-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lstm.py
39 lines (30 loc) · 1.12 KB
/
train_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from keras.models import Sequential
from keras.layers import LSTM, Dense
import numpy as np
data_dim = 16
timesteps = 8
num_classes = 10
x_train = np.random.random((1000, 20))
y_train = np.random.randint(2, size=(1000, 1))
x_test = np.random.random((100, 20))
y_test = np.random.randint(2, size=(100, 1))
model = Sequential()
# returns a sequence of vectors of dimension 32
model.add(LSTM(32, return_sequences=True,input_shape=(timesteps, data_dim)))
# returns a sequence of vectors of dimension 32
model.add(LSTM(32, return_sequences=True))
# return a single vector of dimension 32
model.add(LSTM(32))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# Generate dummy training data
x_train = np.random.random((1000, timesteps, data_dim))
y_train = np.random.random((1000, num_classes))
# Generate dummy validation data
x_val = np.random.random((100, timesteps, data_dim))
y_val = np.random.random((100, num_classes))
model.fit(x_train, y_train,
batch_size=128, epochs=5,
validation_data=(x_val, y_val))