmAdL1rEJx/vvad38APU69m+O66oCJgw\nQY+V8pFIT2fdbtmi5zy0E6ctnzzJFeNRo/yTKRrJybxhfPx4nofWaRmMG5YFnDvbsH23oIC3Ujop\nOFyAp0qfwo4HdiC1S2oMpWxMejoHlr168TNE5+Dnqqt4vqqmpr4waIpPXryYi2/vvKPfPLQT21+M\nGMGvd+zg+191ljs9nbuY7HloXceYbCyL219tLl7kEZClS/2TKRr2TRXjx3PHytNP+y1R00SK4e67\nzx95mkt6Op9A19UB776rb/djaxOzR4/bQ0MphdxNuThz4QyWT1mONuTvk7BXL66czJrF/+iOsy1h\n506urui0vdaNjAwONpct0zv4AXiF/Oef18/W1NQAb72l92kNwDoOBvlUV8d5aCdOWzYhyBw4kBO7\nvDw9N346cVaMCwu58KbrCTrAAdDAgZw46zgP7SQQAM5VJHyz6Oizz/j30NluvPvkbsxaPwvr7lmH\nQb383wySkcHt87rOQ4fTpg0nRsFg/Xsm+IuMDLaH9ev1Xd4WjtNfmKDjtDQ+xcvN1XMe2onzuVda\nClx3XX1xVlcyMrgrSMd5aCdOHZ8/zwWWCRP8k6k5ZGTwSEVJCc+YfleIWThSWMibbMNZtHMRtn+2\nHe/MegftE/x/EhLxHUA6t+CF4/bQ0LntwyYvj0/udA9+AD6p69GDE9PevbliNXgwt7DozIwZnDjr\nLqdNuC1fvMjzQG6nSzoRCHCQqeu8kpNAgO+/syko4K3XulNczHase/ADsB2fPVPfvltYyL+H4W1i\nR84cwZTVU/DKXa/gpj56DDX96ld89VnXrn5L0jxsf9G3L580nTsHfP/7fkvVNLffzqNBpsQX4cG8\nUnwDwZo1/soUjbZt2R5M8ckmJv4An+R266Z3J5NNUhL/WVXFf9+2jcfydN39YPPgg7yd24RDhdYk\nJudUbkPFK/avwPMfPI/iGcXo3kEf6+jb14zgB2jclmCKQ0tObvq+Pt0I17MpOm7XzpyEFGio47ff\n5tbu5GR/ZWoOpgQ/QEMdX7jAeta9WgxwcKzz7E84PXsCNRcS8XUtt+86/UWwOoisN7Iwf8x8/HjI\nj32SsjHdupmTkAINbdmewdO964bInIQUaKjjQ4e4jf766/2VqTmY6pOVMie+SEkx41DBxsQYrmPH\n715CCsQoKbXbxOzAYuvRrXis5DEUzShCn64GeWnNSEkBzp7lzYNHj/JRv86LmTCyhKUAAAiWSURB\nVEwlvJppikMzjXAd67yq3WTCdbx9O58s9ezpr0zxBhHQo3sCqi/U4vx5njkeP56/Vl1TjeyV2Zg+\nfDp+MvIn/gpqOOIvvMdNx6YU7E0hfPP8p5+yfq+91m+p4g/blpUSf6E7MUlKwwP5svIyTFszDfl3\n52NYyrBYfHzc0rYtV1KCQXOqxSZitzEdPszzCDfc4LdE8YetY5OqxaYR3o4nOvaO5B6J+OpCLbZu\nBW68kU8ga+tqkZOfg+EpwzF/zHy/RTQe25a//JKv3Bk3zm+J4g/xF97TqRMvsDl7VhJ/L7FtuayM\nTyAHD/ZbIiESMUlhduzgavHxc8eRvTIbeRPzMDrdgM0gBmBXgOSh4R22juWh4R22jg8c4KVSw6Re\n1eokJfGdZ1VV4i+8JLlHIr76+tI3OlZK4dGCR6GgsCR7CUgcSIux/cVbb/G1UV38u00nbrF1XFnJ\ns+h33OG3RPGJxHDe49SxuGB9aVFSSkSZRHSQiA4T0c8jfd8PfgBcbl+BzNczMWfUHOQMzWnJxwph\nWBaf4O3cCdx5p9/SxCf2PIIpi6RMJFzH8tDwBiLW86ZNvKDimmv8lig+Se6VgAtf137jL+a/PR9l\nwTLk352PxLYGbAYxAKe/EFqf3r3rN7j/6Ed8qie0PpbFCzb37TNji7uJSAxnDleclBJRGwB5ACYA\nGApgGhG5hjkTJl3ElFVTkJWRhdybc6/0IwUXAgG+VHfUqPotY0LrEggABw8C779firFj/ZYmPrEr\nmRs3ykPDSywLWLCgFJMmSeLvFanJiaiovISkJODtqr/itX2voXB6Ibq0k+O81iIQAE6dAtauLRV/\n4RHt2nHr+auvik/2kkAAePbZUtx++3fnLspYEwhw6+7Bg1xgEfSlJSelNwI4opQ6ppSqBbAKwGS3\nbyzteS8CSQEsHL+wBR8nuGFZ3MIk1WLvsCzeVJqWVorOnf2WJj7p3JmDoI8/1v/Cc5MJBIA9e0rF\nX3hISnICvqyuxbVTCjF3+1yUzChBaheDVmEbgGXxyVJiYin69/dbmvglEOD4QpJS77As8cleY1nA\n1q08e96und/SCE3RkntK0wCcCHt9EpyoNuLrNl9g+ZQStCHZwtPaWBYvhxGH5h22jmU43lssi3Vs\n0nVBpmFZ3LorbWLekXpVItD9GEq7zkLJPRsxqNcgv0WKO1JS+E/xyd5iWdxR0a+f35LEL5bFf06c\n6K8c8YzEyebQkqS02ayduhbtEwy61Mgg0tKAIUOAgQP9liR+sSzeajxIYktPSUuTirzXpKUBAwaY\ndcecafS1OgDtz2HZlPW4qc9N0X9A+NYkJPDMoySl3pKWBowc6bcU8U1aGttyIOC3JPFLIMAxXFaW\n35II0SCl1JX9INEoAE8rpTJDr38BQCmlFji+78o+QBAEQRAEQRAEQTACpdQVb6xoSVLaFsAhAGMB\n/B+ADwBMU0oduFJhBEEQBEEQBEEQhO8WV9y+q5SqI6J/B7AZvDBpqSSkgiAIgiAIgiAIwrfhik9K\nBUEQBEEQBEEQBKGleLYOl4gyieggER0mop979TmC0NoQUR8i2kZEnxLRfiL6z9D7PYhoMxEdIqJN\nRNTNb1kFIRpE1IaI9hLRhtBrsWPBOIioGxHlE9GBkG++SWxZMA0iyiWi/yGifUT0BhG1EzsWTICI\nlhJRkIj2hb0X0XaJ6EkiOhLy2eOb8xmeJKVE1AZAHoAJAIYCmEZE13jxWYLgAZcAzFFKDQVwM4B/\nC9nvLwBsUUoNAbANwJM+yigIzWU2gH+EvRY7FkxkMYAipdT3AFwP4CDElgWDIKIAgP8AMEIpdR14\nhG4axI4FM1gGzuvCcbVdIroWQA6A7wHIAvAiEUVdgOTVSemNAI4opY4ppWoBrAIw2aPPEoRWRSlV\nrpT6JPT3agAHAPQB2/Dy0LctBzDFHwkFoXkQUR8AEwH8NextsWPBKIioK4DblFLLAEApdUkpdQ5i\ny4J5tAXQmYgSAHQEcApix4IBKKXeBXDW8XYk270LwKqQr/4MwBFwbtgkXiWlaQBOhL0+GXpPEIyC\niNIB3ABgF4BUpVQQ4MQVQIp/kglCs/gvAE8ACF8eIHYsmEZ/AF8Q0bJQK/pLRNQJYsuCQSil/hfA\nswCOg5PRc0qpLRA7FswlJYLtOvPAU2hGHujZTKkgmA4RdQHwdwCzQyemzq1gsiVM0BYimgQgGDr1\nb6ptRuxY0J0EACMAvKCUGgHgPLhtTHyyYAxE1B18snQ1gAD4xHQGxI6F+KFFtutVUnoKQL+w131C\n7wmCEYRaa/4O4DWl1PrQ20EiSg19vTeA037JJwjN4FYAdxHRUQArAdxBRK8BKBc7FgzjJIATSqk9\noddrwEmq+GTBJMYBOKqUqlBK1QFYC+AWiB0L5hLJdk8B6Bv2fc3KA71KSj8EkEFEVxNROwBTAWzw\n6LMEwQteAfAPpdTisPc2AHgg9Pf7Aax3/pAg6IJS6pdKqX5KqQFgH7xNKXUvgI0QOxYMItQedoKI\nBofeGgvgU4hPFsziOIBRRNQhtPRlLHgJndixYAqEhp1XkWx3A4Cpoe3S/QFkAPgg6r/cq3tKiSgT\nvC2vDYClSqk/evJBgtDKENGtAHYA2A9uRVAAfgn+hXoTXP05BiBHKVXpl5yC0FyIaDSAx5VSdxFR\nT4gdC4ZBRNeDF3YlAjgKYBZ4aYzYsmAMRDQPXCSsBfAxgIcBJEHsWNAcIloBYAyAXgCCAOYBWAcg\nHy62S0RPAngIbOuzlVKbo36GV0mpIAiCIAiCIAiCIERDFh0JgiAIgiAIgiAIviFJqSAIgiAIgiAI\nguAbkpQKgiAIgiAIgiAIviFJqSAIgiAIgiAIguAbkpQKgiAIgiAIgiAIviFJqSAIgiAIgiAIguAb\nkpQKgiAIgiAIgiAIviFJqSAIgiAIgiAIguAb/w9b7AJeOev+3QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%pylab inline\n", + "\n", + "import math\n", + "def calc_bmin(n, l, m):\n", + " n, l, m = float(n), float(l), float(m)\n", + " one = math.floor((l * n) / m)\n", + " two = m / l\n", + " return int(math.floor(one * two))\n", + "\n", + "cascades = []\n", + "directs = []\n", + "for n in xrange(100):\n", + " cascade = (n - calc_bmin(n, 1, 2)) + (n - calc_bmin(n, 1, 5)) + (n - calc_bmin(n, 1, 5))\n", + " direct = (n - calc_bmin(n, 1, 50))\n", + " cascades.append(cascade)\n", + " directs.append(direct)\n", + "\n", + "plt.figure(figsize(16, 9))\n", + "plt.plot(range(100), cascades)\n", + "plt.plot(range(100), directs)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/16_11_22 perplexity test.ipynb b/16_11_22 perplexity test.ipynb new file mode 100644 index 0000000..1411d48 --- /dev/null +++ b/16_11_22 perplexity test.ipynb @@ -0,0 +1,219 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + } + ], + "source": [ + "%pylab inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Perplexity experiment\n", + "\n", + "Trying to get my head around perplexity as a measure. This notebook does the following:\n", + "\n", + "* Generate data from a ground truth unigram distribution (p(0)=0.9, p(1)=0.09, p(2)=0.01)\n", + "* Estimate the ground truth n-gram distributions from the data\n", + "* Interpret the n-gram distribution as a posterior distribution conditioned on n-1 (for 3-gram, P(x[n] | x[n-1], x[n-2]))\n", + "* Measure the perplexity of the sequence as described by each posterior" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0\n", + " 1 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0]\n" + ] + } + ], + "source": [ + "# Create sparse data\n", + "true_unigram = [0.9, 0.09, 0.01]\n", + "seq_len = 10000\n", + "sequence = np.random.choice(len(true_unigram), seq_len, p=true_unigram)\n", + "print sequence[:100]" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1-gram distribution\n", + "(0,): 0.8972\n", + "(1,): 0.0922\n", + "(2,): 0.0106\n", + "2-gram distribution\n", + "(0, 0): 0.804680468047\n", + "(1, 0): 0.0831083108311\n", + "(0, 1): 0.0828082808281\n", + "(0, 2): 0.00970097009701\n", + "(2, 0): 0.00940094009401\n", + "(1, 1): 0.00820082008201\n", + "(2, 1): 0.001200120012\n", + "(1, 2): 0.000900090009001\n", + "3-gram distribution\n", + "(0, 0, 0): 0.72274454891\n", + "(0, 1, 0): 0.0746149229846\n", + "(0, 0, 1): 0.0739147829566\n", + "(1, 0, 0): 0.0736147229446\n", + "(0, 2, 0): 0.00850170034007\n", + "(2, 0, 0): 0.00830166033207\n", + "(1, 0, 1): 0.00820164032807\n", + "(0, 0, 2): 0.00800160032006\n", + "(0, 1, 1): 0.00740148029606\n", + "(1, 1, 0): 0.00730146029206\n", + "(1, 0, 2): 0.00130026005201\n", + "(2, 1, 0): 0.00120024004801\n", + "(0, 2, 1): 0.00120024004801\n", + "(1, 2, 0): 0.000900180036007\n", + "(0, 1, 2): 0.000800160032006\n", + "(1, 1, 1): 0.000800160032006\n", + "(2, 0, 1): 0.000700140028006\n", + "(2, 0, 2): 0.000400080016003\n", + "(1, 1, 2): 0.000100020004001\n" + ] + } + ], + "source": [ + "# Calculate n-gram distrbutions from sample of ground truth unigram distribution\n", + "max_ngram = 6\n", + "n_to_distribution = {}\n", + "for n in xrange(1, max_ngram + 1):\n", + " ngrams = []\n", + " for i in xrange(seq_len):\n", + " ngram = sequence[i:i + n]\n", + " if len(ngram) != n:\n", + " break\n", + " ngrams.append(ngram)\n", + " ngram_to_count = {}\n", + " for ngram in ngrams:\n", + " ngram = tuple(ngram)\n", + " if ngram not in ngram_to_count:\n", + " ngram_to_count[ngram] = 0\n", + " ngram_to_count[ngram] += 1\n", + " ngram_distribution = {i:float(c) / len(ngrams) for i, c in ngram_to_count.items()}\n", + " n_to_distribution[n] = ngram_distribution\n", + "\n", + "for n in xrange(1, min(4, max_ngram + 1)):\n", + " print '{}-gram distribution'.format(n)\n", + " for ngram, proportion in sorted(n_to_distribution[n].items(), key=lambda x: -x[1]):\n", + " print '{}: {}'.format(ngram, n_to_distribution[n][ngram])" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Calculate perplexity of n-gram distribution against the sample\n", + "n_to_perplexity = {}\n", + "for n in xrange(1, max_ngram + 1):\n", + " distribution = n_to_distribution[n]\n", + " ncontext = n - 1\n", + " log_prob_cum = 0.0\n", + " for i in xrange(seq_len):\n", + " ngram = tuple(sequence[i:i + n])\n", + " if len(ngram) != n:\n", + " break\n", + " posterior = distribution[ngram]\n", + " log_prob_cum += np.log(posterior)\n", + " negative_log_prob = -log_prob_cum / (len(sequence) - (n - 1))\n", + " perplexity = np.exp(negative_log_prob)\n", + " n_to_perplexity[n] = perplexity" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAFHCAYAAAB9DjIPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeUXXW5//H3kwQCCU1FQIUrBEF6R2rCcEFEingRFAtR\nroCgIEXlKj9L1AXXAiIIBgidS28iCoR2BwhCgHQggFIuRYq0hCSUJPP8/tgnpJBMTpKzZ58z836t\nNWvOzNnn7AfOInzy/T772ZGZSJIkqXF6VV2AJElSd2PAkiRJajADliRJUoMZsCRJkhrMgCVJktRg\nBixJkqQGKz1gRcRRETGh9vXdss8nSZJUtVIDVkRsCHwT2ArYDNgrIgaUeU5JkqSqlb2CtT4wMjPf\nycyZwF3AviWfU5IkqVJlB6yHgIER8YGI6AfsAaxR8jklSZIq1afMN8/MRyPi18CtwBRgDDCzzHNK\nkiRVLbryXoQRcQLwbGaeOc/vvSGiJElqGZkZnT1f6goWQER8ODP/FRH/BvwHsO38jvOm061pyJAh\nDBkypOoytJj8/FqXn11r8/NrbRGdZiugCwIWcE1EfBCYDnw7Myd3wTklSZIqU3rAysxBZZ9DkiSp\nmTjJXUukra2t6hK0BPz8WpefXWvz82tNU6bAMcfUd2yXNrkvsIiIbIY6JEmS5ueZZ+Bzn4MttoDz\nz4+FNrm7giVJktSJ++6D7baDAw+Ec8+t7zVd0eQuSZLUki67DI46Cs47D/baq/7XGbAkSZLm0dEB\nP/sZ/M//wO23w8YbL9rrDViSJElzmDoVvv51eOEFGDkSVlll0d/DHixJkqSa55+HQYOgf3+4447F\nC1dgwJIkSQLgwQdhm23gi1+ECy6Avn0X/73cIpQkST3elVfCd74Dw4bB5z+/5O9nwJIkST1WJvzi\nF8VVgrfeCptt1pj3NWBJkqQe6a234KCD4Omni2b21VZr3HvbgyVJknqcF16AnXaC3r2hvb2x4QoM\nWJIkqYcZPbpoZt9nn2LO1TLLNP4cbhFKkqQe45pr4LDD4Mwz4QtfKO88BixJktTtZcKJJxbBavjw\n4qbNZTJgSZKkbu3tt+Hgg+Gxx4pm9o9+tPxz2oMlSZK6rZdegp13hunT4c47uyZcgQFLkiR1U+PG\nFc3su+8Ol18O/fp13bndIpQkSd3O9dcX24Knnw5f+lLXn9+AJUmSuo1M+M1v4A9/gBtvhK23rqYO\nA5YkSeoW3nkHvvUtGD8e7rsPVl+9ulrswZIkSS3v5Zdhl13gzTfh7rurDVdgwJIkSS1uwoSimb2t\nDa66Cvr3r7oitwglSVIL+8tfihs2n3oqfOUrVVczmwFLkiS1nEw45RQ46SS44QbYdtuqK5qbAUuS\nJLWUd9+Fww+HUaOKZvZ/+7eqK3q/0nuwIuKYiHgoIsZHxCURsXTZ55QkSd3TK6/Apz8Nr74KI0Y0\nZ7iCkgNWRHwUOBLYIjM3oVgxO6DMc0qSpO7pkUeKZvbtt4drr4Xllqu6ogXrii3C3kD/iOgA+gH/\n7IJzSpKkbuTmm2Hw4KLnavDgqqtZuFJXsDLzn8DJwDPA88AbmXlbmeeUJEndRyacdlpxpeB117VG\nuILytwhXAvYBPg58FFguIproIkpJktSspk+Hww6DYcPg3nthhx2qrqh+ZW8R7go8mZmvAUTEtcD2\nwKXzHjhkyJD3Hre1tdHW1lZyaZIkqVm99hrst18xNPRvf4Pll6+ulvb2dtrb2xfpNZGZ5VQDRMSn\ngHOBrYF3gPOBBzLzjHmOyzLrkCRJreOxx2CvveDzn4df/Qp69666orlFBJkZnR1Tdg/W/cDVwBhg\nHBDA2WWeU5Ikta5bb4VBg+BHP4Lf/rb5wlW9Sl3BqrsIV7AkSerxzjgDfvlLuPLKImQ1q3pWsJzk\nLkmSKjVjBhx1FLS3F/1WAwZUXdGSM2BJkqTKvP46fPGL0KdPEa5WXLHqihqj9FvlSJIkzc/f/w7b\nbQcbbVTcsLm7hCswYEmSpArccQfsuCMccwycckqxgtWddLN/HEmS1OzOOgt++lO4/HLYeeeqqymH\nAUuSJHWJGTPg+98v7is4YgSss07VFZXHgCVJkko3aRIccADMnAn33QcrrVR1ReWyB0uSJJXqiSeK\nZva114Ybb+z+4QoMWJIkqUR33lncpPmII+D007tfM/uC9JB/TEmS1NXOPReOPx4uuQR23bXqarqW\nAUuSJDXUzJnwX/8Ff/4z3HUXfPKTVVfU9QxYkiSpYSZPhq98BaZNK5rZP/jBqiuqhj1YkiSpIZ5+\nuui3Wn11GD6854YrMGBJkqQGGDGiuFLw0ENh6FBYaqmqK6qWW4SSJGmJXHgh/OAHcNFFsPvuVVfT\nHAxYkiRpsXR0FFcJXnUVtLfDBhtUXVHzMGBJkqRFNmUKfO1r8MYbMHIkrLxy1RU1F3uwJEnSInnm\nmaKZfeWV4ZZbDFfzY8CSJEl1u/de2HZb+MY3YNgwWHrpqitqTm4RSpKkulxyCRxzDJx/Puy5Z9XV\nNDcDliRJ6lRHB/z0p0XAuuMO2GijqitqfgYsSZK0QFOnwuDB8NJLRTP7KqtUXVFrsAdLkiTN13PP\nwcCBsPzycPvthqtFYcCSJEnvc//9RTP7AQcUPVd9+1ZdUWtxi1CSJM3liivgiCPgnHNgn32qrqY1\nGbAkSRJQNLP/4hdwwQVw222w6aZVV9S6Sg1YEbEucAWQQAADgJ9k5mllnleSJC2aadPgoIPg2WeL\nZvZVV626otZWasDKzMeBzQEiohfwHHBdmeeUJEmL5p//LLYCP/nJYgzDMstUXVHr68om912BJzLz\n2S48pyRJ6sSoUbDNNvAf/wEXX2y4apSu7MH6EnBZF55PkiR14uqr4fDD4ayzYN99q66me4nMLP8k\nEUsB/wQ2yMx/zef57Io6JEkSZMIJJ8DZZ8P118Pmm1ddUWuJCDIzOjumq1awPguMml+4mmXIkCHv\nPW5ra6Otra38qiRJ6mHeegu++U144omimf0jH6m6oubX3t5Oe3v7Ir2mq1awLgNuzswLF/C8K1iS\nJJXsxRfh85+HNdcshocuu2zVFbWmelawSm9yj4h+FA3u15Z9LkmSNH9jxxbN7HvsAZddZrgqW5es\nYC20CFewJEkqzZ/+BIccAn/8I+y/f9XVtL5m6sGSJEldLBN+/Ws4/XS46SbYaquqK+o5DFiSJHVD\n77xTrFo9/HDRzP6xj1VdUc/SlYNGJUlSF3j5Zfj3fy+uGLz7bsNVFQxYkiR1I+PHF83su+wCV1wB\n/fpVXVHP5BahJEndxA03FDOuTj0Vvvzlqqvp2QxYkiS1uEw4+WQ45ZQiZG2zTdUVyYAlSVILe/dd\nOOwwGD0a7rsP1lij6ooE9mBJktSy/vUv2HVXeP11GDHCcNVMDFiSJLWghx8utgIHDoRrroHllqu6\nIs3JLUJJklrMTTfB179e9F0deGDV1Wh+DFiSJLWIzOIKwd/8prj9zfbbV12RFsSAJUlSC3j3XTji\niKKR/d574eMfr7oidcaAJUlSk3v1VdhvP1h+ebjnnuK7mptN7pIkNbFHHy2a2bfeGq67znDVKgxY\nkiQ1qVtugUGD4P/9v6LvqnfvqitSvdwilCSpCZ1+OpxwQjGCYeDAqqvRojJgSZLURKZPh6OOgrvu\ngr/9DdZaq+qKtDgMWJIkNYnXX4f994e+fYtwtcIKVVekxWUPliRJTeDxx2HbbWGTTeDPfzZctToD\nliRJFbv99qLP6gc/gN/9zmb27sCAJUlShc48E776VbjiCjj44KqrUaPYgyVJUgVmzIBjj4Vbb4UR\nI+ATn6i6IjWSAUuSpC72xhvwpS8Vj++9F1Zaqdp61HhuEUqS1IUefxy22w4++Un4618NV92VAUuS\npC4wZUoxkX377eGYY+C006CP+0jdlgFLkqQSZcJll8H668Ozz8L48XDooVVXpbKVnp0jYkXgHGAj\noAP4z8wcWfZ5JUmq2tixcOSRMG0aXH457LBD1RWpq3TFCtapwI2ZuT6wKTCxC84pSVJlXnkFDj8c\ndt8dBg+G++83XPU0pQasiFgBGJiZ5wNk5ozMnFzmOSVJqsqMGXDGGbDBBrD00jBxIhxyiINDe6Ky\ntwjXAl6JiPMpVq8eBI7KzLdKPq8kSV2qvR2++11YeWW44w7YaKOqK1KVyg5YfYAtgO9k5oMR8Xvg\nh8DP5j1wyJAh7z1ua2ujra2t5NIkSVpyzz4L3/8+jBwJJ58M++4LEVVXpUZqb2+nvb19kV4TmVlO\nNUBErArcm5kDaj/vCPxXZu49z3FZZh2SJDXa22/DSSfB738PRxwBxx0H/fpVXZW6QkSQmZ3G6FJX\nsDLzpYh4NiLWzczHgV2AR8o8pyRJZcqE668vbnOzxRbw4IOw5ppVV6VmU+oKFkBEbEoxpmEp4Eng\noMycNM8xrmBJkprexIlw1FHw/PPFoNBddqm6IlWhnhWs0gNWPQxYkqRmNmkS/PzncPHF8JOfFCMY\nllqq6qpUlXoClpPcJUlagI4OOO88WG89ePNNeOSR4kpBw5UWxrsgSZI0HyNHFlPY+/SBG26Arbaq\nuiK1ElewJEmaw4svwkEHFeMWjjwSRowwXGnRGbAkSQLefbeYY7XxxrDKKvDoo3DggdDL/1NqMbhF\nKEnq8YYPL64OHDAA7rkH1l236orU6gxYkqQe68kni3lWDz9cDAzdc8+qK1J34cKnJKnHmToVfvxj\n+NSnYNtt4aGHDFdqLAOWJKnHyITLLy/GLjz9NIwbBz/8IfTtW3Vl6m7q2iKMiJOB8zLz4ZLrkSSp\nFOPGFVcFTpkCl10GO+5YdUXqzupdwZoInB0RIyPisIhYscyiJElqlFdfhW9/G3bbDb72NXjgAcOV\nyldXwMrMczJzB2AwsCYwPiIujYidyyxOkqTFNXMmDB0KG2wAvXsX9xE89NDisVS2uq8ijIjewHq1\nr1eAccCxEfGtzDygpPokSVpkd91V3NLmAx+A224rZltJXamumz1HxCnAXsAdwLmZef8czz2WmZ9c\noiK82bMkqQGefRaOOw7+9jc46STYbz+ITm/JKy26Rt7seTywWWZ+a85wVfOpxapOkqQGefttOOEE\n2HzzYkjoxImw//6GK1Wn3oD1tcycOucvIuJ2gMyc1PCqJEmqQyZcfz1suCGMHl00sP/859CvX9WV\nqafrtAcrIpYB+gErR8QHgFl/F1gB+FjJtUmStECPPgpHHw3PPANnnQW77lp1RdJsC1vB+hYwiqKx\nfXTt8SjgeuD0ckuTJOn9Jk+G738fBg6E3Xcv5lsZrtRs6m1yPzIz/1BaETa5S5IWoqMDLroIjj8e\n9tgDTjwRVlml6qrUE9XT5L6wLcJ/z8w7gOcjYt95n8/Ma5ewRkmSFur++4sp7BFFz9XWW1ddkdS5\nhc3B2oliNMPe83kuAQOWJKk0L70EP/oR3Hwz/OpXxST2Xt5FVy2gri3C0otwi1CSNIfp0+EPf4D/\n/m846CD48Y9hhRWqrkoqNGwOVkRcPOf9ByPi47PGNEiS1Ei33gqbbAK33AIjRsBvfmO4Uuup91Y5\nI4CREXEsxXiGHwDfK60qSVKP8+ST8L3vwYQJcMopsNdeDgpV66p7izAidgT+l+I+hJtn5osNK8It\nQknqsaZOLfqrhg4tAtYxx8Ayy1RdlbRgjdwiPBA4DxgMXADcGBGbLnGFkqQeKxOuuALWX79YvRo7\ntmhoN1ypO6h3DtafgEMz8+Xaz58Czs7MzRpShCtYktSjjBsH3/0uTJpUNLMPHFh1RVL96lnBWuyr\nCCNi6cx8t47jngYmAR3A9Mx8382hDViS1DO89hr85Cdw9dXFPQMPOQR69666KmnRNHKLcN2IuD0i\nHqr9vAlwXJ11dABtmbn5/MKVJKn7mzkTzjyz2A6MgIkT4bDDDFfqvuod1zYM+BEwHSAzxwMH1Pna\nWITzSJK6mbvvhi23hMsvL0YwnH46fPCDVVcllaveMQ39MvP+mPt62Rl1vjaBWyNiJkXf1rBFKVCS\n1Jqeew6OO66YZXXSSbD//o5dUM9Rb8B6JSLWpghLRMR+wAt1vnaHzHwhIj5MEbQmZuaIeQ8aMmTI\ne4/b2tpoa2ur8+0lSc3k7bfhd78rvg4/HIYNg/79q65KWnzt7e20t7cv0mvqvYpwAHA2sD3wOvAU\n8LXMfHqRThbxM+DNzPzdPL+3yV2SWlwm/OUvxRyrjTeGk0+GAQOqrkpqvIZfRRgR/YFemflmncf3\nqx0/pfbaW4CfZ+Yt8xxnwJKkFvbYY3D00fD003DqqbDbblVXJJWnnoDV6RZh7dY4831jgHlXouZj\nVeC6iMjauS6ZN1xJklrX5Mnwy1/CBRfA8cfDEUfAUktVXZVUvYX1YC2/JG+emU8BDRlGKklqHh0d\ncPHFxeT13XeHhx6CVVetuiqpeSz2oNGGFuEWoSS1jAcegCOPLHqu/vAH+JQTDtXDNHLQ6ICIuCEi\n/hURL0fE9bXGd0lSD/Hyy3DwwbDPPsWQ0HvvNVxJC1LvANBLgSuBjwAfBa4CLiurKElS85g+HX7/\ne9hwQ1hppWIK+ze+Ab0cIS0tUL1jGsZn5ibz/G5cZm7akCLcIpSkpnTbbcVNmddYo7g6cL31qq5I\nql7DxjRExK8p5l9dTjFs9EvAB4DfAmTma0tYqAFLkprIU0/B974H48bBKafA3ns7hV2apZEB66lO\nns7MXKJ+LAOWJDWHadPgV7+CM86AY48tQtYyy1RdldRclngOVu1NelFMbb+nYZVJkppKJlx9NXz/\n+7D99jB2bLEtKGnx1LuCNSYzNy+tCFewJKkyEyYUfVavvVaMXRg0qOqKpObWsDENwO0R8YUId+Al\nqbt47bVintUuu8AXvwijRhmupEapN2B9i2I0w7sRMTki3oyIySXWJUkqycyZcNZZsP76xUT2iRPh\n8MOhz0KbRiTVq67/nDJziW6ZI0lqDvfcU6xaLbccDB8Om3kzM6kU9U5yj4j4WkT8pPbzGhHh/F5J\nahHPPw9f/SoccAAcdxzceafhSipTvVuEfwS2A75S+3kKcEYpFUmSGuadd4qxC5tuCmutBY8+WoQs\nO2qlctW7475NZm4REWMAMvP1iFi6xLokSUsgE/76Vzj6aNhoIxg5EtZeu+qqpJ6j3oA1PSJ6U0xx\nJyI+DHSUVpUkabE9/ngRrJ58shgY+pnPVF2R1PPUu0V4GnAdsEpEnACMAE4srSpJ0iKbPLnor9p+\n+2L0wvjxhiupKvVeRXhJRIwCdgEC+HxmTiy1MklSXTo64JJL4Ic/hN12g4cegtVWq7oqqWfrNGBF\nxDLAYcAngAnAWZk5oysKkyQt3IMPFlPYZ8yAa6+FbbapuiJJsPAtwguBrSjC1WeBk0qvSJK0UC+/\nDIccAnvvXXy/7z7DldRMFrZFuEFmbgwQEecC95dfkiRpQf7+dzjzTLjoIhg8uBi7sOKKVVclaV4L\nW8GaPuuBW4OSVI1Z23+f/jTssENxS5uRI+Hkkw1XUrOKzFzwkxEzgamzfgSWBabVHmdmrtCQIiKy\nszokqSd6/nkYNgzOOQfWXLO4X+B++0HfvlVXJvVsEUFmdjqut9Mtwszs3diSJEmd6eiA22+HoUOh\nvb2Yun7TTbDxxlVXJmlReO90SWoCr74KF1wAZ50Fyy5brFZdeCEsv3zVlUlaHAYsSapIZtFLNXQo\nXH99cUXgBRfAdtt5r0Cp1XXag9VlRdiDJakHmToVLr20CFaTJsFhh8FBB8HKK1ddmaR61NOD1SUB\nKyJ6AQ8Cz2Xm5+bzvAFLUrf38MPFiIVLL4WBA4ttwE9/GnrVe9MySU1hiZvcG+go4BGgIVcdSlKr\nePfdYsTC0KHFDKuDD4axY2GNNaquTFKZSg9YEbE6sAdwAnBs2eeTpGbw9NNw9tlw3nmw4YZw5JGw\nzz6w1FJVVyapK3TFwvQpwA8A9wAldWszZ8Jf/wp77QVbbQVvvQV33lmMXdhvP8OV1JOUuoIVEXsC\nL2Xm2IhooxhQOl9Dhgx573FbWxttbW1lliZJDfPSS3DuucWK1SqrFL1VV14J/fpVXZmkRmhvb6e9\nvX2RXlNqk3tEnAh8DZhBMQV+eeDazBw8z3E2uUtqKZlw111Fb9Xw4fCFLxTBasstq65MUtma5irC\nWjE7Ad/zKkJJrWzSJLj44iJYdXQUoWrwYFhppaork9RVmukqQklqaWPGFKHqqqtgt93gjDNgp50c\nCCpp/rosYGXmncCdXXU+SVpSb71V9FINHQovvACHHgoTJ8Jqq1VdmaRm5yR3SZrH3/9eDAS96CLY\neutiG3CPPaB376ork9QM3CKUpDrNmAF//nOxWjV+fHHrmpEjYcCAqiuT1IoMWJJ6tOefh2HDiq8B\nA4rVqi98Afr2rboySa3MgCWpx+noKIZ/Dh0K7e3w5S/DzTfDxhtXXZmk7sKAJanHePVVuOCCor+q\nf/9iterCC2H55auuTFJ3Y8CS1K1lFr1UQ4cWPVZ77100r2+7rSMWJJXHqwgldUtTpsCllxbB6s03\n4bDD4BvfgJVXrroySa2uqSa5d1qEAUtSgzz8cBGqLr20GAR6+OGw667QqytubS+pR3BMg6Qe4Z13\n4Npri2D1xBNw8MHFqIXVV6+6Mkk9lQFLUst6+mk46yw477ziCsCjjoLPfQ6WWqrqyiT1dC6aS2op\nM2fCX/4Ce+4JW21VrF7ddRfcdlsxv8pwJakZuIIlqSW89BKcey6cfTasumrRW3X11bDsslVXJknv\nZ8CS1LQyi9WpoUNh+HDYbz+45hrYcsuqK5OkznkVoaSmM2lSMavqzDOLkHX44XDggbDSSlVXJkle\nRSipxYweXaxWXX01fOYz8Mc/wqBBDgSV1HoMWJIq9dZbcMUVRbB68UX41rfg0UeLPitJalVuEUqq\nxOOPF1uAF10E22xTbAN+9rPQu3fVlUlS59wilNRUpk8v7gc4dChMmAD/+Z/wwAOw1lpVVyZJjWXA\nklS6556DYcPgnHNg7bWL1ap994W+fauuTJLKYcCSVIqOjmL459ChcOed8OUvF6MWNtqo6sokqXwG\nLEkN9eqrcP75xS1s+vcvVqsuvhiWW67qyiSp6xiwJC2xTLjvvmK16oYbivsBXnxx0bzuiAVJPZFX\nEUpabFOmwCWXFMFq6lQ47DD4xjfgQx+qujJJKk89VxEasCQtsoceKkLVZZdBW1uxDbjLLtDL28dL\n6gEc0yCpYd55p7gP4NCh8OSTcMghMH48rL561ZVJUvMpNWBFRF/gLmDp2rmuzsyfl3lOSY311FNF\nw/r558Mmm8Axx8Dee8NSS1VdmSQ1r1IDVma+ExE7Z+a0iOgN3BMRN2Xm/WWeV9KSmTkTbryxWK26\n/34YPBjuvhvWXbfqyiSpNZS+RZiZ02oP+9bOZ7OV1KRefBHOPRfOPhtWW63orbrmGlh22aork6TW\nUnpLakT0iogxwIvArZn5QNnnlFS/TGhvhy99CdZfH55+Gq67DkaOLK4INFxJ0qLrihWsDmDziFgB\n+FNEbJCZj5R9Xkmde+ON4kbLZ55Z/Hz44cXK1YorVluXJHUHXXYVYWZOjoj/BXYH3hewhgwZ8t7j\ntrY22trauqo0qUfILMYr3HRT8fXgg7DnnkWf1aBBDgSVpAVpb2+nvb19kV5T6hysiFgZmJ6ZkyJi\nWWA48KvMvHGe45yDJZVg8uTifoA33QQ331xc+ffZzxZfO+9c3MpGkrRoKh80GhEbAxdS9Hr1Aq7I\nzBPmc5wBS2qAWatUN95YhKpRo2D77WeHqnXXdaVKkpZU5QGrXgYsafHNuUp1002w9NKuUklSmQxY\nUjeUCRMmzA5UrlJJUtcyYEndxKRJc/dS9e07O1C1tblKJUldyYAltaj5rVLtsMPsULXOOq5SSVJV\nDFhSC+lslWrnnaFfv6orlCSBAUtqapkwfvzsVarRo12lkqRWYMCSmsykSXDrrbNXqZZddu5eKlep\nJKn5GbCkis1apZo1l2rMGNhxx7lXqSRJrcWAJVXgjTfm7qVylUqSuhcDltQFMmHcuNm9VK5SSVL3\nZsCSSvLGG3P3UvXvP/cq1bLLVl2hJKksBiypQeZcpbrxxuLxnKtUn/hE1RVKkrqKAUtaAgtapdpj\nD9hpJ1epJKmnMmBJiyATxo6d3UvlKpUkaX4MWNJCvP763KtUyy8/O1C5SiVJmh8DljSPWatUs+ZS\njRsHgwbNDlVrr111hZKkZmfAknCVSpLUWAYs9UgdHXP3Uo0fDwMHukolSWoMA5Z6jNdfh1tumb1K\nteKKswPVoEGuUkmSGseApW6ro6OYmD5rlWrChLl7qQYMqLpCSVJ3ZcBSt/Laa0Uv1Y03wvDhs1ep\n9tijCFfLLFN1hZKknsCApZbmKpUkqRkZsNRyXnttdi/V8OGw0kpz91K5SiVJqpoBS01v1irVrLlU\nDz1UjE6YFarWWqvqCiVJmpsBS01pzlWqm2+GD35wdqAaONBVKklSczNgqSl0dMDo0bN7qVylkiS1\nMgOWKvPqq3P3UrlKJUnqLioPWBGxOnARsCrQAQzLzNPmc5wBq8V1dMCoUbNXqR5+GNraikC1++6u\nUkmSuo9mCFirAatl5tiIWA4YBeyTmY/Oc5wBq8VkwnPPwYgR71+l2mOPYpWqb9+qq5QkqfEqD1jv\nO1nEn4A/ZObt8/zegNXEMuGZZ4o+qlGjZn9FwLbbFitUn/0srLlm1ZVKklS+pgpYEbEm0A5slJlT\n5nnOgNUkMuH//m/uIDV6NPTpA1tuCVtsUXzfckv42MeKkCVJUk/SNAGrtj3YDvwyM6+fz/MGrApk\nwlNPvT9MLbPM3EFqyy3hox+tulpJkppDPQGrTxcU0Qe4Grh4fuFqliFDhrz3uK2tjba2trJL61Ey\n4Ykn3h+mlltudpg6+uji+2qrVV2tJEnNo729nfb29kV6TekrWBFxEfBKZh7byTGuYDVQRwf84x9z\nh6kxY2CFFeZeldpiC1h11aqrlSSptVS+RRgROwB3AROArH0dn5k3z3OcAWsxdXTA44/PvSo1Zgx8\n4APvD1NnDiBqAAAIl0lEQVQf/nDV1UqS1PoqD1j1MmDVZ+ZMeOyxucPU2LGw8srvD1Mf+lDV1UqS\n1D0ZsFrYjBnw6KNzh6lx44otvTnD1OabF/OnJElS1zBgtYgZM+CRR2YHqVGjYPz44sq9ecPUSitV\nXa0kST2bAasJTZ9e3EZmzqGdEybAGmvMvcW3+eaw4opVVytJkuZlwKrYu+/CQw/NHaYefhg+/vG5\nh3Zuvjksv3zV1UqSpHoYsLrQO+8UYWrO0QiPPAIDBswdpjbbrJg9JUmSWpMBqyRvv11s680Zph59\nFD7xibknoG+6KfTvX3W1kiSpkQxYDfDWW0XD+Zxh6vHHYd115w5Tm2wC/fpVXa0kSSqbAWsRTZtW\njEKYM0z94x+w3nrvD1PLLFN1tZIkqQoGrE5MnVoM6ZxzztQTT8D66889GmHjjaFv3y4tTZIkNTED\nVs2UKcXtY+YMU089BRtuOHeY2nBDw5QkSepcjwxYkyfPDlOzxiM88wxstNHcYWqDDWDppRtySkmS\n1IN0+4A1adLsEDXr+3PPFT1Scw7t3GADWGqpEgqXJEk9TrcKWK+/XoSoOYd2vvBCMQphzjC1/vrQ\np08XFS5Jknqclg1Yr70296rUqFHw8svFkM45h3autx707l1h4ZIkqcdpqYB14on5Xph69dXi9jFz\njkZYd13DlCRJql5LBaxjj833wtQ660CvXlVXJUmS9H4tFbCaoQ5JkqSFqSdguU4kSZLUYAYsSZKk\nBjNgSZIkNZgBS5IkqcEMWJIkSQ1mwJIkSWowA5YkSVKDGbAkSZIazIAlSZLUYKUGrIg4NyJeiojx\nZZ5HkiSpmZS9gnU+8JmSz6EKtbe3V12CloCfX+vys2ttfn7dX6kBKzNHAK+XeQ5Vyz8kWpufX+vy\ns2ttfn7dnz1YkiRJDWbAkiRJarDIzHJPEPFx4IbM3KSTY8otQpIkqYEyMzp7vk8X1BC1rwVaWJGS\nJEmtpOwxDZcCfwPWjYhnIuKgMs8nSZLUDErfIpQkSeppKm1ydxBp64qI1SPijoh4OCImRMR3q65J\n9YmIvhExMiLG1D67n1VdkxZdRPSKiNER8eeqa9GiiYinI2Jc7b/B+6uuR/WLiBUj4qqImFj7/982\nCzy2yhWsiNgRmAJc1FkTvJpPRKwGrJaZYyNiOWAUsE9mPlpxaapDRPTLzGkR0Ru4B/huZvoHfQuJ\niGOALYEVMvNzVdej+kXEk8CWmemcyBYTERcAd2bm+RHRB+iXmZPnd2ylK1gOIm1dmfliZo6tPZ4C\nTAQ+Vm1VqldmTqs97EtxsYu9Ai0kIlYH9gDOqboWLZbAMUktJyJWAAZm5vkAmTljQeEK/IDVABGx\nJrAZMLLaSlSv2vbSGOBF4NbMfKDqmrRITgF+gMG4VSVwa0Q8EBGHVF2M6rYW8EpEnF/bnj87IpZd\n0MEGLC2R2vbg1cBRtZUstYDM7MjMzYHVgW0iYoOqa1J9ImJP4KXaCvJCx+CoKe2QmVtQrEJ+p9Yu\no+bXB9gCOKP2+U0Dfriggw1YWmy1/eergYsz8/qq69Giqy1v/y+we9W1qG47AJ+r9fFcBuwcERdV\nXJMWQWa+UPv+L+A64FPVVqQ6PQc8m5kP1n6+miJwzVczBCz/Bta6zgMeycxTqy5E9YuIlSNixdrj\nZYFPA16c0CIy8/jM/LfMHAAcANyRmYOrrkv1iYh+tZV/IqI/sBvwULVVqR6Z+RLwbESsW/vVLsAj\nCzq+Kya5L1BtEGkb8KGIeAb42azmMTW3iNgB+CowodbLk8DxmXlztZWpDh8BLoyIXhR/yboiM2+s\nuCapp1gVuK52i7g+wCWZeUvFNal+3wUuiYilgCeBBQ5Qd9CoJElSgzXDFqEkSVK3YsCSJElqMAOW\nJElSgxmwJEmSGsyAJUmS1GAGLEmSpAYzYEnqEhHRERG/nePn70XET6usaWEiYsuI+H3VdUhqPQYs\nSV3lHWDfiPhgI94sIno34n06k5mjMvPoss8jqfsxYEnqKjOAs4FjF3ZgRHwzIh6LiPtqd6w/rfb7\n8yNiaETcB/w6IraOiL9FxKiIGBER69SO+3pEXBcRt0TEkxHxnYg4JiJG145faT7n3D8iJkTEmIho\nr/1up4i4ofb4r7XXj4mINyLiwIjoFRG/iYiRETE2Ig5p3L8uSa2s0lvlSOpREjiD4vZKv17QQRHx\nEeDHwGbAFIqbUY+d45CPZea2tWOXA3bMzI6I2AX4b2C/2nEb1t6jH/AP4AeZuUVE/A4YDJw2z6l/\nAuyWmS9ExArz1E1m7lk75xYU9+H8E/BN4I3M3CYilgbuiYhbMvP/FuVfjKTux4Alqctk5pSIuBA4\nCnhrAYd9CmjPzEkAEXEVsM4cz181x+OVgItqK1ez7u02y/9m5jRgWkS8Afyl9vsJwMbzOe8Iins0\nXglcO7/CImJl4GJgv8x8MyJ2AzaOiP1rh6xQq9WAJfVwBixJXe1UYDRwPkDtptOjKALSn4ExQHTy\n+qlzPP4lcEdm7hsRH6dY7ZrlnTke5xw/dzCfP/sy89sRsTWwFzCqtlL1nlqdlwFDMnPirF8DR2bm\nrZ3UK6kHsgdLUlcJgMx8HbiSYnuNzOzIzM0zc4vMHAI8AAyKiBUjog/whU7ecwXg+drjBd7Vvq7i\nIgZk5gOZ+TPgZWCNeQ75NTAuM+dcQRsOfLtWJxGxTkQsuyR1SOoeDFiSukrO8fhk4EPz/K44KPOf\nwInA/cDdwFPApPm8B8BvgV9FxCg6//PsfeeZj99GxPiIGA/ck5nj53n+e8ButSb30RGxV2YOAx4B\nRkfEBOBM3BmQBERmPX/uSFLXiYj+mTm1NorhOuDczLy+6rokqV6uYElqRkMiYgxFQ/qThitJrcYV\nLEmSpAZzBUuSJKnBDFiSJEkNZsCSJElqMAOWJElSgxmwJEmSGsyAJUmS1GD/H++b38QGNzYzAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot perplexity values\n", + "plt.figure(figsize=(10, 5))\n", + "ns = range(1, max_ngram + 1)\n", + "plt.plot(ns, [n_to_perplexity[n] for n in ns])\n", + "plt.xlabel('N-gram size')\n", + "plt.ylabel('Perplexity')" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}