-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathproximity.py
1034 lines (873 loc) · 33.7 KB
/
proximity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from math import sqrt
import dask.array as da
import numpy as np
import xarray as xr
from numba import prange
from xrspatial.utils import get_dataarray_resolution, ngjit
EUCLIDEAN = 0
GREAT_CIRCLE = 1
MANHATTAN = 2
PROXIMITY = 0
ALLOCATION = 1
DIRECTION = 2
def _distance_metric_mapping():
DISTANCE_METRICS = {}
DISTANCE_METRICS["EUCLIDEAN"] = EUCLIDEAN
DISTANCE_METRICS["GREAT_CIRCLE"] = GREAT_CIRCLE
DISTANCE_METRICS["MANHATTAN"] = MANHATTAN
return DISTANCE_METRICS
# create dictionary to map distance metric presented by string and the
# corresponding metric presented by integer.
DISTANCE_METRICS = _distance_metric_mapping()
@ngjit
def euclidean_distance(x1: float, x2: float, y1: float, y2: float) -> float:
"""
Calculates Euclidean (straight line) distance between (x1, y1) and
(x2, y2).
Parameters
----------
x1 : float
x-coordinate of the first point.
x2 : float
x-coordinate of the second point.
y1 : float
y-coordinate of the first point.
y2 : float
y-coordinate of the second point.
Returns
-------
distance : float
Euclidean distance between two points.
References
----------
- Wikipedia: https://en.wikipedia.org/wiki/Euclidean_distance#:~:text=In%20mathematics%2C%20the%20Euclidean%20distance,being%20called%20the%20Pythagorean%20distance. # noqa
Examples
--------
.. sourcecode:: python
>>> # Imports
>>> from xrspatial import euclidean_distance
>>> point_a = (142.32, 23.23)
>>> point_b = (312.54, 432.01)
>>> # Calculate Euclidean Distance
>>> dist = euclidean_distance(
... point_a[0],
... point_b[0],
... point_a[1],
... point_b[1])
>>> print(dist)
442.80462599209596
"""
x = x1 - x2
y = y1 - y2
return np.sqrt(x * x + y * y)
@ngjit
def manhattan_distance(x1: float, x2: float, y1: float, y2: float) -> float:
"""
Calculates Manhattan distance (sum of distance in x and y directions)
between (x1, y1) and (x2, y2).
Parameters
----------
x1 : float
x-coordinate of the first point.
x2 : float
x-coordinate of the second point.
y1 : float
y-coordinate of the first point.
y2 : float
y-coordinate of the second point.
Returns
-------
distance : float
Manhattan distance between two points.
References
----------
- Wikipedia: https://en.wikipedia.org/wiki/Taxicab_geometry
Examples
--------
.. sourcecode:: python
>>> from xrspatial import manhattan_distance
>>> point_a = (142.32, 23.23)
>>> point_b = (312.54, 432.01)
>>> # Calculate Manhattan Distance
>>> dist = manhattan_distance(
... point_a[0],
... point_b[0],
... point_a[1],
... point_b[1])
>>> print(dist)
579.0
"""
x = x1 - x2
y = y1 - y2
return abs(x) + abs(y)
@ngjit
def great_circle_distance(
x1: float, x2: float, y1: float, y2: float, radius: float = 6378137
) -> float:
"""
Calculates great-circle (orthodromic/spherical) distance between
(x1, y1) and (x2, y2), assuming each point is a longitude,
latitude pair.
Parameters
----------
x1 : float
x-coordinate (longitude) between -180 and 180 of the first point.
x2: float
x-coordinate (longitude) between -180 and 180 of the second point.
y1: float
y-coordinate (latitude) between -90 and 90 of the first point.
y2: float
y-coordinate (latitude) between -90 and 90 of the second point.
radius: float, default=6378137
Radius of sphere (earth).
Returns
-------
distance : float
Great-Circle distance between two points.
References
----------
- Wikipedia: https://en.wikipedia.org/wiki/Great-circle_distance#:~:text=The%20great%2Dcircle%20distance%2C%20orthodromic,line%20through%20the%20sphere's%20interior). # noqa
Examples
--------
.. sourcecode:: python
>>> from xrspatial import great_circle_distance
>>> point_a = (123.2, 82.32)
>>> point_b = (178.0, 65.09)
>>> # Calculate Great Circle Distance
>>> dist = great_circle_distance(
... point_a[0],
... point_b[0],
... point_a[1],
... point_b[1])
>>> print(dist)
2378290.489801402
"""
if x1 > 180 or x1 < -180:
raise ValueError(
"Invalid x-coordinate of the first point."
"Must be in the range [-180, 180]"
)
if x2 > 180 or x2 < -180:
raise ValueError(
"Invalid x-coordinate of the second point."
"Must be in the range [-180, 180]"
)
if y1 > 90 or y1 < -90:
raise ValueError(
"Invalid y-coordinate of the first point."
"Must be in the range [-90, 90]"
)
if y2 > 90 or y2 < -90:
raise ValueError(
"Invalid y-coordinate of the second point."
"Must be in the range [-90, 90]"
)
lat1, lon1, lat2, lon2 = (
np.radians(y1),
np.radians(x1),
np.radians(y2),
np.radians(x2),
)
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat / 2.0) ** 2 + \
np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2.0) ** 2
# earth radius: 6378137
return radius * 2 * np.arcsin(np.sqrt(a))
@ngjit
def _distance(x1, x2, y1, y2, metric):
if metric == EUCLIDEAN:
d = euclidean_distance(x1, x2, y1, y2)
elif metric == GREAT_CIRCLE:
d = great_circle_distance(x1, x2, y1, y2)
else:
# metric == MANHATTAN:
d = manhattan_distance(x1, x2, y1, y2)
return np.float32(d)
@ngjit
def _calc_direction(x1, x2, y1, y2):
# Calculate direction from (x1, y1) to a source cell (x2, y2).
# The output values are based on compass directions,
# 90 to the east, 180 to the south, 270 to the west, and 360 to the north,
# with 0 reserved for the source cell itself
if x1 == x2 and y1 == y2:
return 0
x = x2 - x1
y = y2 - y1
d = np.arctan2(-y, x) * 57.29578
if d < 0:
d = 90.0 - d
elif d > 90.0:
d = 360.0 - d + 90.0
else:
d = 90.0 - d
return np.float32(d)
@ngjit
def _process_proximity_line(
source_line,
xs,
ys,
pan_near_x,
pan_near_y,
is_forward,
line_id,
width,
max_distance,
line_proximity,
nearest_xs,
nearest_ys,
values,
distance_metric,
):
"""
Process proximity for a line of pixels in an image.
Parameters
----------
source_line : numpy.array
Input data.
pan_near_x : numpy.array
pan_near_y : numpy.array
is_forward : boolean
Will we loop forward through pixel.
line_id : np.int64
Index of the source_line in the image.
width : np.int64
Image width.
It is the number of pixels in the `source_line`.
max_distance : np.float32, maximum distance considered.
line_proximity : numpy.array
1d numpy array of type np.float32, calculated proximity from
source_line.
values : numpy.array
1d numpy array. A list of target pixel values
to measure the distance from. If this option is not provided
proximity will be computed from non-zero pixel values.
Returns
-------
self: numpy.array
1d numpy array of type np.float32. Corresponding proximity of
source_line.
"""
start = width - 1
end = -1
step = -1
if is_forward:
start = 0
end = width
step = 1
n_values = len(values)
for pixel in prange(start, end, step):
is_target = False
# Is the current pixel a target pixel?
if n_values == 0:
if source_line[pixel] != 0 and np.isfinite(source_line[pixel]):
is_target = True
else:
for i in prange(n_values):
if source_line[pixel] == values[i]:
is_target = True
if is_target:
line_proximity[pixel] = 0.0
nearest_xs[pixel] = pixel
nearest_ys[pixel] = line_id
pan_near_x[pixel] = pixel
pan_near_y[pixel] = line_id
continue
# Are we near(er) to the closest target to the above (below) pixel?
near_distance_square = max_distance ** 2 * 2.0
if pan_near_x[pixel] != -1:
# distance_square
x1 = xs[pan_near_y[pixel], pan_near_x[pixel]]
y1 = ys[pan_near_y[pixel], pan_near_x[pixel]]
x2 = xs[line_id, pixel]
y2 = ys[line_id, pixel]
dist = _distance(x1, x2, y1, y2, distance_metric)
dist_sqr = dist ** 2
if dist_sqr < near_distance_square:
near_distance_square = dist_sqr
else:
pan_near_x[pixel] = -1
pan_near_y[pixel] = -1
# Are we near(er) to the closest target to the left (right) pixel?
last = pixel - step
if pixel != start and pan_near_x[last] != -1:
x1 = xs[pan_near_y[last], pan_near_x[last]]
y1 = ys[pan_near_y[last], pan_near_x[last]]
x2 = xs[line_id, pixel]
y2 = ys[line_id, pixel]
dist = _distance(x1, x2, y1, y2, distance_metric)
dist_sqr = dist ** 2
if dist_sqr < near_distance_square:
near_distance_square = dist_sqr
pan_near_x[pixel] = pan_near_x[last]
pan_near_y[pixel] = pan_near_y[last]
# Are we near(er) to the closest target to the
# topright (bottom left) pixel?
tr = pixel + step
if tr != end and pan_near_x[tr] != -1:
x1 = xs[pan_near_y[tr], pan_near_x[tr]]
y1 = ys[pan_near_y[tr], pan_near_x[tr]]
x2 = xs[line_id, pixel]
y2 = ys[line_id, pixel]
dist = _distance(x1, x2, y1, y2, distance_metric)
dist_sqr = dist ** 2
if dist_sqr < near_distance_square:
near_distance_square = dist_sqr
pan_near_x[pixel] = pan_near_x[tr]
pan_near_y[pixel] = pan_near_y[tr]
# Update our proximity value.
if (
pan_near_x[pixel] != -1
and max_distance * max_distance >= near_distance_square
and (
line_proximity[pixel] < 0
or near_distance_square < line_proximity[pixel]
* line_proximity[pixel]
)
):
line_proximity[pixel] = sqrt(near_distance_square)
nearest_xs[pixel] = pan_near_x[pixel]
nearest_ys[pixel] = pan_near_y[pixel]
return
def _process(
raster,
x,
y,
target_values,
max_distance,
distance_metric,
process_mode
):
raster_dims = raster.dims
if raster_dims != (y, x):
raise ValueError(
"raster.coords should be named as coordinates:"
"({0}, {1})".format(y, x)
)
distance_metric = DISTANCE_METRICS.get(distance_metric, None)
if distance_metric is None:
distance_metric = DISTANCE_METRICS["EUCLIDEAN"]
target_values = np.asarray(target_values)
# x-y coordinates of each pixel.
# flatten the coords of input raster and reshape to 2d
xs = np.tile(raster[x].data, raster.shape[0]).reshape(raster.shape)
ys = np.repeat(raster[y].data, raster.shape[1]).reshape(raster.shape)
if max_distance is None:
max_distance = np.inf
max_possible_distance = _distance(
xs[0][0], xs[-1][-1], ys[0][0], ys[-1][-1], distance_metric
)
@ngjit
def _process_numpy(img, x_coords, y_coords):
height, width = img.shape
pan_near_x = np.zeros(width, dtype=np.int64)
pan_near_y = np.zeros(width, dtype=np.int64)
# output of the function
output_img = np.full((height, width), np.nan, dtype=np.float32)
img_distance = np.zeros(shape=(height, width), dtype=np.float32)
# Loop from top to bottom of the image.
for i in prange(width):
pan_near_x[i] = -1
pan_near_y[i] = -1
# a single line of the input image img
scan_line = np.zeros(width, dtype=img.dtype)
# indexes of nearest pixels of current line scan_line
nearest_xs = np.zeros(width, dtype=np.int64)
nearest_ys = np.zeros(width, dtype=np.int64)
for line in prange(height):
# Read for target values.
for i in prange(width):
scan_line[i] = img[line][i]
line_proximity = np.zeros(width, dtype=np.float32)
for i in prange(width):
line_proximity[i] = -1.0
nearest_xs[i] = -1
nearest_ys[i] = -1
# left to right
_process_proximity_line(
scan_line, x_coords, y_coords,
pan_near_x, pan_near_y, True,
line, width, max_distance,
line_proximity, nearest_xs, nearest_ys,
target_values, distance_metric,
)
for i in prange(width):
if nearest_xs[i] != -1 and line_proximity[i] >= 0:
if process_mode == ALLOCATION:
output_img[line][i] = img[nearest_ys[i], nearest_xs[i]]
elif process_mode == DIRECTION:
output_img[line][i] = _calc_direction(
x_coords[line, i],
x_coords[nearest_ys[i], nearest_xs[i]],
y_coords[line, i],
y_coords[nearest_ys[i], nearest_xs[i]],
)
# right to left
for i in prange(width):
nearest_xs[i] = -1
nearest_ys[i] = -1
_process_proximity_line(
scan_line, x_coords, y_coords,
pan_near_x, pan_near_y, False,
line, width, max_distance,
line_proximity, nearest_xs, nearest_ys,
target_values, distance_metric,
)
for i in prange(width):
img_distance[line][i] = line_proximity[i]
if nearest_xs[i] != -1 and line_proximity[i] >= 0:
if process_mode == ALLOCATION:
output_img[line][i] = img[nearest_ys[i], nearest_xs[i]]
elif process_mode == DIRECTION:
output_img[line][i] = _calc_direction(
x_coords[line, i],
x_coords[nearest_ys[i], nearest_xs[i]],
y_coords[line, i],
y_coords[nearest_ys[i], nearest_xs[i]],
)
# Loop from bottom to top of the image.
for i in prange(width):
pan_near_x[i] = -1
pan_near_y[i] = -1
for line in prange(height - 1, -1, -1):
# Read first pass proximity.
for i in prange(width):
line_proximity[i] = img_distance[line][i]
# Read pixel target_values.
for i in prange(width):
scan_line[i] = img[line][i]
# Right to left
for i in prange(width):
nearest_xs[i] = -1
nearest_ys[i] = -1
_process_proximity_line(
scan_line, x_coords, y_coords,
pan_near_x, pan_near_y, False,
line, width, max_distance,
line_proximity, nearest_xs, nearest_ys,
target_values, distance_metric,
)
for i in prange(width):
if nearest_xs[i] != -1 and line_proximity[i] >= 0:
if process_mode == ALLOCATION:
output_img[line][i] = img[nearest_ys[i], nearest_xs[i]]
elif process_mode == DIRECTION:
output_img[line][i] = _calc_direction(
x_coords[line, i],
x_coords[nearest_ys[i], nearest_xs[i]],
y_coords[line, i],
y_coords[nearest_ys[i], nearest_xs[i]],
)
# Left to right
for i in prange(width):
nearest_xs[i] = -1
nearest_ys[i] = -1
_process_proximity_line(
scan_line, x_coords, y_coords,
pan_near_x, pan_near_y, True,
line, width, max_distance,
line_proximity, nearest_xs, nearest_ys,
target_values, distance_metric,
)
# final post processing of distances
for i in prange(width):
if line_proximity[i] < 0:
line_proximity[i] = np.nan
else:
if nearest_xs[i] != -1 and line_proximity[i] >= 0:
if process_mode == ALLOCATION:
output_img[line][i] = img[
nearest_ys[i], nearest_xs[i]]
elif process_mode == DIRECTION:
output_img[line][i] = _calc_direction(
x_coords[line, i],
x_coords[nearest_ys[i], nearest_xs[i]],
y_coords[line, i],
y_coords[nearest_ys[i], nearest_xs[i]],
)
for i in prange(width):
img_distance[line][i] = line_proximity[i]
if process_mode == PROXIMITY:
return img_distance
else:
return output_img
def _process_dask(raster, xs, ys):
if max_distance >= max_possible_distance:
# consider all targets in the whole raster
# the data array is computed at once,
# make sure your data fit your memory
height, width = raster.shape
raster.data = raster.data.rechunk({0: height, 1: width})
xs = xs.rechunk({0: height, 1: width})
ys = ys.rechunk({0: height, 1: width})
pad_y = pad_x = 0
else:
cellsize_x, cellsize_y = get_dataarray_resolution(raster)
# calculate padding for each chunk
pad_y = int(max_distance / cellsize_y + 0.5)
pad_x = int(max_distance / cellsize_x + 0.5)
out = da.map_overlap(
_process_numpy,
raster.data, xs, ys,
depth=(pad_y, pad_x),
boundary=np.nan,
meta=np.array(()),
)
return out
if isinstance(raster.data, np.ndarray):
# numpy case
result = _process_numpy(raster.data, xs, ys)
elif isinstance(raster.data, da.Array):
# dask + numpy case
xs = da.from_array(xs, chunks=(raster.chunks))
ys = da.from_array(ys, chunks=(raster.chunks))
result = _process_dask(raster, xs, ys)
return result
# ported from
# https://github.com/OSGeo/gdal/blob/master/gdal/alg/gdalproximity.cpp
def proximity(
raster: xr.DataArray,
x: str = "x",
y: str = "y",
target_values: list = [],
max_distance: float = np.inf,
distance_metric: str = "EUCLIDEAN",
) -> xr.DataArray:
"""
Computes the proximity of all pixels in the image to a set of pixels
in the source image based on a distance metric.
This function attempts to compute the proximity of all pixels in the
image to a set of pixels in the source image. The following options
are used to define the behavior of the function. By default all
non-zero pixels in `raster.values` will be considered the "target",
and all proximities will be computed in pixels. Note that target
pixels are set to the value corresponding to a distance of zero.
Proximity support NumPy backed, and Dask with NumPy backed
xarray DataArray. The return values of proximity are of the same type as
the input type.
If input raster is a NumPy-backed DataArray, the result is NumPy-backed.
If input raster is a Dask-backed DataArray, the result is Dask-backed.
The implementation for NumPy-backed is ported from GDAL, which uses
a dynamic programming approach to identify nearest target of a pixel from
its surrounding neighborhood in a 3x3 window.
The implementation for Dask-backed uses `dask.map_overlap` to compute
proximity chunk by chunk by expanding the chunk's borders to cover
the `max_distance`.
Parameters
----------
raster : xr.DataArray
2D array image with `raster.shape` = (height, width).
x : str, default='x'
Name of x-coordinates.
y : str, default='y'
Name of y-coordinates.
target_values: list
Target pixel values to measure the distance from. If this option
is not provided, proximity will be computed from non-zero pixel
values.
max_distance: float, default=np.inf
The maximum distance to search. Proximity distances greater than
this value will be set to NaN.
Should be given in the same distance unit as input.
For example, if input raster is in lat-lon and distances between points
within the raster is calculated using Euclidean distance metric,
`max_distance` should also be provided in lat-lon unit.
If using Great Circle distance metric, and thus all distances is in km,
`max_distance` should also be provided in kilometer unit.
When scaling with Dask, whether the function scales well depends on
the `max_distance` value. If `max_distance` is infinite by default,
this function only works on a single machine.
It should scale well, however, if `max_distance` is relatively small
compared to the maximum possible distance in two arbitrary points
in the input raster. Note that if `max_distance` is equal or larger
than the max possible distance between 2 arbitrary points in the input
raster, the input data array will be rechunked.
distance_metric: str, default='EUCLIDEAN'
The metric for calculating distance between 2 points.
Valid distance metrics are:
'EUCLIDEAN', 'GREAT_CIRCLE', and 'MANHATTAN'.
Returns
-------
proximity_agg: xr.DataArray of same type as `raster`
2D array of proximity values.
All other input attributes are preserved.
References
----------
- OSGeo: https://github.com/OSGeo/gdal/blob/master/gdal/alg/gdalproximity.cpp # noqa
Examples
--------
.. sourcecode:: python
>>> import numpy as np
>>> import xarray as xr
>>> data = np.array([
[0., 0., 0., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]
])
>>> n, m = data.shape
>>> raster = xr.DataArray(data, dims=['y', 'x'], name='raster')
>>> raster['y'] = np.arange(n)[::-1]
>>> raster['x'] = np.arange(m)
>>> from xrspatial import proximity
>>> proximity_agg = proximity(raster)
>>> proximity_agg
<xarray.DataArray (y: 5, x: 5)>
array([[3.1622777, 2.236068 , 1.4142135, 1. , 1.4142135],
[3. , 2. , 1. , 0. , 1. ],
[3.1622777, 2.236068 , 1.4142135, 1. , 1.4142135],
[3.6055512, 2.828427 , 2.236068 , 2. , 2.236068 ],
[4.2426405, 3.6055512, 3.1622777, 3. , 3.1622777]],
dtype=float32)
Coordinates:
* y (y) int64 4 3 2 1 0
* x (x) int64 0 1 2 3 4
"""
proximity_img = _process(
raster,
x=x,
y=y,
target_values=target_values,
max_distance=max_distance,
distance_metric=distance_metric,
process_mode=PROXIMITY,
)
result = xr.DataArray(
proximity_img,
coords=raster.coords,
dims=raster.dims,
attrs=raster.attrs
)
return result
def allocation(
raster: xr.DataArray,
x: str = "x",
y: str = "y",
target_values: list = [],
max_distance: float = np.inf,
distance_metric: str = "EUCLIDEAN",
):
"""
Calculates, for all pixels in the input raster, the nearest source
based on a set of target values and a distance metric.
This function attempts to produce the value of nearest feature of all
pixels in the image to a set of pixels in the source image. The
following options are used to define the behavior of the function.
By default all non-zero pixels in `raster.values` will be considered
as"target", and all allocation will be computed in pixels.
Allocation supports NumPy backed, and Dask with NumPy backed
xarray DataArray. The return values of `allocation` are of the same type as
the input type.
If input raster is a NumPy-backed DataArray, the result is NumPy-backed.
If input raster is a Dask-backed DataArray, the result is Dask-backed.
`allocation` uses the same approach as `proximity`, which is ported
from GDAL. A dynamic programming approach is used for identifying nearest
target of a pixel from its surrounding neighborhood in a 3x3 window.
The implementation for Dask-backed uses `dask.map_overlap` to compute
`allocation` chunk by chunk by expanding the chunk's borders to cover
the `max_distance`.
Parameters
----------
raster : xr.DataArray
2D array of target data.
x : str, default='x'
Name of x-coordinates.
y : str, default='y'
Name of y-coordinates.
target_values : list
Target pixel values to measure the distance from. If this option
is not provided, allocation will be computed from non-zero pixel
values.
max_distance: float, default=np.inf
The maximum distance to search. Proximity distances greater than
this value will be set to NaN.
Should be given in the same distance unit as input.
For example, if input raster is in lat-lon and distances between points
within the raster is calculated using Euclidean distance metric,
`max_distance` should also be provided in lat-lon unit.
If using Great Circle distance metric, and thus all distances is in km,
`max_distance` should also be provided in kilometer unit.
When scaling with Dask, whether the function scales well depends on
the `max_distance` value. If `max_distance` is infinite by default,
this function only works on a single machine.
It should scale well, however, if `max_distance` is relatively small
compared to the maximum possible distance in two arbitrary points
in the input raster. Note that if `max_distance` is equal or larger
than the max possible distance between 2 arbitrary points in the input
raster, the input data array will be rechunked.
distance_metric : str, default='EUCLIDEAN'
The metric for calculating distance between 2 points. Valid
distance metrics are: 'EUCLIDEAN', 'GREAT_CIRCLE', and 'MANHATTAN'.
Returns
-------
allocation_agg: xr.DataArray of same type as `raster`
2D array of allocation values.
All other input attributes are preserved.
References
----------
- OSGeo: https://github.com/OSGeo/gdal/blob/master/gdal/alg/gdalproximity.cpp # noqa
Examples
--------
.. sourcecode:: python
>>> import numpy as np
>>> import xarray as xr
>>> data = np.array([
[0., 0., 0., 0., 0.],
[0., 1., 0., 2., 0.],
[0., 0., 3., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]
])
>>> n, m = data.shape
>>> raster = xr.DataArray(data, dims=['y', 'x'], name='raster')
>>> raster['y'] = np.arange(n)[::-1]
>>> raster['x'] = np.arange(m)
>>> from xrspatial import allocation
>>> allocation_agg = allocation(raster)
>>> allocation_agg
<xarray.DataArray (y: 5, x: 5)>
array([[1., 1., 2., 2., 2.],
[1., 1., 1., 2., 2.],
[1., 1., 3., 2., 2.],
[1., 3., 3., 3., 2.],
[3., 3., 3., 3., 3.]])
Coordinates:
* y (y) int64 4 3 2 1 0
* x (x) int64 0 1 2 3 4
"""
allocation_img = _process(
raster,
x=x,
y=y,
target_values=target_values,
max_distance=max_distance,
distance_metric=distance_metric,
process_mode=ALLOCATION,
)
# convert to have same type as of input @raster
result = xr.DataArray(
allocation_img,
coords=raster.coords,
dims=raster.dims,
attrs=raster.attrs,
)
return result
def direction(
raster: xr.DataArray,
x: str = "x",
y: str = "y",
target_values: list = [],
max_distance: float = np.inf,
distance_metric: str = "EUCLIDEAN",
):
"""
Calculates, for all cells in the array, the downward slope direction
Calculates, for all pixels in the input raster, the direction to
nearest source based on a set of target values and a distance metric.
This function attempts to calculate for each cell, the the direction,
in degrees, to the nearest source. The output values are based on
compass directions, where 90 is for the east, 180 for the south,
270 for the west, 360 for the north, and 0 for the source cell
itself. The following options are used to define the behavior of
the function. By default all non-zero pixels in `raster.values`
will be considered as "target", and all direction will be computed
in pixels.
Direction support NumPy backed, and Dask with NumPy backed
xarray DataArray. The return values of `direction` are of the same type as
the input type.
If input raster is a NumPy-backed DataArray, the result is NumPy-backed.
If input raster is a Dask-backed DataArray, the result is Dask-backed.
Similar to `proximity`, the implementation for NumPy-backed is ported
from GDAL, which uses a dynamic programming approach to identify
nearest target of a pixel from its surrounding neighborhood in a 3x3 window
The implementation for Dask-backed uses `dask.map_overlap` to compute
proximity direction chunk by chunk by expanding the chunk's borders
to cover the `max_distance`.
Parameters
----------
raster : xr.DataArray
2D array image with `raster.shape` = (height, width).
x : str, default='x'
Name of x-coordinates.
y : str, default='y'
Name of y-coordinates.
target_values: list
Target pixel values to measure the distance from. If this
option is not provided, proximity will be computed from
non-zero pixel values.
max_distance: float, default=np.inf
The maximum distance to search. Proximity distances greater than
this value will be set to NaN.
Should be given in the same distance unit as input.
For example, if input raster is in lat-lon and distances between points
within the raster is calculated using Euclidean distance metric,
`max_distance` should also be provided in lat-lon unit.
If using Great Circle distance metric, and thus all distances is in km,
`max_distance` should also be provided in kilometer unit.
When scaling with Dask, whether the function scales well depends on
the `max_distance` value. If `max_distance` is infinite by default,
this function only works on a single machine.
It should scale well, however, if `max_distance` is relatively small
compared to the maximum possible distance in two arbitrary points
in the input raster. Note that if `max_distance` is equal or larger
than the max possible distance between 2 arbitrary points in the input
raster, the input data array will be rechunked.
distance_metric: str, default='EUCLIDEAN'
The metric for calculating distance between 2 points.
Valid distance_metrics are:
'EUCLIDEAN', 'GREAT_CIRCLE', and 'MANHATTAN'.
Returns
-------
direction_agg: xr.DataArray of same type as `raster`
2D array of direction values.
All other input attributes are preserved.
References
----------
- OSGeo: https://github.com/OSGeo/gdal/blob/master/gdal/alg/gdalproximity.cpp # noqa
Examples
--------
.. sourcecode:: python
>>> import numpy as np
>>> import xarray as xr
>>> data = np.array([
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.],
[1., 0., 0., 0., 0.]
])
>>> n, m = data.shape
>>> raster = xr.DataArray(data, dims=['y', 'x'], name='raster')
>>> raster['y'] = np.arange(n)[::-1]