-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproj3.ss
314 lines (268 loc) · 12.4 KB
/
proj3.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
(#%require scheme)
(require 2htdp/batch-io)
(define PEEK-FREQ false)
;; ========= Utility Functions ================
;; Parse a file and return a list of strings.
;; parse-file: string -> list[string]
(define (parse-file filename)
(filter (lambda (x) (not (string=? x "")))
(regexp-split ",|\r?\n|\r" (read-file filename))))
;; Get's the nth item of a list
(define (get-nth alist n)
(if (empty? alist)
false
(if (= n 0)
(first alist)
(get-nth (rest alist) (- n 1)))))
;; ========= Main Functions ================
;; Runs the ngram models
;; run-train : string string num bool : void
;; Give it training file name, test file name, max length of markov chains to
;; generate and whether to peek or not.
(define (run train test n (peek false))
(set! PEEK-FREQ false)
(let ((chains (reverse (make-chains n (parse-file train)))))
(let ((ans (predict-ngram (parse-file test) n chains peek)))
(printf "Guess: ~a~n" ans)
(printf "Accuracy: ~a~n" (accuracy ans (parse-file test) peek))
(printf "Random Guess Accuracy: ~a~n" (get-random-guess-rate chains)))))
;; Runs the weighted ensemble learning model
;; run-train : string string num bool : void
;; Give it training file name, test file name, max length of markov chains to
;; generate. Randomly generates weights on the test data first.
(define (run-weighting train test n)
(printf "Training a model...")
(letrec ((train-data (parse-file train))
(first-half (drop-right train-data (/ (length train-data) 2)))
(second-half (take-right train-data (/ (length train-data) 2)))
(weights (crunch 100 1000 n first-half second-half))
(ans (run-ensemble train-data (parse-file test) n weights)))
(printf "Weights: ~a~n" weights)
(printf "Guess: ~a~n" (first ans))
(printf "Accuracy: ~a~n" (second ans))
(printf "Random Guess Accuracy: ~a~n" (get-random-guess-rate (reverse (make-chains n train-data))))))
;; ======== Main Helper Funcs ========================
;; Runs ensemble models. Private.
(define (run-ensemble train test n weights)
(let ((chains (reverse (make-chains n train))))
(let ((ans (predict-ensemble test n chains weights)))
;;(printf "Accuracy: ~a~n" (accuracy ans (parse-file test)))
;;(printf "Guess: ~a~n" ans))))
(list ans (accuracy ans test false)))))
;; ========= Freq Chain List Functions ================
;; Functions that work on the frequency chain list. It's an ordered list that
;; contains markov chains of length 1, 2, 3 ...
;; Update freq chain list from a sequence
;; count-occurences : list(string) -> hash
(define (count-occurences training-set chain-length (prev empty) (freq (make-hash)))
(if (empty? training-set)
freq
(begin
(let ((curr (first training-set))
(prev-chain (string-join prev "")))
(add-to-hash freq prev-chain curr)
(if (= chain-length 1)
(count-occurences (rest training-set) chain-length empty freq)
(if (> (length prev) (- chain-length 2))
(count-occurences (rest training-set) chain-length (append (rest prev) (list curr)) freq)
(count-occurences (rest training-set) chain-length (append prev (list curr)) freq)))))))
;; Add value curr to hash freq under key prev-chain
;; add-to-hash : hash list(string) string
;; effect: hash has been modified.
(define (add-to-hash freq prev-chain curr)
(if (hash-has-key? freq prev-chain)
(begin
(let ((prev-hash (hash-ref freq prev-chain)))
(if (hash-has-key? prev-hash curr)
(hash-set! prev-hash curr (+ (hash-ref prev-hash curr) 1))
(hash-set! prev-hash curr 1))))
(begin
(hash-set! freq prev-chain (make-hash))
(hash-set! (hash-ref freq prev-chain) curr 1))))
;; Get the most common symbol in freq chain list
(define (get-most-common freq)
(let ((firstIndex (hash-iterate-first freq)))
(hash-iterate-key freq (get-most-common-index (hash-iterate-value freq firstIndex)
firstIndex
firstIndex
freq))))
;; Subfunction of above. private.
(define (get-most-common-index best index bestIndex freq)
(let ((curr (hash-iterate-value freq index)))
(if (false? (hash-iterate-next freq index))
(if (> curr best)
index
bestIndex)
(if (> curr best)
(get-most-common-index curr (hash-iterate-next freq index) index freq)
(get-most-common-index best (hash-iterate-next freq index) bestIndex freq)))))
;; Make chains of length 1 to n from train
;; make-chains : number list(string) -> list(hash)
(define (make-chains n train)
(if (= n 0)
empty
(cons (count-occurences train n)
(make-chains (- n 1) train))))
;; Remove a given letter from freq chain list.
(define (remove-from-chains letter chains)
(if (empty? chains)
empty
(begin
(hash-map (first chains) (lambda (k v) (hash-set! v letter -1)))
(remove-from-chains letter (rest chains)))))
;; Adds curr under prev in all of the chains in chains.
(define (add-to-model prev chains curr)
(if (empty? chains)
empty
(begin
(add-to-hash (last chains) (string-join prev "") curr)
(if (empty? prev)
(add-to-model empty
(drop-right chains 1)
curr)
(add-to-model (rest prev)
(drop-right chains 1)
curr)))))
;; Sum all of the values in the hash;
;; hash-sum : hash -> number
(define (hash-sum hash)
(local ((define ans 0))
(hash-for-each hash
(lambda (k v) (set! ans (+ ans v))))
ans))
(define (most-probable prob (curr -inf.0) (sym ""))
(if (empty? prob)
sym
(let ((curr-sym (first prob)))
(if (> (second curr-sym) curr)
(most-probable (rest prob) (second curr-sym) (first curr-sym))
(most-probable (rest prob) curr sym)))))
(define (get-most-common-for-each chains prev)
(if (empty? chains)
empty
(letrec ((prev-chain (string-join prev ""))
(longest-chain (last chains)))
(if (hash-has-key? longest-chain prev-chain)
(letrec ((ans (get-most-common (hash-ref longest-chain prev-chain)))
(occurences (hash-ref (hash-ref longest-chain prev-chain) ans)))
(cons (list ans occurences (hash-sum (hash-ref longest-chain prev-chain))) (if (empty? prev)
(get-most-common-for-each (drop-right chains 1)
empty)
(get-most-common-for-each (drop-right chains 1)
(drop-right prev 1)))))
(cons (list "" -1 1) (if (empty? prev)
(get-most-common-for-each (drop-right chains 1)
empty)
(get-most-common-for-each (drop-right chains 1)
(drop-right prev 1))))))))
;; ============ Prediction Functions ================
;; Use chains of n.
(define (predict-ngram test-set n chains (peek false) (prev empty))
(if peek
(set! PEEK-FREQ (generate-frequencies test-set))
peek)
(if (hash? PEEK-FREQ)
(hash-map PEEK-FREQ (lambda (k v) (if (= v 0)
(remove-from-chains k chains)
false)))
false)
(if (empty? test-set)
empty
(let ;; This is the guess!
((guess (generate-guess prev chains)))
;; Update the model.
(let ((curr (first test-set)))
(if (hash? PEEK-FREQ)
(hash-set! PEEK-FREQ curr (- (hash-ref PEEK-FREQ curr) 1))
false)
(add-to-model prev chains curr)
(if (= n 1)
(cons guess (predict-ngram (rest test-set) n chains false empty))
(if (> (length prev) (- n 2))
(cons guess (predict-ngram (rest test-set) n chains false (append (rest prev) (list curr))))
(cons guess (predict-ngram (rest test-set) n chains false (append prev (list curr))))))))))
;; Generate a guess by picking the most likely thing in chains starting with prev.
;; If you can't find it, use the next smaller chain. (cascading, fallback,
;; whatever you call it.)
(define (generate-guess prev chains)
(if (empty? chains)
empty
(let ((prev-chain (string-join prev ""))
(longest-chain (last chains)))
(if (hash-has-key? longest-chain prev-chain)
(get-most-common (hash-ref longest-chain prev-chain))
(if (empty? prev)
(generate-guess empty
(drop-right chains 1))
(generate-guess (drop-right prev 1)
(drop-right chains 1)))))))
;; Use predict ensemble to compare weighted probabilities with different chain lengths.
(define (predict-ensemble test-set n chains weights (prev empty))
(if (empty? test-set)
empty
(let ;; This is the guess!
((guess (generate-ensemble-guess prev chains weights)))
;; Update the model.
(let ((curr (first test-set)))
(add-to-model prev chains curr)
(if (= n 1)
(cons guess (predict-ensemble (rest test-set) n chains weights empty))
(if (> (length prev) (- n 2))
(cons guess (predict-ensemble (rest test-set) n chains weights (append (rest prev) (list curr))))
(cons guess (predict-ensemble (rest test-set) n chains weights (append prev (list curr))))))))))
;; Find the most probable giving the weights in all of the chains.
(define (generate-ensemble-guess prev chains weights)
(most-probable (map (lambda (freq-tuple weight) (list (first freq-tuple) (* weight (/ (second freq-tuple) (third freq-tuple)))))
(reverse (get-most-common-for-each chains prev))
weights)))
;; ========= Statistics Functions ================
;; Get the accuracy of the answer set based on the test set.
;; accuracy : list[string] list[string] -> number
(define (accuracy answer test-set peek)
(if peek
(* 1.0 (/ (- (num-correct-answers answer test-set 0) 5)
(length answer)))
(* 1.0 (/ (num-correct-answers answer test-set 0)
(length answer)))))
;; Get the number of correct answers
;; num-correct-answers : list[string] list[string] -> number
(define (num-correct-answers answer test-set (num 0))
(if (empty? answer)
num
(if (string=? (first answer)
(first test-set))
(num-correct-answers (rest answer) (rest test-set) (+ num 1))
(num-correct-answers (rest answer) (rest test-set) num))))
;; Get the random guess rate based on how many symbols there were.
;; get-random-guess-rate : void -> number
(define (get-random-guess-rate freq)
(/ 1.0 (hash-count (hash-ref (first freq) ""))))
;; ========= Math Functions ================
(define (fact x)
(if (= x 0)
1
(* x (fact (- x 1)))))
(define (choose n r)
(/ (fact n) (* (fact r) (fact (- n r)))))
(define (perm n r)
(/ (fact n) (fact (- n r))))
(define (gen-inverse n choices func)
(if (= n 0)
empty
(cons (/ 1 (func choices n)) (gen-inverse (- n 1) choices func))))
;; ========= Weighting Training Functions ================
(define (crunch n max len train test (best empty) (acc 0))
(if (= n 0)
best
(letrec ((tuple (rand-list len max))
(newacc (second (run-ensemble train test len tuple))))
(if (> newacc acc)
(crunch (- n 1) max len train test tuple newacc)
(crunch (- n 1) max len train test best acc)))))
(define (rand-list len max)
(if (= len 0)
empty
(cons (random max) (rand-list (- len 1) max))))
;; ========= Weighting Training Functions ================
(define (generate-frequencies strs)
(hash-ref (first (make-chains 1 strs)) ""))