-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNs_Syntax.py
736 lines (523 loc) · 24.4 KB
/
Ns_Syntax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
import fenics as fe
import dolfin as df
import numpy as np
from fenics import (
UserExpression, Constant, FunctionSpace, TestFunctions,
Function, MixedElement, RectangleMesh, MeshFunction,
cells, refine, Measure, SubDomain, VectorElement,
FiniteElement, derivative, NonlinearVariationalProblem,
NonlinearVariationalSolver, Point, DirichletBC, split,
near, TrialFunction, LogLevel, set_log_level, sqrt
)
from tqdm import tqdm
from mpi4py import MPI
set_log_level(LogLevel.ERROR)
########################## Tracking Information Functions and Dimenssionless Numbers ##################
def compute_global_velocity_extremes(upT, W, comm):
"""
Compute the global maximum and minimum velocities across all MPI processes.
Args:
upT: dolfin.Function
The current solution for velocity, pressure, and temperature.
dm0: dolfin.DofMap
Degree of freedom mapping for the velocity function space.
comm: MPI communicator
The MPI communicator for the simulation.
Returns:
tuple: A tuple containing the global maximum and minimum velocities.
"""
# Define the dofmap for velocity
dm0 = W.sub(0).dofmap()
# Compute local max and min velocities
u_max_local = np.abs(upT.vector().vec()[dm0.dofs()]).max()
u_min_local = np.abs(upT.vector().vec()[dm0.dofs()]).min()
# Compute global max and min velocities
u_max = comm.allreduce(u_max_local, op=MPI.MAX)
u_min = comm.allreduce(u_min_local, op=MPI.MIN)
return u_max, u_min
def calculate_dimensionless_numbers(u_max, domain_length_x, K1, RHO1, MU1):
"""
Calculate the Peclet and Reynolds numbers.
Args:
u_max: float
The maximum velocity in the domain.
Nx: float
Characteristic length scale (e.g., domain size).
K1: float
Thermal conductivity of the fluid.
RHO1: float
Density of the fluid.
MU1: float
Dynamic viscosity of the fluid.
Returns:
tuple: A tuple containing the Peclet and Reynolds numbers.
"""
# Calculate Peclet number (Advective/Diffusive transport rate)
peclet_number = (u_max * domain_length_x) / K1
# Calculate Reynolds number
reynolds_number = RHO1 * u_max * domain_length_x / MU1
return peclet_number, reynolds_number
############################# END ################################
#################### Define Parallel Variables ####################
# Get the global communicator
comm = MPI.COMM_WORLD
# Get the rank of the process
rank = comm.Get_rank()
# Get the size of the communicator (total number of processes)
size = comm.Get_size()
############################# END ################################
##################### Physical Constants ################################
GRAVITY = -10 # Acceleration due to gravity (m/s^2)
RHO1 = 760 # Fluid density (kg/m^3)
MU1 = 4.94 * 10 ** -4 # Dynamic viscosity (Pa.s)
K1 = 0.1 # Thermal conductivity (W/m.K)
CP1 = 2090 # Heat capacity (J/kg.K)
ALPHA1 = 1.3 * 10**-3 # Thermal expansion coefficient (1/K)
GAMMA = -8 * 10 ** -5 # Surface tension temperature derivative (N/m.K)
# Temperature Constants:
T_REF = 273.15 # Reference temperature (K)
T_RIGHT = 273.15 # Temperature on the right boundary (K)
DELTA_T = 2 # Temperature difference (K)
T_LEFT = T_RIGHT + DELTA_T # Temperature on the left boundary (K)
############################# END ################################
##################### Mesh Refinement Functions For Bounderies ######################
def refine_mesh_near_boundary(mesh, threshold, domain):
"""
Refines the mesh near the boundaries based on a specified threshold.
Parameters:
mesh : dolfin.Mesh
The initial mesh to be refined.
threshold : float
The distance from the boundaries where the mesh should be refined.
domain : List of tuples
Domain boundaries specified as [(X0, Y0), (X1, Y1)]
where (X0, Y0) is the bottom-left and (X1, Y1) is the top-right corner.
Returns:
mesh_r : dolfin.Mesh
The refined mesh.
"""
# Unpack domain coordinates
(X0, Y0), (X1, Y1) = domain
# Initialize a MeshFunction for marking cells to refine
marker = MeshFunction("bool", mesh, mesh.topology().dim(), False)
# Iterate through each cell in the mesh
for idx, cell in enumerate(cells(mesh)):
x_mid, y_mid = cell.midpoint().x(), cell.midpoint().y()
# Calculate the distance from the cell's midpoint to the boundary
dist_to_left_boundary = abs(x_mid - X0)
dist_to_right_boundary = abs(x_mid - X1)
dist_to_bottom_boundary = abs(y_mid - Y0)
dist_to_top_boundary = abs(y_mid - Y1)
# Mark cells for refinement if they're within the threshold distance from any boundary
if (min(dist_to_left_boundary, dist_to_right_boundary) < threshold or
min(dist_to_bottom_boundary, dist_to_top_boundary) < threshold):
marker.array()[idx] = True
# Refine the mesh based on the marked cells
refined_mesh = refine(mesh, marker)
return refined_mesh
def refine_mesh_near_corners(mesh, threshold, domain):
"""
Refines the mesh near the corners based on a specified threshold.
Parameters:
mesh : dolfin.Mesh
The initial mesh to be refined.
threshold : float
The distance from the corners where the mesh should be refined.
domain : List of tuples
Domain boundaries specified as [(X0, Y0), (X1, Y1)]
where (X0, Y0) is the bottom-left and (X1, Y1) is the top-right corner.
Returns:
refined_mesh : dolfin.Mesh
The refined mesh near the corners.
"""
# Unpack domain coordinates
(X0, Y0), (X1, Y1) = domain
# Initialize a MeshFunction for marking cells to refine
marker = MeshFunction("bool", mesh, mesh.topology().dim(), False)
# Iterate through each cell in the mesh
for idx, cell in enumerate(cells(mesh)):
x_mid, y_mid = cell.midpoint().x(), cell.midpoint().y()
# Calculate the distance from the cell's midpoint to the corners
dist_to_bottom_left_corner = sqrt((x_mid - X0)**2 + (y_mid - Y0)**2)
dist_to_bottom_right_corner = sqrt((x_mid - X1)**2 + (y_mid - Y0)**2)
dist_to_top_left_corner = sqrt((x_mid - X0)**2 + (y_mid - Y1)**2)
dist_to_top_right_corner = sqrt((x_mid - X1)**2 + (y_mid - Y1)**2)
# Mark cells for refinement if they're within the threshold distance from any corner
if ( dist_to_top_left_corner < threshold):
marker.array()[idx] = True
# Refine the mesh based on the marked cells
refined_mesh = refine(mesh, marker)
return refined_mesh
############################# END ################################
############################## Define domain sizes and discretization parameters ################################
# Define approximate lengths of the domain in x and y directions (meters)
approx_domain_length_x = 10e-3 # 10 mm converted to meters
approx_domain_length_y = 5e-3 # 5 mm converted to meters
# Define grid spacing in x and y directions (meters)
grid_spacing_x = 0.2e-3 # 0.1 mm converted to meters
grid_spacing_y = 0.2e-3 # 0.1 mm converted to meters
# Define time step for the simulation (arbitrary units)
dt = 100
# Calculate the number of divisions along each axis based on approximate domain size and grid spacing
num_divisions_x = int(approx_domain_length_x / grid_spacing_x)
num_divisions_y = int(approx_domain_length_y / grid_spacing_y)
# Adjust the domain length to ensure it is divisible by the grid spacing and slightly larger than the desired size
domain_length_x = (num_divisions_x + 1) * grid_spacing_x
domain_length_y = (num_divisions_y + 1) * grid_spacing_y
# Update the number of divisions to match the new domain length
num_divisions_x += 1
num_divisions_y += 1
# Define the origin point of the domain (bottom left corner)
origin = df.Point(0.0, 0.0)
# Calculate the top right corner based on the origin and adjusted domain lengths
top_right_corner = df.Point(origin.x() + domain_length_x, origin.y() + domain_length_y)
# Create the initial rectangular mesh using the defined corners and number of divisions
initial_mesh = fe.RectangleMesh(origin, top_right_corner, num_divisions_x, num_divisions_y)
# Define Domain
Domain = [ ( 0.0 , 0.0 ) ,( 0.0 + domain_length_x , 0.0 + domain_length_y ) ]
############################# END ################################
############################ Modify Initial Mesh ######################
mesh = initial_mesh
mesh = refine_mesh_near_boundary( mesh, 0.2e-3, Domain )
mesh = refine_mesh_near_boundary( mesh, 0.2e-3, Domain )
mesh = refine_mesh_near_corners( mesh, 0.1e-3, Domain )
############################# END ################################
######################################################################
def create_function_spaces(mesh):
"""
Create function spaces, test functions, and functions for velocity, pressure, and temperature.
Args:
mesh : fenics.Mesh
The computational mesh.
Returns:
tuple: A tuple containing the function spaces, test functions, and current and previous solutions.
"""
# Define finite elements for velocity, pressure, and temperature
P2 = fe.VectorElement("Lagrange", mesh.ufl_cell(), 2) # Velocity
P1 = fe.FiniteElement("Lagrange", mesh.ufl_cell(), 1) # Pressure
PT = fe.FiniteElement( "Lagrange", mesh.ufl_cell(), 1 )#temperature
# Define mixed elements
element = MixedElement([P2, P1, PT])
# Create a function space
W = FunctionSpace(mesh, element)
# Define test functions
v_test, q_test, s_test = TestFunctions(W)
# Define current and previous solutions
upT = Function(W) # Current solution
upT0 = Function(W) # Previous solution
# Split functions to access individual components
u_answer, p_answer, T_answer = split(upT) # Current solution
u_prev, p_prev, T_prev = split(upT0) # Previous solution
return W, v_test, q_test, s_test, upT, upT0, u_answer, p_answer, T_answer, u_prev, p_prev, T_prev
# Usage example:
# W, v_test, q_test, s_test, upT, upT0, u_answer, p_answer, T_answer, u_prev, p_prev, T_prev = create_function_spaces(mesh)
############################# END ################################
############################ Defining Equations ###########################
# Related Functions for defining equaions
def epsilon(u):
"""
Calculate the strain rate tensor for a given velocity field.
Args:
u : dolfin.Function
The velocity field.
Returns:
dolfin.Expression
The strain rate tensor.
"""
return 0.5 * (fe.grad(u) + fe.grad(u).T)
def sigma(u, p, mu1):
"""
Calculate the stress tensor for a given velocity field and pressure.
Args:
u : dolfin.Function
The velocity field.
p : dolfin.Function
The pressure field.
Returns:
dolfin.Expression
The stress tensor.
"""
return 2 * mu1 * epsilon(u) - p * fe.Identity(len(u))
def Traction(T, n_v, gamma):
"""
Calculate the traction on the boundary for a given temperature field.
Args:
T : dolfin.Function
The temperature field.
n_v : dolfin.Expression or dolfin.Constant
The normal vector to the boundary.
Returns:
dolfin.Expression
The traction vector.
"""
return gamma * (fe.grad(T) - fe.dot(n_v, fe.grad(T)) * n_v)
# main equaions
def F1(u_answer, q_test, dt):
"""
Define the weak form of the continuity equation for incompressible flow.
Args:
u_answer: dolfin.Function
The current approximation of the velocity field in the mixed function space.
q_test: dolfin.TestFunction
The test function for pressure in the mixed function space.
dt: float
The time step for the transient simulation.
Returns:
ufl.Form
The weak form of the continuity equation suitable for FEniCS assembly.
"""
# The weak form of the continuity equation for incompressible flow is the integral of the
# product of the test function for pressure (q_test) and the divergence of the velocity field (u_answer)
# over the entire domain. For incompressible flow, this divergence should be zero.
F1 = fe.inner(fe.div(u_answer), q_test) * dt * fe.dx
return F1
def F2(u_answer, u_prev, p_answer, T_answer, v_test, dt, rho1, n_v, mu1, gamma, alpha1, ds1, dx1):
"""
Define the weak form of the momentum equation for the Navier-Stokes problem.
Args:
u_answer: dolfin.Function
The current approximation of the velocity field in the mixed function space.
u_prev: dolfin.Function
The velocity field from the previous time step.
p_answer: dolfin.Function
The current approximation of the pressure field in the mixed function space.
T_answer: dolfin.Function
The current approximation of the temperature field in the mixed function space.
v_test: dolfin.TestFunction
The test function for velocity in the mixed function space.
dt: float
The time step for the transient simulation.
rho1: float
The density of the fluid.
n_v: dolfin.Constant or dolfin.Expression
The normal vector used in the traction term.
Returns:
ufl.Form
The weak form of the momentum equation suitable for FEniCS assembly.
"""
F2 = (
fe.inner((u_answer - u_prev) / dt, v_test) * fe.dx
+ fe.inner(fe.dot(u_answer, fe.grad(u_answer)), v_test) * fe.dx
+ (1/rho1) * fe.inner(sigma(u_answer, p_answer, mu1), epsilon(v_test)) * fe.dx
- (1/rho1) * fe.inner(Traction(T_answer, n_v, gamma), v_test) * ds1(1)
# Uncomment the following lines if buoyancy force is needed
# + fe.inner(gravity * alpha1 * (T_answer - T_ref), v_test[1]) * fe.dx # Bouyancy y-component
#Remeber alpha1 ?!
)
return F2
def F3(T_answer, T_prev, u_answer, s_test, dt, rho1, Cp1, K1):
"""
Define the weak form of the energy equation for the coupled Navier-Stokes and heat transfer problem.
Args:
T_answer: fenics.Function
The current approximation of the temperature field in the mixed function space.
T_prev: fenics.Function
The temperature field from the previous time step.
u_answer: fenics.Function
The current approximation of the velocity field in the mixed function space.
s_test: fenics.TestFunction
The test function for temperature in the mixed function space.
dt: float
The time step for the transient simulation.
rho1: float
The density of the fluid.
Cp1: float
The specific heat capacity at constant pressure of the fluid.
K1: float
The thermal conductivity of the fluid.
Returns:
ufl.Form
The weak form of the energy equation suitable for FEniCS assembly.
"""
F3 = ( fe.inner((T_answer - T_prev) / dt, s_test) * fe.dx
+ fe.inner(fe.grad(s_test), K1/(rho1 * Cp1) * fe.grad(T_answer)) * fe.dx
+ fe.inner(s_test, fe.dot(u_answer, fe.grad(T_answer))) * fe.dx)
return F3
def solve_navier_stokes_heat_transfer(mesh, Bc, dt, upT, W, rho1, mu1, gamma, n_v, alpha1, Cp1, K1, absolute_tolerance, relative_tolerance, u_answer, u_prev, T_answer, T_prev, p_answer, v_test, q_test, s_test, ds1, dx1):
"""
Solves the coupled Navier-Stokes and heat transfer problem using FEniCS.
Args:
mesh: fenics.Mesh
The computational mesh.
Bc: list
List of Dirichlet boundary conditions.
dt: float
Time step for the transient simulation.
upT: fenics.Function
Function representing the current solution for velocity, pressure, and temperature.
W: fenics.FunctionSpace
Mixed function space for velocity, pressure, and temperature.
rho1, mu1, gamma, alpha1, Cp1, K1: float
Physical constants for the fluid.
T_left, T_right, T_ref: float
Temperatures for boundary conditions and reference temperature.
Returns:
upT: fenics.Function
Updated function after solving the nonlinear variational problem.
"""
# Define weak forms
F1_form = F1(u_answer, q_test, dt)
F2_form = F2(u_answer, u_prev, p_answer, T_answer, v_test, dt, rho1, n_v, mu1, gamma, alpha1, ds1, dx1)
F3_form = F3(T_answer, T_prev, u_answer, s_test, dt, rho1, Cp1, K1)
# Define the combined weak form
L = F1_form + F2_form + F3_form
# Define the Jacobian
J = derivative(L, upT)
# Set up the nonlinear variational problem
problem = NonlinearVariationalProblem(L, upT, Bc, J)
# Set up the solver
solver = NonlinearVariationalSolver(problem)
# Set solver parameters
prm = solver.parameters
prm['newton_solver']['relative_tolerance'] = relative_tolerance
prm['newton_solver']['absolute_tolerance'] = absolute_tolerance
prm['newton_solver']['krylov_solver']['nonzero_initial_guess'] = True
return solver
############################# END ########################################
############################ Boundary Condition Section #################
def Define_Boundary_Condition(W, Domain, T_LEFT, T_RIGHT ) :
# Define the Domain boundaries based on the previous setup
(X0, Y0), (X1, Y1) = Domain
# Define boundary conditions for velocity, pressure, and temperature
class LeftBoundary(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and near(x[0], X0)
class RightBoundary(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and near(x[0], X1)
class BottomBoundary(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and near(x[1], Y0)
class TopBoundary(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and near(x[1], Y1)
# Instantiate boundary classes
left_boundary = LeftBoundary()
right_boundary = RightBoundary()
bottom_boundary = BottomBoundary()
top_boundary = TopBoundary()
# Define Dirichlet boundary conditions
bc_u_left = DirichletBC(W.sub(0), Constant((0, 0)), left_boundary)
bc_u_right = DirichletBC(W.sub(0), Constant((0, 0)), right_boundary)
bc_u_bottom = DirichletBC(W.sub(0), Constant((0, 0)), bottom_boundary)
bc_u_top = DirichletBC(W.sub(0).sub(1), Constant(0), top_boundary)
bc_T_left = DirichletBC(W.sub(2), T_LEFT, left_boundary)
bc_T_right = DirichletBC(W.sub(2), T_RIGHT, right_boundary)
# Point for setting pressure
zero_pressure_point = Point( (X0 + X1) /2, (Y0+Y1)/2 )
bc_p_zero = DirichletBC(W.sub(1), Constant(0), lambda x, on_boundary: near(x[0], zero_pressure_point.x()) and near(x[1], zero_pressure_point.y()), method="pointwise")
# Combine all boundary conditions
bc_all = [bc_u_left, bc_u_right, bc_u_bottom, bc_u_top, bc_T_left, bc_T_right, bc_p_zero]
# ******************************************
# Create a MeshFunction for marking the subdomains
sub_domains = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
sub_domains.set_all(0)
# Mark the subdomains with the boundary objects
bottom_boundary.mark(sub_domains, 2) # Mark the bottom boundary with label 2
top_boundary.mark(sub_domains, 1) # Mark the top boundary with label 1
# Define measures with the subdomain marking
ds = Measure("ds", domain=mesh, subdomain_data=sub_domains) # For boundary integration
# Define an interior domain class to mark the interior of the domain
class Interior(SubDomain):
def inside(self, x, on_boundary):
return not (top_boundary.inside(x, on_boundary) or bottom_boundary.inside(x, on_boundary))
# Mark the interior domain
domains2 = MeshFunction("size_t", mesh, mesh.topology().dim())
domains2.set_all(0) # Initially mark all cells as 0
interior_obj = Interior()
interior_obj.mark(domains2, 1) # Mark cells inside the interior domain as 1
# Define the dx measure for the interior domain
dx = Measure("dx", domain=mesh, subdomain_data=domains2)
return ds, dx, bc_all
############################# END ################################
#################### Define Step 1 For Solving ####################
W, v_test, q_test, s_test, upT, upT0, u_answer, p_answer, T_answer, u_prev, p_prev, T_prev = create_function_spaces(mesh)
n_v = Constant(( 0, 1 ) )
ds1, dx1, bc_all = Define_Boundary_Condition(W, Domain, T_LEFT, T_RIGHT )
# solver = solve_navier_stokes_heat_transfer(
# mesh, bc_all, dt, upT, W, RHO1, MU1, GAMMA, n_v, ALPHA1, CP1, K1, 1E-5, 1E-6 )
solver = solve_navier_stokes_heat_transfer(
mesh, bc_all, dt, upT, W, RHO1, MU1, GAMMA, n_v, ALPHA1, CP1, K1, 1E-6 , 1E-5,
u_answer, u_prev, T_answer, T_prev, p_answer, v_test, q_test, s_test, ds1, dx1)
############################# END ###############################
#################### Define Initial Condition ####################
class InitialConditions(fe.UserExpression):
"""
This class represents the initial conditions for the simulation.
It initializes the velocity components, pressure, and temperature.
"""
def eval(self, values, x):
"""
Set the initial values for [velocity_x, velocity_y, pressure, temperature].
Args:
values: The array to be filled with the initial values.
x: The coordinates where the initial values are evaluated.
"""
values[0] = 0 # Initial x-component of velocity
values[1] = 0 # Initial y-component of velocity
values[2] = 0.0 # Initial pressure
values[3] = 273.15 # Initial temperature (in Kelvin)
def value_shape(self):
"""
Return the shape of the initial values array.
This is a vector of length 4 for [velocity_x, velocity_y, pressure, temperature].
"""
return (4,)
initial_v = InitialConditions( degree = 2 )
upT.interpolate( initial_v )
upT0.interpolate( initial_v )
############################# END ################################
############################ File Section #########################
file = fe.XDMFFile("NS_Syntax.xdmf" ) # File Name To Save #
def write_simulation_data(Sol_Func, time, file, variable_names ):
"""
Writes the simulation data to an XDMF file. Handles an arbitrary number of variables.
Parameters:
- Sol_Func : fenics.Function
The combined function of variables (e.g., Phi, U, Theta).
- time : float
The simulation time or step to associate with the data.
- file_path : str, optional
The path to the XDMF file where data will be written.
- variable_names : list of str, optional
The names of the variables in the order they are combined in Sol_Func.
"""
# Configure file parameters
file.parameters["rewrite_function_mesh"] = True
file.parameters["flush_output"] = True
file.parameters["functions_share_mesh"] = True
# Split the combined function into its components
functions = Sol_Func.split(deepcopy=True)
# Check if the number of variable names matches the number of functions
if variable_names and len(variable_names) != len(functions):
raise ValueError("The number of variable names must match the number of functions.")
# Rename and write each function to the file
for i, func in enumerate(functions):
name = variable_names[i] if variable_names else f"Variable_{i}"
func.rename(name, "solution")
file.write(func, time)
file.close()
T = 0
variable_names = [ "Vel", "Press", "T" ] # Adjust as needed
write_simulation_data( upT0, T, file , variable_names=variable_names )
############################# END ###############################
########################### Solving Loop #########################
# Time-stepping loop
for it in tqdm(range(200000)):
# Write data to file at certain intervals
if it % 1000 == 0:
write_simulation_data(upT, T, file, variable_names)
# Solve the system
no_of_it, converged = solver.solve()
# Update the previous solution
upT0.vector()[:] = upT.vector()
# Update time
T = T + dt
# Printing Informations Related to solutions behaviour
u_max, u_min = compute_global_velocity_extremes(upT, W, comm)
peclet_number, reynolds_number = calculate_dimensionless_numbers(u_max, domain_length_x, K1, RHO1, MU1)
if rank == 0 and it% 1000 ==0 : # Only print for the root process
print(" ├─ Iteration: " + str(it), flush=True)
print(" Peclet Number is (Advective/Diffusive) Transport rate: " + str(peclet_number) , flush=True)
print(" Reynolds Number is: " + str(reynolds_number), flush=True)
############################# END ###############################