diff --git a/Exareme-Docker/src/exareme/exareme-master/src/main/java/madgik/exareme/master/queryProcessor/HBP/AlgorithmProperties.java b/Exareme-Docker/src/exareme/exareme-master/src/main/java/madgik/exareme/master/queryProcessor/HBP/AlgorithmProperties.java
index f25435f31..b2c0af8ea 100644
--- a/Exareme-Docker/src/exareme/exareme-master/src/main/java/madgik/exareme/master/queryProcessor/HBP/AlgorithmProperties.java
+++ b/Exareme-Docker/src/exareme/exareme-master/src/main/java/madgik/exareme/master/queryProcessor/HBP/AlgorithmProperties.java
@@ -264,6 +264,8 @@ private static void validateAlgorithmParameterValueType(
ParameterProperties parameterProperties
) throws AlgorithmException, BadUserInputException {
if (parameterProperties.getValueType().equals(ParameterProperties.ParameterValueType.json)) {
+ if (value.equals(""))
+ return;
try {
new JSONObject(value);
} catch (JSONException ex) {
diff --git a/Exareme-Docker/src/exareme/exareme-master/src/main/java/madgik/exareme/master/queryProcessor/HBP/ParameterProperties.java b/Exareme-Docker/src/exareme/exareme-master/src/main/java/madgik/exareme/master/queryProcessor/HBP/ParameterProperties.java
index fd172ab2a..4308f62fa 100644
--- a/Exareme-Docker/src/exareme/exareme-master/src/main/java/madgik/exareme/master/queryProcessor/HBP/ParameterProperties.java
+++ b/Exareme-Docker/src/exareme/exareme-master/src/main/java/madgik/exareme/master/queryProcessor/HBP/ParameterProperties.java
@@ -21,6 +21,7 @@ public class ParameterProperties {
public enum ParameterType {
column, // used for selecting specific columns from the database
formula, // used for parsing the input as a formula of R, '+ - * : 0' are allowed.
+ formula_description, // used for providing a formula description to the algorithm in json format
filter, // used for filtering on the database input
dataset, // used for choosing database input
pathology, // used for specifying what database to use
@@ -33,7 +34,6 @@ public enum ParameterValueType {
real,
json
}
-
public ParameterProperties() {
}
@@ -50,13 +50,15 @@ public void validateParameterPropertiesInitialization(String algorithmName) thro
if (type == null) {
throw new AlgorithmException(algorithmName, "The parameter field 'type' was not initialized in the properties.json file.");
} else if (type.equals(ParameterType.column) || type.equals(ParameterType.formula)) {
- if (columnValuesSQLType == null) {
- }
-
if (columnValuesIsCategorical == null) {
throw new AlgorithmException(algorithmName, "The parameter field 'columnValuesIsCategorical' was not initialized in the properties.json file.");
}
- } else if (valueType.equals(ParameterValueType.json)){
+ }else if (type.equals(ParameterType.formula_description)) {
+ if (!valueType.equals(ParameterValueType.json)) {
+ throw new AlgorithmException(algorithmName, "The parameter field 'valueType' must be json since the 'type' is formula_description.");
+ }
+ }
+ if (valueType.equals(ParameterValueType.json)){
if(valueMultiple) {
throw new AlgorithmException(algorithmName, "The parameter field 'valueMultiple' cannot be true because the 'valueType' is json.");
}
diff --git a/Exareme-Docker/src/mip-algorithms/.gitignore b/Exareme-Docker/src/mip-algorithms/.gitignore
index 26f176ada..884353c99 100644
--- a/Exareme-Docker/src/mip-algorithms/.gitignore
+++ b/Exareme-Docker/src/mip-algorithms/.gitignore
@@ -8,7 +8,7 @@
# db files
*.db
-# !mipframework/runner/dbs/datasets.db
+!mipframework/runner/dbs/datasets.db
# !mipframework/runner/dbs/1LocalDBs/local_dataset0.db
# !mipframework/runner/dbs/10LocalDBs/local_dataset0.db
# !mipframework/runner/dbs/10LocalDBs/local_dataset1.db
diff --git a/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/__init__.py b/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/__init__.py
index 94aeba881..4bd104ba0 100644
--- a/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/__init__.py
+++ b/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/__init__.py
@@ -1,3 +1,3 @@
-from descriptive_stats import DescriptiveStats
+from .descriptive_stats import DescriptiveStats
__all__ = ["DescriptiveStats"]
diff --git a/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/descriptive_stats.py b/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/descriptive_stats.py
index 7e083eb35..0d9f9b159 100644
--- a/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/descriptive_stats.py
+++ b/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/descriptive_stats.py
@@ -2,11 +2,16 @@
from __future__ import print_function
from __future__ import unicode_literals
-from itertools import ifilterfalse, ifilter
from collections import Counter
+import re
+
+import numpy as np # type: ignore XXX needed for patsy to know how to take logs and exps
+import pandas as pd
+import patsy
from mipframework import Algorithm, AlgorithmResult
from mipframework.constants import PRIVACY_THRESHOLD
+from mipframework.formula import generate_formula
class DescriptiveStats(Algorithm):
@@ -16,205 +21,297 @@ def __init__(self, cli_args):
)
def local_(self):
- numericals = list(
- ifilterfalse(
- lambda var: self.metadata.is_categorical[var], self.parameters.y
- )
- )
- categoricals = list(
- ifilter(lambda var: self.metadata.is_categorical[var], self.parameters.y)
- )
- self.push_and_agree(numericals=numericals)
- self.push_and_agree(categoricals=categoricals)
- self.push_and_agree(labels=self.metadata.label)
- # Single variables
- df = self.data.full
- var_names = self.parameters.var_names
- datasets = self.parameters.dataset
-
- for var_name in var_names:
+ is_categorical = self.metadata.is_categorical # type: ignore
+ var_names = self.parameters.var_names # type: ignore
+ datasets = self.parameters.dataset # type: ignore
+ data = self.data.full # type: ignore
+ labels = self.metadata.label # type: ignore
+
+ all_single_stats = MonoidMapping()
+ for varname in var_names:
for dataset in datasets:
- if var_name != "dataset":
- varlst = [var_name, "dataset"]
- else:
- varlst = [var_name]
- single_df = df[varlst]
- single_df = single_df.dropna()
- single_df = single_df[single_df.dataset == dataset]
- single_df = single_df[var_name]
- n_obs = len(single_df)
- kwarg = {"single__" + "n_obs_" + var_name + "_" + dataset: n_obs}
- self.push_and_add(**kwarg)
- if var_name in numericals:
- X = single_df
- if n_obs <= PRIVACY_THRESHOLD:
- sx, sxx, min_, max_ = 0, 0, int(1e9), -int(1e9)
- else:
- sx = X.sum()
- sxx = (X * X).sum()
- min_ = X.min()
- max_ = X.max()
- kwarg = {"single__" + "sx_" + var_name + "_" + dataset: sx}
- self.push_and_add(**kwarg)
- kwarg = {"single__" + "sxx_" + var_name + "_" + dataset: sxx}
- self.push_and_add(**kwarg)
- kwarg = {"single__" + "min_" + var_name + "_" + dataset: min_}
- self.push_and_min(**kwarg)
- kwarg = {"single__" + "max_" + var_name + "_" + dataset: max_}
- self.push_and_max(**kwarg)
- elif var_name in categoricals:
- if n_obs <= PRIVACY_THRESHOLD:
- counter = Counter()
- else:
- counter = Counter(single_df)
- kwarg = {
- "single__" + "counter_" + var_name + "_" + dataset: counter
- }
- self.push_and_add(**kwarg)
-
- # Set of variables
- data = self.data.full.dropna()
+ var_df = get_df_for_single_var(varname, data, dataset)
+ stats = get_single_stats_monoid(var_df, is_categorical[varname])
+ all_single_stats[varname, dataset] = stats
+ self.push_and_add(all_single_stats=all_single_stats)
+
+ if self.parameters.formula: # type: ignore
+ formula = generate_formula(formula_data=self.parameters.formula) # type: ignore
+ dummy = get_formula_transformed_data(formula, data)
+ included_columns = [
+ column for column in dummy.columns if column != "dataset"
+ ]
+ group_var_names = included_columns
+ is_categorical = get_extended_iscategorical(
+ is_categorical,
+ included_columns,
+ )
+ labels = get_extended_labels(labels, included_columns)
+ else:
+ formula = None
+ group_var_names = var_names
+
+ all_group_stats = MonoidMapping()
for dataset in datasets:
data_group = data[data.dataset == dataset]
- n_obs = len(data_group)
- self.push_and_add(**{"model__" + "n_obs_" + dataset: n_obs})
- for var in numericals + categoricals:
- if var in numericals:
- numerical = var
- numvar = data_group[numerical]
- if n_obs <= PRIVACY_THRESHOLD:
- sx, sxx, min_, max_ = 0, 0, int(1e9), -int(1e9)
- else:
- sx = numvar.sum()
- sxx = (numvar * numvar).sum()
- min_ = numvar.min()
- max_ = numvar.max()
- kwarg = {"model__" + "sx_" + numerical + "_" + dataset: sx}
- self.push_and_add(**kwarg)
- kwarg = {"model__" + "sxx_" + numerical + "_" + dataset: sxx}
- self.push_and_add(**kwarg)
- kwarg = {"model__" + "min_" + numerical + "_" + dataset: min_}
- self.push_and_min(**kwarg)
- kwarg = {"model__" + "max_" + numerical + "_" + dataset: max_}
- self.push_and_max(**kwarg)
- elif var in categoricals:
- categorical = var
- if n_obs <= PRIVACY_THRESHOLD:
- counter = Counter()
- else:
- counter = Counter(data_group[categorical])
- kwarg = {
- "model__" + "counter_" + categorical + "_" + dataset: counter
- }
- self.push_and_add(**kwarg)
+ for varname in group_var_names:
+ if formula:
+ stats = get_model_stats_monoid_from_formula(
+ varname,
+ data_group,
+ is_categorical[varname],
+ formula,
+ )
+ else:
+ stats = get_model_stats_monoid(
+ varname,
+ data_group,
+ is_categorical[varname],
+ )
+ all_group_stats[dataset, varname] = stats
+ self.push_and_add(all_group_stats=all_group_stats)
+ self.push_and_agree(var_names=var_names)
+ self.push_and_agree(is_categorical=is_categorical)
+ self.push_and_agree(labels=labels)
def global_(self):
- numericals = self.fetch("numericals")
- categoricals = self.fetch("categoricals")
+ var_names = self.fetch("var_names")
+ is_categorical = self.fetch("is_categorical")
+ labels = self.fetch("labels")
+ datasets = self.parameters.dataset # type: ignore
- global fields
- raw_out = dict()
- datasets = self.parameters.dataset
-
- # Single variables
- raw_out["single"] = dict()
- for numerical in numericals:
- raw_out["single"][numerical] = dict()
- for dataset in datasets:
- raw_out["single"][numerical][dataset] = dict()
- n_obs = self.fetch("single__" + "n_obs_" + numerical + "_" + dataset)
- if n_obs <= PRIVACY_THRESHOLD:
- raw_out["single"][numerical][dataset]["num_datapoints"] = n_obs
- raw_out["single"][numerical][dataset]["data"] = "NOT ENOUGH DATA"
- else:
- sx = self.fetch("single__" + "sx_" + numerical + "_" + dataset)
- sxx = self.fetch("single__" + "sxx_" + numerical + "_" + dataset)
- min_ = self.fetch("single__" + "min_" + numerical + "_" + dataset)
- max_ = self.fetch("single__" + "max_" + numerical + "_" + dataset)
- mean = sx / n_obs
- std = ((sxx - n_obs * (mean ** 2)) / (n_obs - 1)) ** 0.5
- upper_ci = mean + std
- lower_ci = mean - std
- raw_out["single"][numerical][dataset]["num_datapoints"] = n_obs
- raw_out["single"][numerical][dataset]["data"] = {
- "mean": mean,
- "std": std,
- "min": min_,
- "max": max_,
- "upper_confidence": upper_ci,
- "lower_confidence": lower_ci,
- }
- for categorical in categoricals:
- raw_out["single"][categorical] = dict()
- for dataset in datasets:
- raw_out["single"][categorical][dataset] = dict()
- n_obs = self.fetch("single__" + "n_obs_" + categorical + "_" + dataset)
- if n_obs <= PRIVACY_THRESHOLD:
- raw_out["single"][categorical][dataset]["num_datapoints"] = n_obs
- raw_out["single"][categorical][dataset]["data"] = "NOT ENOUGH DATA"
- else:
- counter = self.fetch(
- "single__" + "counter_" + categorical + "_" + dataset
- )
- raw_out["single"][categorical][dataset]["num_datapoints"] = n_obs
- raw_out["single"][categorical][dataset]["data"] = dict(counter)
+ raw_out = init_raw_out([labels[var] for var in var_names], datasets)
- # Model
- raw_out["model"] = dict()
- for dataset in datasets:
- n_obs = self.fetch("model__" + "n_obs_" + dataset)
- raw_out["model"][dataset] = dict()
- raw_out["model"][dataset]["data"] = dict()
- raw_out["model"][dataset]["num_datapoints"] = n_obs
- for numerical in numericals:
- if n_obs <= PRIVACY_THRESHOLD:
- raw_out["model"][dataset]["data"][numerical] = "NOT ENOUGH DATA"
- continue
- sx = self.fetch("model__" + "sx_" + numerical + "_" + dataset)
- sxx = self.fetch("model__" + "sxx_" + numerical + "_" + dataset)
- min_ = self.fetch("model__" + "min_" + numerical + "_" + dataset)
- max_ = self.fetch("model__" + "max_" + numerical + "_" + dataset)
- mean = sx / n_obs
- std = ((sxx - n_obs * (mean ** 2)) / (n_obs - 1)) ** 0.5
- upper_ci = mean + std
- lower_ci = mean - std
- raw_out["model"][dataset]["data"][numerical] = {
- "mean": mean,
- "std": std,
- "min": min_,
- "max": max_,
- "upper_confidence": upper_ci,
- "lower_confidence": lower_ci,
+ single_out = raw_out["single"]
+ all_single_stats = self.fetch("all_single_stats")
+ for (varname, dataset), single_stats in all_single_stats.items():
+ current_out = single_out[labels[varname]][dataset]
+ current_out["num_datapoints"] = single_stats.n_obs
+ current_out["num_nulls"] = single_stats.n_nulls
+ current_out["num_total"] = single_stats.n_obs + single_stats.n_nulls
+ if not single_stats.enough_data:
+ current_out["data"] = "NOT ENOUGH DATA"
+ continue
+ if is_categorical[varname]:
+ current_out["data"] = get_counts_and_percentages(single_stats.counter)
+ else:
+ current_out["data"] = {
+ "mean": round(single_stats.mean, 2),
+ "std": round(single_stats.std, 2),
+ "min": round(single_stats.min_, 2),
+ "max": round(single_stats.max_, 2),
}
- for categorical in categoricals:
- if n_obs <= PRIVACY_THRESHOLD:
- raw_out["model"][dataset]["data"][categorical] = "NOT ENOUGH DATA"
- continue
- counter = self.fetch(
- "model__" + "counter_" + categorical + "_" + dataset
+
+ group_out = raw_out["model"]
+ all_group_stats = self.fetch("all_group_stats")
+ for (dataset, varname), group_stats in all_group_stats.items():
+ current_out = group_out[dataset]
+ group_stats = all_group_stats[dataset, varname]
+ current_out["num_datapoints"] = group_stats.n_obs
+ current_out["num_nulls"] = group_stats.n_nulls
+ current_out["num_total"] = group_stats.n_obs + group_stats.n_nulls
+ if not group_stats.enough_data:
+ current_out["data"][labels[varname]] = "NOT ENOUGH DATA"
+ continue
+ if is_categorical[varname]:
+ current_out["data"][labels[varname]] = get_counts_and_percentages(
+ group_stats.counter
)
- raw_out["model"][dataset]["data"][categorical] = dict(counter)
+ else:
+ current_out["data"][labels[varname]] = {
+ "mean": round(group_stats.mean, 2),
+ "std": round(group_stats.std, 2),
+ "min": round(group_stats.min_, 2),
+ "max": round(group_stats.max_, 2),
+ }
+
self.result = AlgorithmResult(raw_data=raw_out)
-if __name__ == "__main__":
- import time
- from mipframework import create_runner
-
- algorithm_args = [
- "-y",
- "rightphgparahippocampalgyrus, gender, alzheimerbroadcategory, rs10498633_t",
- "-pathology",
- "dementia",
- "-dataset",
- "lille_simulation, lille_simulation1",
- "-filter",
- "",
- ]
- runner = create_runner(
- DescriptiveStats, algorithm_args=algorithm_args, num_workers=2,
+def get_formula_transformed_data(formula, data):
+ processed_data = patsy.dmatrix(
+ formula,
+ data,
+ return_type="dataframe",
)
- start = time.time()
- runner.run()
- end = time.time()
- print("Completed in ", end - start)
+ del processed_data["Intercept"]
+ return processed_data
+
+
+def init_raw_out(varnames, datasets):
+ raw_out = dict()
+
+ raw_out["single"] = dict()
+ for varname in varnames:
+ raw_out["single"][varname] = dict()
+ for dataset in datasets:
+ raw_out["single"][varname][dataset] = dict()
+
+ raw_out["model"] = dict()
+ for dataset in datasets:
+ raw_out["model"][dataset] = dict()
+ raw_out["model"][dataset]["data"] = dict()
+ return raw_out
+
+
+def get_df_for_single_var(var_name, df, dataset):
+ if var_name != "dataset":
+ varlst = [var_name, "dataset"]
+ else:
+ varlst = [var_name]
+ df = df[varlst]
+ df = df[df.dataset == dataset]
+ df = df[var_name]
+ return df
+
+
+def get_extended_labels(labels, new_columns):
+ labels = dict(labels)
+ for column in new_columns:
+ if column not in labels:
+ labels[column] = column
+ formatted_labels = {}
+ for column, label in labels.items():
+ # Format id labels
+ label = re.sub(r"I(\([^()]+\))", r"\g<1>", label)
+ # Format numpy labels
+ label = re.sub(r"np.(exp|log)(.+)", r"\g<1>\g<2>", label)
+ # Format patsy labels
+ label = re.sub(r"patsy.(center|standardize)(.+)", r"\g<1>\g<2>", label)
+ formatted_labels[column] = label
+ return formatted_labels
+
+
+def get_extended_iscategorical(is_categorical, new_columns):
+ is_categorical = dict(is_categorical)
+ for column in new_columns:
+ if column not in is_categorical:
+ is_categorical[column] = 0
+ return is_categorical
+
+
+class NumericalVarStats(object):
+ def __init__(self, n_obs, n_nulls, sx, sxx, min_, max_):
+ self.n_obs = n_obs
+ self.n_nulls = n_nulls
+ self.enough_data = n_obs >= PRIVACY_THRESHOLD
+ self.sx = sx if self.enough_data else 0
+ self.sxx = sxx if self.enough_data else 0
+ self.min_ = min_ if self.enough_data else int(1e9)
+ self.max_ = max_ if self.enough_data else -int(1e9)
+
+ @property
+ def mean(self):
+ return self.sx / self.n_obs
+
+ @property
+ def std(self):
+ return ((self.sxx - self.n_obs * (self.mean ** 2)) / (self.n_obs - 1)) ** 0.5
+
+ @property
+ def upper_ci(self):
+ return self.mean + self.std
+
+ @property
+ def lower_ci(self):
+ return self.mean - self.std
+
+ def __add__(self, other):
+ return NumericalVarStats(
+ n_obs=self.n_obs + other.n_obs,
+ n_nulls=self.n_nulls + other.n_nulls,
+ sx=self.sx + other.sx,
+ sxx=self.sxx + other.sxx,
+ min_=min(self.min_, other.min_),
+ max_=max(self.max_, other.max_),
+ )
+
+
+class CategoricalVarStats(object):
+ def __init__(self, n_obs, n_nulls, counter):
+ self.n_obs = n_obs
+ self.n_nulls = n_nulls
+ self.enough_data = n_obs >= PRIVACY_THRESHOLD
+ self.counter = counter if self.enough_data else Counter()
+
+ def __add__(self, other):
+ return CategoricalVarStats(
+ n_obs=self.n_obs + other.n_obs,
+ n_nulls=self.n_nulls + other.n_nulls,
+ counter=self.counter + other.counter,
+ )
+
+
+def get_single_stats_monoid(df, is_categorical):
+ n_tot = len(df)
+ df = df.dropna()
+ n_obs = len(df)
+ n_nulls = n_tot - n_obs
+ if is_categorical:
+ return get_categorical_stats_monoid(df, n_obs, n_nulls)
+ return get_numerical_stats_monoid(df, n_obs, n_nulls)
+
+
+def get_numerical_stats_monoid(df, n_obs, n_nulls):
+ sx = df.sum()
+ sxx = (df * df).sum()
+ min_ = df.min()
+ max_ = df.max()
+ return NumericalVarStats(n_obs, n_nulls, sx, sxx, min_, max_)
+
+
+def get_categorical_stats_monoid(df, n_obs, n_nulls):
+ counter = Counter(df)
+ return CategoricalVarStats(n_obs, n_nulls, counter)
+
+
+def get_model_stats_monoid_from_formula(
+ varname,
+ data_group,
+ is_categorical,
+ formula,
+):
+ n_tot = len(data_group)
+ data_group = data_group.dropna()
+ data_group = get_formula_transformed_data(formula, data_group)
+ n_obs = len(data_group)
+ n_nulls = n_tot - n_obs
+ df = data_group[varname]
+ if is_categorical:
+ return get_categorical_stats_monoid(df, n_obs, n_nulls)
+ return get_numerical_stats_monoid(df, n_obs, n_nulls)
+
+
+def get_model_stats_monoid(varname, data_group, is_categorical):
+ n_tot = len(data_group)
+ data_group = data_group.dropna()
+ n_obs = len(data_group)
+ n_nulls = n_tot - n_obs
+ df = data_group[varname]
+ if is_categorical:
+ return get_categorical_stats_monoid(df, n_obs, n_nulls)
+ return get_numerical_stats_monoid(df, n_obs, n_nulls)
+
+
+class MonoidMapping(dict):
+ def __add__(self, other):
+ all_keys = set(self.keys()) | set(other.keys())
+ result = {}
+ for key in all_keys:
+ if key in self and key in other:
+ result[key] = self[key] + other[key]
+ elif key in self and key not in other:
+ result[key] = self[key]
+ else:
+ result[key] = other[key]
+ return MonoidMapping(result)
+
+
+def get_counts_and_percentages(counter):
+ if isinstance(counter, pd.Series):
+ counter = {key: counter[key] for key in counter.index}
+ total = sum(counter.values())
+ return {
+ key: {"count": value, "percentage": round(100 * value / total, ndigits=2)}
+ for key, value in counter.items()
+ }
diff --git a/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/generate_testcases_descrstats.py b/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/generate_testcases_descrstats.py
index a79fa225e..416516a09 100644
--- a/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/generate_testcases_descrstats.py
+++ b/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/generate_testcases_descrstats.py
@@ -2,6 +2,7 @@
from pathlib import Path
from mipframework.algorithmtest import AlgorithmTest
+from DESCRIPTIVE_STATS.descriptive_stats import get_counts_and_percentages
class DescriptiveStatisticsTest(AlgorithmTest):
@@ -20,11 +21,14 @@ def get_expected(self, alg_input):
# Single
out["single"] = dict()
for numerical in numericals:
- out["single"][numerical] = dict()
- vartab = self.get_data(numerical + ",dataset", datasets)
+ varlabel = metadata.label[numerical]
+ out["single"][varlabel] = dict()
+ data_df = self.get_data(numerical + ",dataset", datasets)
for dataset in datasets.split(","):
- numvar = vartab[vartab.dataset == dataset][numerical]
- out["single"][numerical][dataset] = dict()
+ numvar = data_df[data_df.dataset == dataset][numerical]
+ out["single"][varlabel][dataset] = dict()
+ n_total = len(numvar)
+ numvar = numvar.dropna()
n_obs = len(numvar)
if n_obs <= 0:
return None
@@ -32,27 +36,34 @@ def get_expected(self, alg_input):
std = numvar.std()
min_ = numvar.min()
max_ = numvar.max()
- out["single"][numerical][dataset]["num_datapoints"] = n_obs
- out["single"][numerical][dataset]["data"] = {
+ out["single"][varlabel][dataset]["num_total"] = n_total
+ out["single"][varlabel][dataset]["num_datapoints"] = n_obs
+ out["single"][varlabel][dataset]["num_nulls"] = n_total - n_obs
+ out["single"][varlabel][dataset]["data"] = {
"mean": mean,
"std": std,
"min": min_,
"max": max_,
- "upper_confidence": mean + std,
- "lower_confidence": mean - std,
}
for categorical in categoricals:
- out["single"][categorical] = dict()
- vartab = self.get_data(categorical + ",dataset", datasets)
+ varlabel = metadata.label[categorical]
+ out["single"][varlabel] = dict()
+ data_df = self.get_data(categorical + ",dataset", datasets)
for dataset in datasets.split(","):
- out["single"][categorical][dataset] = dict()
- catvar = vartab[vartab.dataset == dataset][categorical]
+ out["single"][varlabel][dataset] = dict()
+ catvar = data_df[data_df.dataset == dataset][categorical]
+ n_total = len(catvar)
+ catvar = catvar.dropna()
n_obs = len(catvar)
if n_obs <= 0:
return None
counts = catvar.value_counts()
- out["single"][categorical][dataset]["num_datapoints"] = n_obs
- out["single"][categorical][dataset]["data"] = dict(counts)
+ out["single"][varlabel][dataset]["num_total"] = n_total
+ out["single"][varlabel][dataset]["num_datapoints"] = n_obs
+ out["single"][varlabel][dataset]["num_nulls"] = n_total - n_obs
+ out["single"][varlabel][dataset]["data"] = get_counts_and_percentages(
+ counts
+ )
# # Model
data = self.get_data(y_names + ",dataset", datasets)
@@ -61,8 +72,11 @@ def get_expected(self, alg_input):
out["model"] = dict()
for dataset in datasets.split(","):
data_group = data[data.dataset == dataset]
- # if len(data_group) == 0:
- # continue
+ n_total = len(data_group)
+ data_group = data_group.dropna()
+ n_obs = len(data_group)
+ if n_obs == 0:
+ return None
df_num = data_group[numericals]
df_cat = data_group[categoricals]
means = df_num.mean()
@@ -74,25 +88,31 @@ def get_expected(self, alg_input):
]
out["model"][dataset] = dict()
out["model"][dataset]["data"] = dict()
- out["model"][dataset]["num_datapoints"] = len(data_group)
+ out["model"][dataset]["num_datapoints"] = n_obs
+ out["model"][dataset]["num_total"] = n_total
+ out["model"][dataset]["num_nulls"] = n_total - n_obs
for numerical in numericals:
- out["model"][dataset]["data"][numerical] = {
+ varlabel = metadata.label[numerical]
+ out["model"][dataset]["data"][varlabel] = {
"mean": means[numerical],
"std": stds[numerical],
"min": mins[numerical],
"max": maxs[numerical],
- "upper_confidence": means[numerical] + stds[numerical],
- "lower_confidence": means[numerical] - stds[numerical],
}
for i, categorical in enumerate(categoricals):
+ varlabel = metadata.label[categorical]
if counts[i].name != categorical:
raise ValueError("WAT??")
- out["model"][dataset]["data"][categorical] = dict(counts[i])
+ out["model"][dataset]["data"][varlabel] = get_counts_and_percentages(
+ counts[i]
+ )
return out
if __name__ == "__main__":
prop_path = dbs_folder = Path(__file__).parent / "properties.json"
- descriptive_stats_test = DescriptiveStatisticsTest(prop_path.as_posix())
+ descriptive_stats_test = DescriptiveStatisticsTest(
+ prop_path.as_posix(), dropna=False
+ )
descriptive_stats_test.generate_test_cases(num_tests=100)
descriptive_stats_test.to_json("descriptive_stats_expected.json")
diff --git a/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/properties.json b/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/properties.json
index e703d7025..7517cbab1 100644
--- a/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/properties.json
+++ b/Exareme-Docker/src/mip-algorithms/DESCRIPTIVE_STATS/properties.json
@@ -11,7 +11,7 @@
"columnValuesSQLType": "real, integer, text",
"columnValuesIsCategorical": "",
"columnValuesNumOfEnumerations": "",
- "value": "rightcuncuneus,rightaorganteriororbitalgyrus,leftpogpostcentralgyrus,leftmcggmiddlecingulategyrus,leftsmcsupplementarymotorcortex,leftsogsuperioroccipitalgyrus,leftmtgmiddletemporalgyrus,rightpoparietaloperculum",
+ "value": "lefthippocampus,righthippocampus",
"valueNotBlank": true,
"valueMultiple": true,
"valueType": "string"
@@ -20,11 +20,23 @@
"label": "dataset",
"desc": "It contains the names of one or more datasets, in which the algorithm will be executed. It cannot be empty",
"type": "dataset",
- "value": "adni,edsd",
+ "value": "adni,edsd, ppmi",
"valueNotBlank": true,
"valueMultiple": true,
"valueType": "string"
- }, {
+ },
+ {
+ "name": "formula",
+ "label": "formula",
+ "desc": "Patsy formula (R language syntax).",
+ "type": "formula_description",
+ "value": "{\"single\":[{\"var_name\":\"lefthippocampus\",\"unary_operation\":\"log\"},{\"var_name\":\"righthippocampus\",\"unary_operation\":\"exp\"}],\"interactions\":[]}",
+ "defaultValue": "",
+ "valueNotBlank": false,
+ "valueMultiple": false,
+ "valueType": "json"
+ },
+ {
"name": "filter",
"label": "filter",
"desc": "",
diff --git a/Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/logistic_regression.py b/Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/logistic_regression.py
index 2849eb34f..d8e87403b 100644
--- a/Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/logistic_regression.py
+++ b/Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/logistic_regression.py
@@ -118,7 +118,7 @@ def local_final(self):
self.push_and_agree(half_idx=half_idx)
def global_final(self):
- x_names = self.load("x_names")
+ x_names = remove_prefix_from_varnames(self.load("x_names"))
coeff = self.load("coeff")
ll = self.load("ll")
hess = self.load("hess")
@@ -424,6 +424,16 @@ def compute_roc(true_positives, true_negatives, false_positives, false_negatives
return roc_curve, auc, gini
+def remove_prefix_from_varnames(varnames):
+ new_varnames = []
+ for varname in varnames:
+ varname = re.sub(r"^np.", "", varname)
+ varname = re.sub(r"^patsy.", "", varname)
+ varname = re.sub(r"I(\([^()]+\))", r"\g<1>", varname)
+ new_varnames.append(varname)
+ return new_varnames
+
+
LogisticRegressionSummary = namedtuple(
"LogisticRegressionSummary",
[
@@ -468,7 +478,9 @@ def compute_roc(true_positives, true_negatives, false_positives, false_negatives
"CN",
]
runner = create_runner(
- LogisticRegression, num_workers=10, algorithm_args=algorithm_args,
+ LogisticRegression,
+ num_workers=10,
+ algorithm_args=algorithm_args,
)
start = time.time()
runner.run()
diff --git a/Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/properties.json b/Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/properties.json
index 71ba2dab1..3fe612a67 100644
--- a/Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/properties.json
+++ b/Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/properties.json
@@ -62,12 +62,12 @@
"name": "formula",
"label": "formula",
"desc": "Patsy formula (R language syntax).",
- "type": "other",
+ "type": "formula_description",
"value": "",
"defaultValue": "",
"valueNotBlank": false,
"valueMultiple": false,
- "valueType": "string"
+ "valueType": "json"
},
{
"name": "positive_level",
diff --git a/Exareme-Docker/src/mip-algorithms/README.md b/Exareme-Docker/src/mip-algorithms/README.md
index 379b01a34..2412908c2 100644
--- a/Exareme-Docker/src/mip-algorithms/README.md
+++ b/Exareme-Docker/src/mip-algorithms/README.md
@@ -41,7 +41,8 @@ The parameter has the following properties:
type
Defines the type of the parameter. It can take the following values:
column
(Used for querying the columns of the database.)
-formula
(Same as the column type but is is parsed as a formula of R. Allowed characters are '+ - * : 0.' )
+formula
(Same as the column type but it is parsed as a formula of R. Allowed characters are '+ - * : 0.' )
+formula_description
(Similar to the column and formula types but it is parsed as a json object representing a formula. )
filter
(Used to filter the results of the database.)
dataset
(If the property is of type dataset then it will be used to choose on which dataset to run the algorithm on.)
other
(For any other reason use this type.)
diff --git a/Exareme-Docker/src/mip-algorithms/mipframework/algorithm.py b/Exareme-Docker/src/mip-algorithms/mipframework/algorithm.py
index ba6ca5f26..8add36620 100644
--- a/Exareme-Docker/src/mip-algorithms/mipframework/algorithm.py
+++ b/Exareme-Docker/src/mip-algorithms/mipframework/algorithm.py
@@ -6,7 +6,7 @@
from mipframework.loggingutils import logged
from mipframework.decorators import algorithm_methods_decorator
-from mipframework.parameters import Parameters, parse_exareme_args
+from mipframework.parameters import Parameters, parse_cli_args
from mipframework.transfer import (
AddMe,
MaxMe,
@@ -42,11 +42,15 @@ def cannot_be_decorated(attr):
def can_be_logged(attr):
- return attr.__name__ not in {
- "__init__",
- "__repr__",
- "__str__",
- } and not _MAIN_METHODS.match(attr.__name__)
+ return (
+ attr.__name__
+ not in {
+ "__init__",
+ "__repr__",
+ "__str__",
+ }
+ and not _MAIN_METHODS.match(attr.__name__)
+ )
def in_main_methods(attr):
@@ -60,7 +64,7 @@ def __init__(self, alg_file, cli_args, intercept=True, privacy=True, dropna=True
warnings.filterwarnings("ignore")
self._folder_path, name = os.path.split(alg_file)
self._name = os.path.splitext(name)[0]
- self._args = parse_exareme_args(self._folder_path, cli_args)
+ self._args = parse_cli_args(self._folder_path, cli_args)
self._args.intercept = intercept
self._args.privacy = privacy
self._args.dropna = dropna
diff --git a/Exareme-Docker/src/mip-algorithms/mipframework/algorithmtest.py b/Exareme-Docker/src/mip-algorithms/mipframework/algorithmtest.py
index 1368a9d9c..a9b42b538 100644
--- a/Exareme-Docker/src/mip-algorithms/mipframework/algorithmtest.py
+++ b/Exareme-Docker/src/mip-algorithms/mipframework/algorithmtest.py
@@ -38,7 +38,7 @@ class AlgorithmTest(object):
standard library for computing the expected results.
"""
- def __init__(self, properties_path):
+ def __init__(self, properties_path, dropna=True):
with open(properties_path, "r") as prop:
params = json.load(prop)["parameters"]
params = [defaultdict(lambda: None, p) for p in params]
@@ -51,7 +51,10 @@ def __init__(self, properties_path):
Path(__file__).parents[1] / "tests" / "data" / "dementia" / "datasets.db"
).as_posix()
self.db = DataBase(
- db_path=db_path, data_table_name="data", metadata_table_name="metadata"
+ db_path=db_path,
+ data_table_name="data",
+ metadata_table_name="metadata",
+ dropna=dropna,
)
categoricals, numericals = self.get_variable_groups()
self.categorical_variables = categoricals
diff --git a/Exareme-Docker/src/mip-algorithms/mipframework/data.py b/Exareme-Docker/src/mip-algorithms/mipframework/data.py
index 6b3d78fc0..970a2e0f3 100644
--- a/Exareme-Docker/src/mip-algorithms/mipframework/data.py
+++ b/Exareme-Docker/src/mip-algorithms/mipframework/data.py
@@ -8,6 +8,12 @@
from mipframework.constants import PRIVACY_THRESHOLD
from mipframework.loggingutils import log_this, repr_with_logging, logged
from mipframework.exceptions import PrivacyError
+from mipframework.formula import (
+ generate_formula,
+ generate_formula_from_variable_lists,
+ insert_explicit_coding_for_categorical_vars,
+)
+
FILTER_OPERATORS = {
"equal": lambda a, b: a == b,
@@ -38,50 +44,61 @@ def __init__(self, args):
self.db = db
self.full = db.read_data_from_db(args)
self.metadata = db.read_metadata_from_db(args)
- variables, covariables = self.build_variables(args)
- if 1 in self.metadata.is_categorical.values():
- variables = self.add_missing_levels(args.y, args.coding, variables)
+ if hasattr(args, "formula") and args.formula:
+ dependant_var = args.y[0] if hasattr(args, "x") else ""
+ formula = generate_formula(args.formula, dependant_var)
+ else:
+ formula = generate_formula_from_variable_lists(args)
+ if self.some_vars_are_categorical():
+ formula = insert_explicit_coding_for_categorical_vars(
+ formula,
+ args.var_names,
+ self.metadata.is_categorical,
+ )
+ variables, covariables = self.build_variables_from_formula(
+ formula,
+ args,
+ full_data_table=self.full,
+ )
+ if self.some_vars_are_categorical():
+ variables = self.add_missing_levels(args.y, variables)
if covariables is not None: # truth value of dataframe is ambiguous
- covariables = self.add_missing_levels(args.x, args.coding, covariables)
+ covariables = self.add_missing_levels(args.x, covariables)
self.variables, self.covariables = variables, covariables
def __repr__(self):
repr_with_logging(self, variables=self.variables, covariables=self.covariables)
- def build_variables(self, args):
- log_this("AlgorithmData.build_variables", args=args)
+ def some_vars_are_categorical(self):
+ return 1 in self.metadata.is_categorical.values()
- from numpy import log as log
- from numpy import exp as exp
+ def build_variables_from_formula(self, formula, args, full_data_table):
+ log_this("AlgorithmData.build_variables_from_formula", args=args)
- # This line is needed to prevent import optimizer from removing above lines
- _ = log(exp(1))
- formula = self.get_formula(args)
- if args.formula_is_equation:
- if self.full.dropna().shape[0] == 0:
+ if "~" in formula:
+ if full_data_table.dropna().shape[0] == 0:
return pd.DataFrame(), pd.DataFrame()
variables, covariables = patsy.dmatrices(
- formula, self.full, return_type="dataframe"
+ formula, full_data_table, return_type="dataframe"
)
else:
- if self.full.dropna().shape[0] == 0:
+ if full_data_table.dropna().shape[0] == 0:
return pd.DataFrame(), None
- variables = patsy.dmatrix(formula, self.full, return_type="dataframe")
+ variables = patsy.dmatrix(formula, full_data_table, return_type="dataframe")
covariables = None
return variables, covariables
- def add_missing_levels(self, varnames, coding, dmatrix):
+ def add_missing_levels(self, varnames, dmatrix):
log_this(
"AlgorithmData.add_missing_levels",
varnames=varnames,
- coding=coding,
dmatrix=dmatrix.columns,
)
categorical_variables = (
var for var in varnames if self.metadata.is_categorical[var]
)
all_var_levels = (
- "C({var}, {coding})[{level}]".format(var=var, coding=coding, level=level)
+ "C({var}, Treatment)[{level}]".format(var=var, level=level)
for var in categorical_variables
for level in self.metadata.enumerations[var]
)
@@ -92,35 +109,6 @@ def add_missing_levels(self, varnames, coding, dmatrix):
dmatrix[var_level] = missing_column
return dmatrix
- def get_formula(self, args):
- log_this("AlgorithmData.add_missing_levels", args=args)
- is_categorical = self.metadata.is_categorical
- # Get formula from args or build if doesn't exist
- if hasattr(args, "formula") and args.formula:
- formula = args.formula
- else:
- if hasattr(args, "x") and args.x:
- formula = "+".join(args.y) + "~" + "+".join(args.x)
- if not args.intercept:
- formula += "-1"
- else:
- formula = "+".join(args.y) + "-1"
- # Process categorical vars
- var_names = list(args.y)
- if hasattr(args, "x") and args.x:
- var_names.extend(args.x)
- if 1 in is_categorical.values():
- if not hasattr(args, "coding") or not args.coding:
- args.coding = "Treatment"
- for var in var_names:
- if is_categorical[var]:
- formula = re.sub(
- r"\b({})\b".format(var),
- r"C(\g<0>, {})".format(args.coding),
- formula,
- )
- return formula
-
class AlgorithmMetadata(object):
def __init__(self, label, is_categorical, enumerations, minmax):
diff --git a/Exareme-Docker/src/mip-algorithms/mipframework/formula.py b/Exareme-Docker/src/mip-algorithms/mipframework/formula.py
new file mode 100644
index 000000000..ed348482b
--- /dev/null
+++ b/Exareme-Docker/src/mip-algorithms/mipframework/formula.py
@@ -0,0 +1,71 @@
+import re
+
+
+def generate_formula(formula_data, dependent_var=""):
+ single_terms = []
+ for term in formula_data["single"]:
+ var_name = term["var_name"]
+ if "unary_operation" in term:
+ single_terms.append(get_term_unary_op(var_name, term["unary_operation"]))
+ elif "binary_operation" in term:
+ single_terms.append(
+ get_term_binary_op(var_name, term["binary_operation"], term["operand"])
+ )
+
+ interactions = []
+ for term in formula_data["interactions"]:
+ var_names = list(term.values())
+ interactions.append(":".join(var_names))
+
+ formula_expr = " + ".join(single_terms)
+ if interactions:
+ formula_expr += " + " + " + ".join(interactions)
+ if dependent_var:
+ return dependent_var + "~" + formula_expr
+ return formula_expr
+
+
+def get_term_unary_op(var_name, op):
+ op_to_formula_term = {
+ "nop": "{}",
+ "log": "np.log({})",
+ "exp": "np.exp({})",
+ "center": "patsy.center({})",
+ "standardize": "patsy.standardize({})",
+ }
+ if op in op_to_formula_term.keys():
+ return op_to_formula_term[op].format(var_name)
+ raise FormulaInvalidOperator("Invalid operator: {}".format(op))
+
+
+def get_term_binary_op(var_name, op, operand):
+ if op == "mul":
+ return "I({0}*{1})".format(var_name, operand)
+ if op == "div":
+ return "I({0}/{1})".format(var_name, operand)
+ raise FormulaInvalidOperator("Invalid operator: {}".format(op))
+
+
+class FormulaInvalidOperator(Exception):
+ """Raise when an invalid operator is encountered."""
+
+
+def generate_formula_from_variable_lists(args):
+ if hasattr(args, "x") and args.x:
+ formula = "+".join(args.y) + "~" + "+".join(args.x)
+ if not args.intercept:
+ formula += "-1"
+ else:
+ formula = "+".join(args.y) + "-1"
+ return formula
+
+
+def insert_explicit_coding_for_categorical_vars(formula, var_names, is_categorical):
+ for var in var_names:
+ if is_categorical[var]:
+ formula = re.sub(
+ r"\b({})\b".format(var),
+ r"C(\g<0>, Treatment)",
+ formula,
+ )
+ return formula
diff --git a/Exareme-Docker/src/mip-algorithms/mipframework/parameters.py b/Exareme-Docker/src/mip-algorithms/mipframework/parameters.py
index c91d16c5b..0a63c328b 100644
--- a/Exareme-Docker/src/mip-algorithms/mipframework/parameters.py
+++ b/Exareme-Docker/src/mip-algorithms/mipframework/parameters.py
@@ -4,10 +4,10 @@
import re
from argparse import ArgumentParser
-from . import LOGGING_LEVEL_ALG
-from .loggingutils import logged, repr_with_logging
+from mipframework import LOGGING_LEVEL_ALG
+from mipframework.loggingutils import logged, repr_with_logging
-COMMON_ALGORITHM_ARGUMENTS = {
+SHARED_ALGORITHM_ARGS = {
"input_local_DB",
"db_query",
"cur_state_pkl",
@@ -29,7 +29,7 @@
class Parameters(object):
def __init__(self, args):
for name, val in vars(args).items():
- if name not in COMMON_ALGORITHM_ARGUMENTS:
+ if name not in SHARED_ALGORITHM_ARGS:
setattr(self, name, val)
def __getitem__(self, name):
@@ -40,47 +40,68 @@ def __repr__(self):
@logged
-def parse_exareme_args(fp, cli_args):
- parser = ArgumentParser()
- # Add common arguments
- for argname in COMMON_ALGORITHM_ARGUMENTS:
- parser.add_argument("-" + argname)
- # Add algorithm specific arguments
- prop_path = os.path.join(fp, "properties.json")
+def parse_cli_args(algorithm_folder_path, cli_args):
+ algorithm_params = get_algorithm_params(algorithm_folder_path)
+ parser = get_parser(algorithm_params)
+ args = get_args(parser, algorithm_params, cli_args)
+ return args
+
+
+def get_algorithm_params(algorithm_folder_path):
+ prop_path = os.path.join(algorithm_folder_path, "properties.json")
with open(prop_path, "r") as prop:
params = json.load(prop)["parameters"]
- algorithm_param_names = []
- for p in params:
+ return [{"name": p["name"], "required": p["valueNotBlank"]} for p in params]
+
+
+def get_parser(algorithm_params):
+ parser = ArgumentParser()
+ for argname in SHARED_ALGORITHM_ARGS:
+ parser.add_argument("-" + argname)
+ for p in algorithm_params:
name = "-" + p["name"]
- algorithm_param_names.append(p["name"])
- required = p["valueNotBlank"]
+ required = p["required"]
parser.add_argument(name, required=required)
- # Escape args starting with dash (e.g. see agegroup='-50y')
- all_args = set(COMMON_ALGORITHM_ARGUMENTS) | set(algorithm_param_names)
- escaped_args = [] # remember escaped args to undo later (see below)
- for i, argname in enumerate(cli_args):
+ return parser
+
+
+def get_args(parser, algorithm_params, cli_args):
+ escaped_cli_args, escaped_argnames = escape_cli_args(cli_args, algorithm_params)
+ args, _ = parser.parse_known_args(escaped_cli_args)
+ if escaped_argnames:
+ remove_escape_chars_from_args(args, escaped_argnames)
+ process_args(args)
+ return args
+
+
+def escape_cli_args(cli_args, algorithm_params):
+ escaped_cli_args = list(cli_args)
+ algorithm_param_names = [param["name"] for param in algorithm_params]
+ all_args = set(SHARED_ALGORITHM_ARGS) | set(algorithm_param_names)
+ escaped_argnames = [] # remember escaped args to undo later (see below)
+ for i, argname in enumerate(escaped_cli_args):
if argname.replace("-", "") in all_args:
continue
if argname.startswith("-"):
- cli_args[i] = "\\" + argname
+ escaped_cli_args[i] = "\\" + argname
# arg name is one position begore its value
- escaped_args.append(cli_args[i - 1].replace("-", ""))
- # Parse and process
- args, _ = parser.parse_known_args(cli_args)
+ escaped_argnames.append(escaped_cli_args[i - 1].replace("-", ""))
+ return escaped_cli_args, escaped_argnames
+
+
+def remove_escape_chars_from_args(args, escaped_argnames):
+ for argname in escaped_argnames:
+ argval_without_escape = getattr(args, argname).replace("\\", "")
+ setattr(args, argname, argval_without_escape)
+
+
+def process_args(args):
args.y = re.split(r"\s*,\s*", args.y)
args.var_names = list(args.y)
- args.formula_is_equation = False
if hasattr(args, "x") and args.x:
args.x = re.split(r"\s*,\s*", args.x)
args.var_names += list(args.x)
- args.formula_is_equation = True
args.dataset = re.split(r"\s*,\s*", args.dataset)
args.filter = json.loads(args.filter) if args.filter else None
- if hasattr(args, "coding"):
- args.coding = None if args.coding == "null" else args.coding
- # Undo arg escaping (see above)
- if escaped_args:
- for argname in escaped_args:
- argval_without_escape = getattr(args, argname).replace("\\", "")
- setattr(args, argname, argval_without_escape)
- return args
+ if hasattr(args, "formula") and args.formula:
+ args.formula = json.loads(args.formula)
diff --git a/Exareme-Docker/src/mip-algorithms/mipframework/runner/dbs/datasets.db b/Exareme-Docker/src/mip-algorithms/mipframework/runner/dbs/datasets.db
new file mode 100644
index 000000000..0dec2e528
Binary files /dev/null and b/Exareme-Docker/src/mip-algorithms/mipframework/runner/dbs/datasets.db differ
diff --git a/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_data.py b/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_data.py
index e57861aa9..dc82b568f 100644
--- a/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_data.py
+++ b/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_data.py
@@ -1,45 +1,142 @@
import pytest
-from mipframework.data import get_formula
+from mipframework.data import DataBase, AlgorithmData
@pytest.fixture
-def make_mock_args():
- class MockArgs(object):
- def __init__(self, x, y, formula, intercept=True):
- self.x = x
- self.y = y
- self.formula = formula
- self.intercept = intercept
+def args():
+ class Args:
+ pass
- return MockArgs
+ return Args()
-def test_get_formula_from_args(make_mock_args):
- expected = 'y ~ x * z + w'
- args = make_mock_args(x=['x', 'z', 'w'], y=['y'], formula=expected)
- output = get_formula._original(args, None)
- assert output == expected
+@pytest.fixture
+def db():
+ path = "Exareme-Docker/src/mip-algorithms/mipframework/runner/dbs/datasets.db"
+ db = DataBase(
+ db_path=path,
+ data_table_name="data",
+ metadata_table_name="metadata",
+ privacy=False,
+ dropna=False,
+ )
+ yield db
+
+
+class TestDataBase:
+ def test_create_table(self, db):
+ table = db.create_table("data")
+ assert type(table).__name__ == "Table"
+
+ def test_read_data_from_db_y(self, db, args):
+ args.y = ["lefthippocampus"]
+ args.filter = ""
+ args.dataset = ["adni"]
+ data = db.read_data_from_db(args)
+ assert set(data.columns) == {"lefthippocampus", "dataset"}
+ def test_read_data_from_db_xy(self, db, args):
+ args.y = ["lefthippocampus"]
+ args.x = ["righthippocampus"]
+ args.filter = ""
+ args.dataset = ["adni"]
+ data = db.read_data_from_db(args)
+ assert set(data.columns) == {"lefthippocampus", "dataset", "righthippocampus"}
-def test_get_formula_y_only(make_mock_args):
- expected = 'x+y+z-1'
- args = make_mock_args(x=None, y=['x', 'y', 'z'], formula=None)
- output = get_formula._original(args, None)
- assert output == expected
+ @pytest.mark.skip(reason="Longitudinal data not present in db")
+ def test_read_longitudinal_data_from_db(self, db, args):
+ args.y = ["lefthippocampus"]
+ args.x = ["righthippocampus"]
+ args.filter = ""
+ args.dataset = ["fake_longitudinal"]
+ data = db.read_longitudinal_data_from_db(args)
+ assert {
+ "lefthippocampus",
+ "righthippocampus",
+ "dataset",
+ "subjectvisitid",
+ } <= set(data.columns)
+ def test_read_metadata_from_db(self, db, args):
+ args.y = ["lefthippocampus"]
+ args.x = ["righthippocampus"]
+ args.filter = ""
+ args.dataset = ["adni"]
+ args.metadata_code_column = "code"
+ args.metadata_label_column = "label"
+ args.metadata_isCategorical_column = "isCategorical"
+ args.metadata_enumerations_column = "enumerations"
+ args.metadata_minValue_column = "min"
+ args.metadata_maxValue_column = "max"
+ metadata = db.read_metadata_from_db(args)
+ assert type(metadata).__name__ == "AlgorithmMetadata"
+ assert hasattr(metadata, "is_categorical")
+ assert hasattr(metadata, "label")
+ assert hasattr(metadata, "enumerations")
+ assert hasattr(metadata, "minmax")
-def test_get_formula_y_and_x(make_mock_args):
- expected = 'y+x~z+w+t'
- args = make_mock_args(x=['z', 'w', 't'], y=['y', 'x'], formula=None)
- output = get_formula._original(args, None)
- assert output == expected
+class TestAlgorithmData:
+ def test_init(self, args):
+ args.input_local_DB = (
+ "Exareme-Docker/src/mip-algorithms/mipframework/runner/dbs/datasets.db"
+ )
+ args.data_table = "data"
+ args.metadata_table = "metadata"
+ args.privacy = False
+ args.dropna = False
+ args.y = ["lefthippocampus"]
+ args.x = ["righthippocampus"]
+ args.intercept = True
+ args.formula_is_equation = True
+ args.filter = ""
+ args.dataset = ["adni"]
+ args.metadata_code_column = "code"
+ args.metadata_label_column = "label"
+ args.metadata_isCategorical_column = "isCategorical"
+ args.metadata_enumerations_column = "enumerations"
+ args.metadata_minValue_column = "min"
+ args.metadata_maxValue_column = "max"
+ alg_data = AlgorithmData(args)
+ assert len(alg_data.full) >= 1
+ assert len(alg_data.variables) >= 1
+ assert len(alg_data.covariables) >= 1
+ assert alg_data.metadata is not None
-def test_get_formula_with_coding(make_mock_args):
- expected = 'y~x+C(z, Treatment)'
- args = make_mock_args(x=['x', 'z'], y=['y'], formula=None)
- args.coding = 'Treatment'
- is_categorical = {'x': 0, 'y': 0, 'z': 1}
- output = get_formula._original(args, is_categorical)
- assert output == expected
+ def test_init_with_new_style_formula(self, args):
+ args.input_local_DB = (
+ "Exareme-Docker/src/mip-algorithms/mipframework/runner/dbs/datasets.db"
+ )
+ args.data_table = "data"
+ args.metadata_table = "metadata"
+ args.privacy = False
+ args.dropna = False
+ args.y = ["gender"]
+ args.x = ["lefthippocampus", "righthippocampus"]
+ args.var_names = args.y + args.x
+ args.intercept = True
+ args.formula = {
+ "single": [
+ {"var_name": "lefthippocampus", "unary_operation": "nop"},
+ {"var_name": "righthippocampus", "unary_operation": "nop"},
+ ],
+ "interactions": [{"var1": "lefthippocampus", "var2": "righthippocampus"}],
+ }
+ args.coding = "Treatment"
+ args.formula_is_equation = False
+ args.filter = ""
+ args.dataset = ["adni"]
+ args.metadata_code_column = "code"
+ args.metadata_label_column = "label"
+ args.metadata_isCategorical_column = "isCategorical"
+ args.metadata_enumerations_column = "enumerations"
+ args.metadata_minValue_column = "min"
+ args.metadata_maxValue_column = "max"
+ alg_data = AlgorithmData(args)
+ assert list(alg_data.covariables.columns) == [
+ "Intercept",
+ "lefthippocampus",
+ "righthippocampus",
+ "lefthippocampus:righthippocampus",
+ ]
diff --git a/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_formula.py b/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_formula.py
new file mode 100644
index 000000000..0e97c4cdb
--- /dev/null
+++ b/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_formula.py
@@ -0,0 +1,269 @@
+import pytest
+
+from mipframework.formula import (
+ generate_formula,
+ get_term_unary_op,
+ FormulaInvalidOperator,
+ get_term_binary_op,
+ generate_formula_from_variable_lists,
+ insert_explicit_coding_for_categorical_vars,
+)
+
+
+@pytest.fixture
+def args():
+ class Args:
+ pass
+
+ return Args()
+
+
+def test_unparse_formula_one_single_nop():
+ formula_data = {
+ "single": [{"var_name": "var1", "unary_operation": "nop"}],
+ "interactions": [],
+ }
+ expected = "var1"
+ result = generate_formula(formula_data)
+ assert expected == result
+
+
+def test_generate_formula_with_dependent_var():
+ formula_data = {
+ "single": [{"var_name": "var1", "unary_operation": "nop"}],
+ "interactions": [],
+ }
+ expected = "y~var1"
+ result = generate_formula(formula_data, "y")
+ assert expected == result
+
+
+def test_unparse_formula_one_single_log():
+ formula_data = {
+ "single": [{"var_name": "var1", "unary_operation": "log"}],
+ "interactions": [],
+ }
+ expected = "np.log(var1)"
+ result = generate_formula(formula_data)
+ assert expected == result
+
+
+def test_unparse_formula_two_singles():
+ formula_data = {
+ "single": [
+ {"var_name": "var1", "unary_operation": "nop"},
+ {"var_name": "var2", "unary_operation": "log"},
+ ],
+ "interactions": [],
+ }
+ expected = "var1 + np.log(var2)"
+ result = generate_formula(formula_data)
+ assert expected == result
+
+
+def test_unparse_formula_one_single_binop():
+ formula_data = {
+ "single": [
+ {"var_name": "var1", "unary_operation": "nop"},
+ {"var_name": "var2", "binary_operation": "mul", "operand": 2},
+ ],
+ "interactions": [],
+ }
+ expected = "var1 + I(var2*2)"
+ result = generate_formula(formula_data)
+ assert expected == result
+
+
+def test_unparse_formula_multiple_singles():
+ formula_data = {
+ "single": [
+ {"var_name": "var1", "unary_operation": "nop"},
+ {"var_name": "var2", "unary_operation": "log"},
+ {"var_name": "var3", "unary_operation": "center"},
+ {"var_name": "var4", "binary_operation": "mul", "operand": 2},
+ {"var_name": "var5", "binary_operation": "div", "operand": 2},
+ ],
+ "interactions": [],
+ }
+ expected = "var1 + np.log(var2) + patsy.center(var3) + I(var4*2) + I(var5/2)"
+ result = generate_formula(formula_data)
+ assert expected == result
+
+
+def test_unparse_formula_one_interaction():
+ formula_data = {
+ "single": [
+ {"var_name": "var1", "unary_operation": "nop"},
+ {"var_name": "var2", "unary_operation": "nop"},
+ ],
+ "interactions": [{"var1": "var1", "var2": "var2"}],
+ }
+ expected = "var1 + var2 + var1:var2"
+ result = generate_formula(formula_data)
+ assert expected == result
+
+
+def test_unparse_formula_two_interactions():
+ formula_data = {
+ "single": [
+ {"var_name": "var1", "unary_operation": "nop"},
+ {"var_name": "var2", "unary_operation": "nop"},
+ {"var_name": "var3", "unary_operation": "nop"},
+ ],
+ "interactions": [
+ {"var1": "var1", "var2": "var2"},
+ {"var1": "var2", "var2": "var3"},
+ ],
+ }
+ expected = "var1 + var2 + var3 + var1:var2 + var2:var3"
+ result = generate_formula(formula_data)
+ assert expected == result
+
+
+def test_unparse_formula_one_triple_interaction():
+ formula_data = {
+ "single": [
+ {"var_name": "var1", "unary_operation": "nop"},
+ {"var_name": "var2", "unary_operation": "nop"},
+ {"var_name": "var3", "unary_operation": "nop"},
+ ],
+ "interactions": [
+ {"var1": "var1", "var2": "var2", "var3": "var3"},
+ ],
+ }
+ expected = "var1 + var2 + var3 + var1:var3:var2"
+ result = generate_formula(formula_data)
+ assert expected == result
+
+
+def test_get_term_unary_op_nop():
+ var_name = "var1"
+ op = "nop"
+ expected = "var1"
+ result = get_term_unary_op(var_name, op)
+ assert expected == result
+
+
+def test_get_term_unary_op_log():
+ var_name = "var1"
+ op = "log"
+ expected = "np.log(var1)"
+ result = get_term_unary_op(var_name, op)
+ assert expected == result
+
+
+def test_get_term_unary_op_exp():
+ var_name = "var1"
+ op = "exp"
+ expected = "np.exp(var1)"
+ result = get_term_unary_op(var_name, op)
+ assert expected == result
+
+
+def test_get_term_unary_op_center():
+ var_name = "var1"
+ op = "center"
+ expected = "patsy.center(var1)"
+ result = get_term_unary_op(var_name, op)
+ assert expected == result
+
+
+def test_get_term_unary_op_standardize():
+ var_name = "var1"
+ op = "standardize"
+ expected = "patsy.standardize(var1)"
+ result = get_term_unary_op(var_name, op)
+ assert expected == result
+
+
+@pytest.mark.skip
+def test_get_term_unary_op_dummy():
+ var_name = "var1"
+ op = "dummy"
+ expected = "C(var1, Treatment)"
+ result = get_term_unary_op(var_name, op)
+ assert expected == result
+
+
+@pytest.mark.skip
+def test_get_term_unary_op_diff():
+ var_name = "var1"
+ op = "diff"
+ expected = "C(var1, Diff)"
+ result = get_term_unary_op(var_name, op)
+ assert expected == result
+
+
+@pytest.mark.skip
+def test_get_term_unary_op_helmert():
+ var_name = "var1"
+ op = "Helmert"
+ expected = "C(var1, Helmert)"
+ result = get_term_unary_op(var_name, op)
+ assert expected == result
+
+
+def test_get_term_unary_op_invalid_op():
+ var_name = "var1"
+ op = "invalid_op"
+ with pytest.raises(FormulaInvalidOperator):
+ get_term_unary_op(var_name, op)
+
+
+def test_get_term_binary_op_mul():
+ var_name = "var1"
+ op = "mul"
+ operand = 2
+ expected = "I(var1*2)"
+ result = get_term_binary_op(var_name, op, operand)
+ assert result == expected
+
+
+def test_get_term_binary_op_div():
+ var_name = "var1"
+ op = "div"
+ operand = 2
+ expected = "I(var1/2)"
+ result = get_term_binary_op(var_name, op, operand)
+ assert result == expected
+
+
+def test_get_term_binary_op_invalid():
+ with pytest.raises(FormulaInvalidOperator):
+ get_term_binary_op("", "invalid_op", 0)
+
+
+def test_generate_formula_from_variable_list_only_y(args):
+ args.y = ["a", "b", "c"]
+ expected_formula = "a+b+c-1"
+ formula = generate_formula_from_variable_lists(args)
+ assert formula == expected_formula
+
+
+def test_generate_formula_from_variable_list_xy_with_intercept(args):
+ args.y = ["y"]
+ args.x = ["a", "b", "c"]
+ args.intercept = True
+ expected_formula = "y~a+b+c"
+ formula = generate_formula_from_variable_lists(args)
+ assert formula == expected_formula
+
+
+def test_generate_formula_from_variable_list_xy_without_intercept(args):
+ args.y = ["y"]
+ args.x = ["a", "b", "c"]
+ args.intercept = False
+ expected_formula = "y~a+b+c-1"
+ formula = generate_formula_from_variable_lists(args)
+ assert formula == expected_formula
+
+
+@pytest.mark.skip
+def test_insert_explicit_coding_for_categorical_vars_with_coding(args):
+ args.var_names = ["a", "b", "c"]
+ args.coding = "Helmert"
+ formula = "a+b+c"
+ is_categorical = {"a": False, "b": False, "c": True}
+ expected_formula = "a+b+C(c, Helmert)"
+ formula = insert_explicit_coding_for_categorical_vars(formula, args, is_categorical)
+ assert formula == expected_formula
diff --git a/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_parameters.py b/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_parameters.py
new file mode 100644
index 000000000..667b72e48
--- /dev/null
+++ b/Exareme-Docker/src/mip-algorithms/mipframework/tests/test_parameters.py
@@ -0,0 +1,181 @@
+import pytest
+
+from mipframework.parameters import parse_cli_args, get_parser
+
+
+def test_parse_exareme_args_without_shared_algorithm_args():
+ algorithm_folder_path = "Exareme-Docker/src/mip-algorithms/PCA/"
+ cli_args = [
+ "-y",
+ "gender",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "ppmi",
+ ]
+ args = parse_cli_args(algorithm_folder_path, cli_args)
+ assert hasattr(args, "y")
+ assert isinstance(args.y, list)
+ assert hasattr(args, "pathology")
+ assert isinstance(args.pathology, str)
+ assert hasattr(args, "dataset")
+ assert isinstance(args.dataset, list)
+
+
+def test_parse_exareme_args_without_shared_algorithm_args_with_x():
+ algorithm_folder_path = "Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/"
+ cli_args = [
+ "-x",
+ "righthippocampus,lefthippocampus",
+ "-y",
+ "gender",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "ppmi",
+ "-positive_level",
+ "AD",
+ "-negative_level",
+ "CN",
+ ]
+ args = parse_cli_args(algorithm_folder_path, cli_args)
+ assert hasattr(args, "x")
+ assert isinstance(args.x, list)
+ assert hasattr(args, "y")
+ assert isinstance(args.y, list)
+ assert hasattr(args, "pathology")
+ assert isinstance(args.pathology, str)
+ assert hasattr(args, "dataset")
+ assert isinstance(args.dataset, list)
+ assert hasattr(args, "positive_level")
+ assert isinstance(args.positive_level, str)
+ assert hasattr(args, "negative_level")
+ assert isinstance(args.negative_level, str)
+
+
+def test_parse_exareme_args_with_shared_algorithm_args():
+ algorithm_folder_path = "Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/"
+ cli_args = [
+ "-x",
+ "righthippocampus,lefthippocampus",
+ "-y",
+ "gender",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "ppmi",
+ "-positive_level",
+ "AD",
+ "-negative_level",
+ "CN",
+ "-input_local_DB",
+ "DUMMY",
+ "-db_query",
+ "DUMMY",
+ "-cur_state_pkl",
+ "DUMMY",
+ "-prev_state_pkl",
+ "DUMMY",
+ "-local_step_dbs",
+ "DUMMY",
+ "-global_step_db",
+ "DUMMY",
+ "-data_table",
+ "DUMMY",
+ "-metadata_table",
+ "DUMMY",
+ "-metadata_code_column",
+ "DUMMY",
+ "-metadata_label_column",
+ "DUMMY",
+ "-metadata_isCategorical_column",
+ "DUMMY",
+ "-metadata_enumerations_column",
+ "DUMMY",
+ "-metadata_minValue_column",
+ "DUMMY",
+ "-metadata_maxValue_column",
+ "DUMMY",
+ "-metadata_sqlType_column",
+ "DUMMY",
+ ]
+ args = parse_cli_args(algorithm_folder_path, cli_args)
+ assert hasattr(args, "x")
+ assert isinstance(args.x, list)
+ assert hasattr(args, "y")
+ assert isinstance(args.y, list)
+ assert hasattr(args, "pathology")
+ assert isinstance(args.pathology, str)
+ assert hasattr(args, "dataset")
+ assert isinstance(args.dataset, list)
+ assert hasattr(args, "positive_level")
+ assert isinstance(args.positive_level, str)
+ assert hasattr(args, "negative_level")
+ assert isinstance(args.negative_level, str)
+
+
+# FIXME see reason below
+@pytest.mark.xfail(reason="function doesnt handle wrong args, should be fixed")
+def test_parse_exareme_args_wrong_args():
+ algorithm_folder_path = "Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/"
+ cli_args = [
+ "-x",
+ "righthippocampus,lefthippocampus",
+ "-y",
+ "gender",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "ppmi",
+ "-positive_level",
+ "AD",
+ "-negative_level",
+ "CN",
+ "-wrong_arg",
+ "WRONG",
+ ]
+ args = parse_cli_args(algorithm_folder_path, cli_args)
+ assert hasattr(args, "x")
+ assert isinstance(args.x, list)
+ assert hasattr(args, "y")
+ assert isinstance(args.y, list)
+ assert hasattr(args, "pathology")
+ assert isinstance(args.pathology, str)
+ assert hasattr(args, "dataset")
+ assert isinstance(args.dataset, list)
+ assert hasattr(args, "positive_level")
+ assert isinstance(args.positive_level, str)
+ assert hasattr(args, "negative_level")
+ assert isinstance(args.negative_level, str)
+
+
+def test_parse_exareme_args_escape_chars():
+ algorithm_folder_path = "Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/"
+ cli_args = [
+ "-x",
+ "righthippocampus,lefthippocampus",
+ "-y",
+ "agegroup",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "ppmi",
+ "-positive_level",
+ "+80y",
+ "-negative_level",
+ "-50y",
+ ]
+ args = parse_cli_args(algorithm_folder_path, cli_args)
+ assert hasattr(args, "x")
+ assert isinstance(args.x, list)
+ assert hasattr(args, "y")
+ assert isinstance(args.y, list)
+ assert hasattr(args, "pathology")
+ assert isinstance(args.pathology, str)
+ assert hasattr(args, "dataset")
+ assert isinstance(args.dataset, list)
+ assert hasattr(args, "positive_level")
+ assert isinstance(args.positive_level, str)
+ assert hasattr(args, "negative_level")
+ assert isinstance(args.negative_level, str)
+ assert args.negative_level == "-50y"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/__init__.py b/Exareme-Docker/src/mip-algorithms/tests/__init__.py
index 8fb2ad354..6c720a151 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/__init__.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/__init__.py
@@ -1 +1,16 @@
vm_url = "http://88.197.53.100:9090/mining/query/"
+
+anova_url = vm_url + "ANOVA"
+cart_url = vm_url + "CART"
+histograms_url = vm_url + "HISTOGRAMS"
+id3_url = vm_url + "ID3"
+kmeans_url = vm_url + "KMEANS"
+linear_regression_url = vm_url + "LINEAR_REGRESSION"
+multiple_histograms_url = vm_url + "MULTIPLE_HISTOGRAMS"
+cross_validation_url = vm_url + "CROSS_VALIDATION_K_FOLD"
+naive_bayes_training_url = vm_url + "NAIVE_BAYES_TRAINING"
+naive_bayes_testing_url = vm_url + "NAIVE_BAYES_TESTING"
+naive_bayes_training_standalone_url = vm_url + "NAIVE_BAYES_TRAINING_STANDALONE"
+ttest_independent_url = vm_url + "TTEST_INDEPENDENT"
+ttest_onesample_url = vm_url + "TTEST_ONESAMPLE"
+ttest_paired_url = vm_url + "TTEST_PAIRED"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/expected/descriptive_stats_expected.json b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/expected/descriptive_stats_expected.json
index 1ca62437f..60a8017f1 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/expected/descriptive_stats_expected.json
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/expected/descriptive_stats_expected.json
@@ -4,11 +4,11 @@
"input": [
{
"name": "y",
- "value": "rightcuncuneus,rightaorganteriororbitalgyrus,leftpogpostcentralgyrus,leftmcggmiddlecingulategyrus,leftsmcsupplementarymotorcortex,leftsogsuperioroccipitalgyrus,leftmtgmiddletemporalgyrus,rightpoparietaloperculum"
+ "value": "rs11136000_t,gender"
},
{
"name": "dataset",
- "value": "adni,edsd"
+ "value": "adni"
},
{
"name": "filter",
@@ -21,337 +21,223 @@
],
"output": {
"single": {
- "leftmtgmiddletemporalgyrus": {
- "adni": {
- "data": {
- "std": 1.5742329008623004,
- "min": 7.80915,
- "max": 18.0946,
- "lower_confidence": 11.430005466867527,
- "mean": 13.004238367729828,
- "upper_confidence": 14.578471268592128
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 1.6484373239127161,
- "min": 7.3624,
- "max": 18.8747,
- "lower_confidence": 11.527554209268077,
- "mean": 13.175991533180794,
- "upper_confidence": 14.82442885709351
- },
- "num_datapoints": 437
- }
- },
- "rightcuncuneus": {
- "adni": {
- "data": {
- "std": 0.6008260681366892,
- "min": 2.82536,
- "max": 6.85326,
- "lower_confidence": 4.12351799377701,
- "mean": 4.7243440619136985,
- "upper_confidence": 5.325170130050387
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.6096579784653384,
- "min": 2.8214,
- "max": 6.5936,
- "lower_confidence": 3.910417536408806,
- "mean": 4.5200755148741445,
- "upper_confidence": 5.129733493339483
- },
- "num_datapoints": 437
- }
- },
- "leftmcggmiddlecingulategyrus": {
+ "rs11136000_T": {
"adni": {
"data": {
- "std": 0.5453117602863388,
- "min": 2.9757,
- "max": 9.56777,
- "lower_confidence": 4.107015434835609,
- "mean": 4.652327195121948,
- "upper_confidence": 5.197638955408286
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.6877850942907141,
- "min": 0.0,
- "max": 7.4817,
- "lower_confidence": 3.8923886356863995,
- "mean": 4.580173729977114,
- "upper_confidence": 5.2679588242678275
- },
- "num_datapoints": 437
- }
- },
- "rightpoparietaloperculum": {
+ "1": {
+ "count": 451,
+ "percentage": 50.62
+ },
+ "0": {
+ "count": 314,
+ "percentage": 35.24
+ },
+ "2": {
+ "count": 126,
+ "percentage": 14.14
+ }
+ },
+ "num_datapoints": 891,
+ "num_nulls": 175,
+ "num_total": 1066
+ }
+ },
+ "Gender": {
"adni": {
"data": {
- "std": 0.302360127286798,
- "min": 1.30568,
- "max": 3.34823,
- "lower_confidence": 1.8688803792798023,
- "mean": 2.1712405065666003,
- "upper_confidence": 2.4736006338533985
+ "M": {
+ "count": 581,
+ "percentage": 54.5
+ },
+ "F": {
+ "count": 485,
+ "percentage": 45.5
+ }
},
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.3619819401510522,
- "min": 0.0,
- "max": 3.2482,
- "lower_confidence": 1.76255348318991,
- "mean": 2.124535423340962,
- "upper_confidence": 2.4865173634920144
- },
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
- },
- "rightaorganteriororbitalgyrus": {
+ }
+ },
+ "model": {
+ "adni": {
+ "num_datapoints": 891,
+ "data": {
+ "rs11136000_T": {
+ "1": {
+ "count": 451,
+ "percentage": 50.62
+ },
+ "0": {
+ "count": 314,
+ "percentage": 35.24
+ },
+ "2": {
+ "count": 126,
+ "percentage": 14.14
+ }
+ },
+ "Gender": {
+ "M": {
+ "count": 486,
+ "percentage": 54.55
+ },
+ "F": {
+ "count": 405,
+ "percentage": 45.45
+ }
+ }
+ },
+ "num_nulls": 175,
+ "num_total": 1066
+ }
+ }
+ }
+ },
+ {
+ "input": [
+ {
+ "name": "y",
+ "value": "leftttgtransversetemporalgyrus,rightmogmiddleoccipitalgyrus"
+ },
+ {
+ "name": "dataset",
+ "value": "adni"
+ },
+ {
+ "name": "filter",
+ "value": ""
+ },
+ {
+ "name": "pathology",
+ "value": "dementia"
+ }
+ ],
+ "output": {
+ "single": {
+ "Right middle occipital gyrus": {
"adni": {
"data": {
- "std": 0.20988788679102507,
- "min": 0.886175,
- "max": 2.49793,
- "lower_confidence": 1.4992574687436848,
- "mean": 1.7091453555347098,
- "upper_confidence": 1.9190332423257348
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.27829646493901633,
- "min": 0.0,
- "max": 2.7957,
- "lower_confidence": 1.4183420476467954,
- "mean": 1.6966385125858117,
- "upper_confidence": 1.974934977524828
+ "std": 0.6057400050951689,
+ "max": 7.09844,
+ "min": 3.44362,
+ "mean": 5.101937795497182
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
},
- "leftsogsuperioroccipitalgyrus": {
+ "Left transverse temporal gyrus": {
"adni": {
"data": {
- "std": 0.47754406772643376,
- "min": 2.29083,
- "max": 5.28127,
- "lower_confidence": 3.0518972831178437,
- "mean": 3.5294413508442775,
- "upper_confidence": 4.006985418570711
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.46053122634459503,
- "min": 2.0489,
- "max": 4.9429,
- "lower_confidence": 2.9554284990558646,
- "mean": 3.4159597254004597,
- "upper_confidence": 3.8764909517450548
+ "std": 0.22961750904868097,
+ "max": 2.41946,
+ "min": 0.911232,
+ "mean": 1.6001348893058158
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
- },
- "leftpogpostcentralgyrus": {
- "adni": {
- "data": {
- "std": 1.2516495692819423,
- "min": 7.91538,
- "max": 16.1517,
- "lower_confidence": 10.314137091130823,
- "mean": 11.565786660412765,
- "upper_confidence": 12.817436229694708
+ }
+ },
+ "model": {
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Right middle occipital gyrus": {
+ "std": 0.6057400050951689,
+ "max": 7.09844,
+ "min": 3.44362,
+ "mean": 5.101937795497182
},
- "num_datapoints": 1066
+ "Left transverse temporal gyrus": {
+ "std": 0.22961750904868097,
+ "max": 2.41946,
+ "min": 0.911232,
+ "mean": 1.6001348893058158
+ }
},
- "edsd": {
- "data": {
- "std": 1.5992934941144763,
- "min": 0.0,
- "max": 15.2824,
- "lower_confidence": 9.46901263860864,
- "mean": 11.068306132723118,
- "upper_confidence": 12.667599626837594
- },
- "num_datapoints": 437
- }
- },
- "leftsmcsupplementarymotorcortex": {
- "adni": {
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ }
+ }
+ },
+ {
+ "input": [
+ {
+ "name": "y",
+ "value": "leftententorhinalarea"
+ },
+ {
+ "name": "dataset",
+ "value": "ppmi,edsd"
+ },
+ {
+ "name": "filter",
+ "value": ""
+ },
+ {
+ "name": "pathology",
+ "value": "dementia"
+ }
+ ],
+ "output": {
+ "single": {
+ "Left entorhinal area": {
+ "ppmi": {
"data": {
- "std": 0.6118021613792187,
- "min": 3.11474,
- "max": 8.61715,
- "lower_confidence": 4.66953213505605,
- "mean": 5.2813342964352685,
- "upper_confidence": 5.893136457814487
+ "std": 0.17314424479786125,
+ "max": 2.3952,
+ "min": 1.0429,
+ "mean": 1.704146918767507
},
- "num_datapoints": 1066
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"data": {
- "std": 0.7872097027664064,
- "min": 0.0,
- "max": 8.4787,
- "lower_confidence": 4.361366498606592,
- "mean": 5.1485762013729985,
- "upper_confidence": 5.935785904139405
+ "std": 0.2295528271274821,
+ "max": 2.4015,
+ "min": 0.39954,
+ "mean": 1.533638215102974
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 1066,
+ "ppmi": {
+ "num_datapoints": 714,
"data": {
- "leftmtgmiddletemporalgyrus": {
- "std": 1.5742329008623004,
- "min": 7.80915,
- "max": 18.0946,
- "lower_confidence": 11.430005466867527,
- "mean": 13.004238367729828,
- "upper_confidence": 14.578471268592128
- },
- "rightcuncuneus": {
- "std": 0.6008260681366892,
- "min": 2.82536,
- "max": 6.85326,
- "lower_confidence": 4.12351799377701,
- "mean": 4.7243440619136985,
- "upper_confidence": 5.325170130050387
- },
- "leftmcggmiddlecingulategyrus": {
- "std": 0.5453117602863388,
- "min": 2.9757,
- "max": 9.56777,
- "lower_confidence": 4.107015434835609,
- "mean": 4.652327195121948,
- "upper_confidence": 5.197638955408286
- },
- "rightpoparietaloperculum": {
- "std": 0.302360127286798,
- "min": 1.30568,
- "max": 3.34823,
- "lower_confidence": 1.8688803792798023,
- "mean": 2.1712405065666003,
- "upper_confidence": 2.4736006338533985
- },
- "rightaorganteriororbitalgyrus": {
- "std": 0.20988788679102507,
- "min": 0.886175,
- "max": 2.49793,
- "lower_confidence": 1.4992574687436848,
- "mean": 1.7091453555347098,
- "upper_confidence": 1.9190332423257348
- },
- "leftsogsuperioroccipitalgyrus": {
- "std": 0.47754406772643376,
- "min": 2.29083,
- "max": 5.28127,
- "lower_confidence": 3.0518972831178437,
- "mean": 3.5294413508442775,
- "upper_confidence": 4.006985418570711
- },
- "leftpogpostcentralgyrus": {
- "std": 1.2516495692819423,
- "min": 7.91538,
- "max": 16.1517,
- "lower_confidence": 10.314137091130823,
- "mean": 11.565786660412765,
- "upper_confidence": 12.817436229694708
- },
- "leftsmcsupplementarymotorcortex": {
- "std": 0.6118021613792187,
- "min": 3.11474,
- "max": 8.61715,
- "lower_confidence": 4.66953213505605,
- "mean": 5.2813342964352685,
- "upper_confidence": 5.893136457814487
+ "Left entorhinal area": {
+ "std": 0.17314424479786125,
+ "max": 2.3952,
+ "min": 1.0429,
+ "mean": 1.704146918767507
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"num_datapoints": 437,
"data": {
- "leftmtgmiddletemporalgyrus": {
- "std": 1.6484373239127161,
- "min": 7.3624,
- "max": 18.8747,
- "lower_confidence": 11.527554209268077,
- "mean": 13.175991533180794,
- "upper_confidence": 14.82442885709351
- },
- "rightcuncuneus": {
- "std": 0.6096579784653384,
- "min": 2.8214,
- "max": 6.5936,
- "lower_confidence": 3.910417536408806,
- "mean": 4.5200755148741445,
- "upper_confidence": 5.129733493339483
- },
- "leftmcggmiddlecingulategyrus": {
- "std": 0.6877850942907141,
- "min": 0.0,
- "max": 7.4817,
- "lower_confidence": 3.8923886356863995,
- "mean": 4.580173729977114,
- "upper_confidence": 5.2679588242678275
- },
- "rightpoparietaloperculum": {
- "std": 0.3619819401510522,
- "min": 0.0,
- "max": 3.2482,
- "lower_confidence": 1.76255348318991,
- "mean": 2.124535423340962,
- "upper_confidence": 2.4865173634920144
- },
- "rightaorganteriororbitalgyrus": {
- "std": 0.27829646493901633,
- "min": 0.0,
- "max": 2.7957,
- "lower_confidence": 1.4183420476467954,
- "mean": 1.6966385125858117,
- "upper_confidence": 1.974934977524828
- },
- "leftsogsuperioroccipitalgyrus": {
- "std": 0.46053122634459503,
- "min": 2.0489,
- "max": 4.9429,
- "lower_confidence": 2.9554284990558646,
- "mean": 3.4159597254004597,
- "upper_confidence": 3.8764909517450548
- },
- "leftpogpostcentralgyrus": {
- "std": 1.5992934941144763,
- "min": 0.0,
- "max": 15.2824,
- "lower_confidence": 9.46901263860864,
- "mean": 11.068306132723118,
- "upper_confidence": 12.667599626837594
- },
- "leftsmcsupplementarymotorcortex": {
- "std": 0.7872097027664064,
- "min": 0.0,
- "max": 8.4787,
- "lower_confidence": 4.361366498606592,
- "mean": 5.1485762013729985,
- "upper_confidence": 5.935785904139405
+ "Left entorhinal area": {
+ "std": 0.2295528271274821,
+ "max": 2.4015,
+ "min": 0.39954,
+ "mean": 1.533638215102974
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -360,11 +246,11 @@
"input": [
{
"name": "y",
- "value": "leftfugfusiformgyrus,leftmfgmiddlefrontalgyrus,rightmfgmiddlefrontalgyrus"
+ "value": "leftmogmiddleoccipitalgyrus,rightptplanumtemporale"
},
{
"name": "dataset",
- "value": "edsd,ppmi,adni"
+ "value": "adni,ppmi"
},
{
"name": "filter",
@@ -377,109 +263,52 @@
],
"output": {
"single": {
- "leftfugfusiformgyrus": {
- "ppmi": {
- "data": {
- "std": 0.6975626709639572,
- "min": 5.3667,
- "max": 9.9427,
- "lower_confidence": 6.773388029316155,
- "mean": 7.470950700280111,
- "upper_confidence": 8.16851337124407
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.7354961379719027,
- "min": 4.85218,
- "max": 9.46734,
- "lower_confidence": 6.157211516812334,
- "mean": 6.892707654784236,
- "upper_confidence": 7.628203792756139
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.803725589864498,
- "min": 3.9341,
- "max": 9.7987,
- "lower_confidence": 6.118949467343739,
- "mean": 6.922675057208236,
- "upper_confidence": 7.726400647072734
- },
- "num_datapoints": 437
- }
- },
- "leftmfgmiddlefrontalgyrus": {
+ "Right planum temporale": {
"ppmi": {
"data": {
- "std": 2.1619531712556026,
- "min": 10.689,
- "max": 26.6336,
- "lower_confidence": 16.763161674682785,
- "mean": 18.92511484593839,
- "upper_confidence": 21.087068017193992
+ "std": 0.26190136951224824,
+ "max": 2.8503,
+ "min": 1.1837,
+ "mean": 1.9330813725490184
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 2.0258510429695518,
- "min": 11.3305,
- "max": 27.3957,
- "lower_confidence": 16.220591170914126,
- "mean": 18.24644221388368,
- "upper_confidence": 20.27229325685323
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 2.694403625595296,
- "min": 0.0,
- "max": 25.1051,
- "lower_confidence": 15.230307816052292,
- "mean": 17.924711441647588,
- "upper_confidence": 20.619115067242884
+ "std": 0.2481965299717149,
+ "max": 2.89878,
+ "min": 1.1888,
+ "mean": 1.8732797842401527
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
},
- "rightmfgmiddlefrontalgyrus": {
+ "Left middle occipital gyrus": {
"ppmi": {
"data": {
- "std": 2.096951668861678,
- "min": 10.7621,
- "max": 26.1728,
- "lower_confidence": 16.520812616852613,
- "mean": 18.61776428571429,
- "upper_confidence": 20.71471595457597
+ "std": 0.7850021809753601,
+ "max": 9.0994,
+ "min": 4.13,
+ "mean": 6.3760039215686355
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 2.008586497232484,
- "min": 11.3756,
- "max": 25.9978,
- "lower_confidence": 15.934234703517996,
- "mean": 17.94282120075048,
- "upper_confidence": 19.951407697982965
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 2.6629152993837026,
- "min": 0.0,
- "max": 25.3498,
- "lower_confidence": 15.037770970639173,
- "mean": 17.700686270022874,
- "upper_confidence": 20.363601569406576
+ "std": 0.7507151245885757,
+ "max": 8.75669,
+ "min": 3.94905,
+ "mean": 6.010316988742961
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -487,89 +316,40 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftfugfusiformgyrus": {
- "std": 0.6975626709639572,
- "min": 5.3667,
- "max": 9.9427,
- "lower_confidence": 6.773388029316155,
- "mean": 7.470950700280111,
- "upper_confidence": 8.16851337124407
- },
- "leftmfgmiddlefrontalgyrus": {
- "std": 2.1619531712556026,
- "min": 10.689,
- "max": 26.6336,
- "lower_confidence": 16.763161674682785,
- "mean": 18.92511484593839,
- "upper_confidence": 21.087068017193992
- },
- "rightmfgmiddlefrontalgyrus": {
- "std": 2.096951668861678,
- "min": 10.7621,
- "max": 26.1728,
- "lower_confidence": 16.520812616852613,
- "mean": 18.61776428571429,
- "upper_confidence": 20.71471595457597
+ "Right planum temporale": {
+ "std": 0.26190136951224824,
+ "max": 2.8503,
+ "min": 1.1837,
+ "mean": 1.9330813725490184
+ },
+ "Left middle occipital gyrus": {
+ "std": 0.7850021809753601,
+ "max": 9.0994,
+ "min": 4.13,
+ "mean": 6.3760039215686355
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "leftfugfusiformgyrus": {
- "std": 0.7354961379719027,
- "min": 4.85218,
- "max": 9.46734,
- "lower_confidence": 6.157211516812334,
- "mean": 6.892707654784236,
- "upper_confidence": 7.628203792756139
- },
- "leftmfgmiddlefrontalgyrus": {
- "std": 2.0258510429695518,
- "min": 11.3305,
- "max": 27.3957,
- "lower_confidence": 16.220591170914126,
- "mean": 18.24644221388368,
- "upper_confidence": 20.27229325685323
- },
- "rightmfgmiddlefrontalgyrus": {
- "std": 2.008586497232484,
- "min": 11.3756,
- "max": 25.9978,
- "lower_confidence": 15.934234703517996,
- "mean": 17.94282120075048,
- "upper_confidence": 19.951407697982965
- }
- }
- },
- "edsd": {
- "num_datapoints": 437,
- "data": {
- "leftfugfusiformgyrus": {
- "std": 0.803725589864498,
- "min": 3.9341,
- "max": 9.7987,
- "lower_confidence": 6.118949467343739,
- "mean": 6.922675057208236,
- "upper_confidence": 7.726400647072734
- },
- "leftmfgmiddlefrontalgyrus": {
- "std": 2.694403625595296,
- "min": 0.0,
- "max": 25.1051,
- "lower_confidence": 15.230307816052292,
- "mean": 17.924711441647588,
- "upper_confidence": 20.619115067242884
+ "Right planum temporale": {
+ "std": 0.2481965299717149,
+ "max": 2.89878,
+ "min": 1.1888,
+ "mean": 1.8732797842401527
},
- "rightmfgmiddlefrontalgyrus": {
- "std": 2.6629152993837026,
- "min": 0.0,
- "max": 25.3498,
- "lower_confidence": 15.037770970639173,
- "mean": 17.700686270022874,
- "upper_confidence": 20.363601569406576
+ "Left middle occipital gyrus": {
+ "std": 0.7507151245885757,
+ "max": 8.75669,
+ "min": 3.94905,
+ "mean": 6.010316988742961
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -578,11 +358,11 @@
"input": [
{
"name": "y",
- "value": "rightpogpostcentralgyrus,rightsfgsuperiorfrontalgyrus,leftcalccalcarinecortex"
+ "value": "rightioginferioroccipitalgyrus"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "edsd,ppmi,adni"
},
{
"name": "filter",
@@ -595,75 +375,81 @@
],
"output": {
"single": {
- "rightpogpostcentralgyrus": {
- "adni": {
+ "Right inferior occipital gyrus": {
+ "ppmi": {
"data": {
- "std": 1.187612168318115,
- "min": 6.70676,
- "max": 15.5928,
- "lower_confidence": 9.047387128117167,
- "mean": 10.234999296435282,
- "upper_confidence": 11.422611464753397
+ "std": 0.8077573619690581,
+ "max": 9.2806,
+ "min": 4.4197,
+ "mean": 6.8770417366946806
},
- "num_datapoints": 1066
- }
- },
- "leftcalccalcarinecortex": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"data": {
- "std": 0.4903814701785902,
- "min": 1.76704,
- "max": 5.56209,
- "lower_confidence": 2.666510377851428,
- "mean": 3.156891848030018,
- "upper_confidence": 3.647273318208608
+ "std": 0.798416485346769,
+ "max": 9.78156,
+ "min": 4.04371,
+ "mean": 6.43569678236398
},
- "num_datapoints": 1066
- }
- },
- "rightsfgsuperiorfrontalgyrus": {
- "adni": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
"data": {
- "std": 1.6039332460887483,
- "min": 8.28992,
- "max": 19.739,
- "lower_confidence": 12.723817110384056,
- "mean": 14.327750356472805,
- "upper_confidence": 15.931683602561554
+ "std": 0.8216183409532369,
+ "max": 8.7332,
+ "min": 4.083,
+ "mean": 6.353377116704802
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Right inferior occipital gyrus": {
+ "std": 0.8077573619690581,
+ "max": 9.2806,
+ "min": 4.4197,
+ "mean": 6.8770417366946806
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"num_datapoints": 1066,
"data": {
- "rightpogpostcentralgyrus": {
- "std": 1.187612168318115,
- "min": 6.70676,
- "max": 15.5928,
- "lower_confidence": 9.047387128117167,
- "mean": 10.234999296435282,
- "upper_confidence": 11.422611464753397
- },
- "leftcalccalcarinecortex": {
- "std": 0.4903814701785902,
- "min": 1.76704,
- "max": 5.56209,
- "lower_confidence": 2.666510377851428,
- "mean": 3.156891848030018,
- "upper_confidence": 3.647273318208608
- },
- "rightsfgsuperiorfrontalgyrus": {
- "std": 1.6039332460887483,
- "min": 8.28992,
- "max": 19.739,
- "lower_confidence": 12.723817110384056,
- "mean": 14.327750356472805,
- "upper_confidence": 15.931683602561554
+ "Right inferior occipital gyrus": {
+ "std": 0.798416485346769,
+ "max": 9.78156,
+ "min": 4.04371,
+ "mean": 6.43569678236398
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right inferior occipital gyrus": {
+ "std": 0.8216183409532369,
+ "max": 8.7332,
+ "min": 4.083,
+ "mean": 6.353377116704802
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -672,11 +458,11 @@
"input": [
{
"name": "y",
- "value": "rightitginferiortemporalgyrus"
+ "value": "rightententorhinalarea"
},
{
"name": "dataset",
- "value": "ppmi,adni,edsd"
+ "value": "edsd,ppmi,adni"
},
{
"name": "filter",
@@ -689,39 +475,39 @@
],
"output": {
"single": {
- "rightitginferiortemporalgyrus": {
+ "Right entorhinal area": {
"ppmi": {
"data": {
- "std": 1.2184846780623546,
- "min": 7.5613,
- "max": 15.883,
- "lower_confidence": 10.498633669276588,
- "mean": 11.717118347338943,
- "upper_confidence": 12.935603025401297
+ "std": 0.181360605544267,
+ "max": 2.4849,
+ "min": 1.1524,
+ "mean": 1.7363036414565813
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 1.307590154670838,
- "min": 6.57371,
- "max": 15.4582,
- "lower_confidence": 9.571205070469901,
- "mean": 10.878795225140738,
- "upper_confidence": 12.186385379811576
+ "std": 0.22995626821620402,
+ "max": 2.15938,
+ "min": 0.829982,
+ "mean": 1.5701255506566592
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 1.3749522944774804,
- "min": 5.5287,
- "max": 15.13,
- "lower_confidence": 9.585554341678126,
- "mean": 10.960506636155607,
- "upper_confidence": 12.335458930633088
+ "std": 0.23294603841839354,
+ "max": 2.4117,
+ "min": 0.34445,
+ "mean": 1.5623321052631578
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -729,41 +515,41 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightitginferiortemporalgyrus": {
- "std": 1.2184846780623546,
- "min": 7.5613,
- "max": 15.883,
- "lower_confidence": 10.498633669276588,
- "mean": 11.717118347338943,
- "upper_confidence": 12.935603025401297
+ "Right entorhinal area": {
+ "std": 0.181360605544267,
+ "max": 2.4849,
+ "min": 1.1524,
+ "mean": 1.7363036414565813
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightitginferiortemporalgyrus": {
- "std": 1.307590154670838,
- "min": 6.57371,
- "max": 15.4582,
- "lower_confidence": 9.571205070469901,
- "mean": 10.878795225140738,
- "upper_confidence": 12.186385379811576
+ "Right entorhinal area": {
+ "std": 0.22995626821620402,
+ "max": 2.15938,
+ "min": 0.829982,
+ "mean": 1.5701255506566592
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightitginferiortemporalgyrus": {
- "std": 1.3749522944774804,
- "min": 5.5287,
- "max": 15.13,
- "lower_confidence": 9.585554341678126,
- "mean": 10.960506636155607,
- "upper_confidence": 12.335458930633088
+ "Right entorhinal area": {
+ "std": 0.23294603841839354,
+ "max": 2.4117,
+ "min": 0.34445,
+ "mean": 1.5623321052631578
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -772,11 +558,11 @@
"input": [
{
"name": "y",
- "value": "rightfrpfrontalpole"
+ "value": "leftcalccalcarinecortex,leftioginferioroccipitalgyrus,alzheimerbroadcategory,adnicategory,agegroup"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "adni"
},
{
"name": "filter",
@@ -789,33 +575,165 @@
],
"output": {
"single": {
- "rightfrpfrontalpole": {
- "ppmi": {
+ "Left inferior occipital gyrus": {
+ "adni": {
"data": {
- "std": 0.4715187767582933,
- "min": 2.6682,
- "max": 5.6164,
- "lower_confidence": 3.3709859851464636,
- "mean": 3.842504761904757,
- "upper_confidence": 4.31402353866305
+ "std": 0.7850966920124468,
+ "max": 8.99533,
+ "min": 3.80891,
+ "mean": 6.157853780487806
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "Left calcarine cortex": {
+ "adni": {
+ "data": {
+ "std": 0.4903814701785902,
+ "max": 5.56209,
+ "min": 1.76704,
+ "mean": 3.156891848030018
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "ADNI category": {
+ "adni": {
+ "data": {
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "MCI": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "agegroup": {
+ "adni": {
+ "data": {
+ "70-79y": {
+ "count": 544,
+ "percentage": 51.03
+ },
+ "60-69y": {
+ "count": 255,
+ "percentage": 23.92
+ },
+ "+80y": {
+ "count": 223,
+ "percentage": 20.92
+ },
+ "50-59y": {
+ "count": 44,
+ "percentage": 4.13
+ }
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "Alzheimer Broad Category": {
+ "adni": {
+ "data": {
+ "Other": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "adni": {
+ "num_datapoints": 1066,
"data": {
- "rightfrpfrontalpole": {
- "std": 0.4715187767582933,
- "min": 2.6682,
- "max": 5.6164,
- "lower_confidence": 3.3709859851464636,
- "mean": 3.842504761904757,
- "upper_confidence": 4.31402353866305
- }
- }
+ "Left inferior occipital gyrus": {
+ "std": 0.7850966920124468,
+ "max": 8.99533,
+ "min": 3.80891,
+ "mean": 6.157853780487806
+ },
+ "Left calcarine cortex": {
+ "std": 0.4903814701785902,
+ "max": 5.56209,
+ "min": 1.76704,
+ "mean": 3.156891848030018
+ },
+ "ADNI category": {
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "MCI": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
+ },
+ "agegroup": {
+ "70-79y": {
+ "count": 544,
+ "percentage": 51.03
+ },
+ "60-69y": {
+ "count": 255,
+ "percentage": 23.92
+ },
+ "+80y": {
+ "count": 223,
+ "percentage": 20.92
+ },
+ "50-59y": {
+ "count": 44,
+ "percentage": 4.13
+ }
+ },
+ "Alzheimer Broad Category": {
+ "Other": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -824,7 +742,7 @@
"input": [
{
"name": "y",
- "value": "lefthippocampus,rightcocentraloperculum"
+ "value": "leftangangulargyrus"
},
{
"name": "dataset",
@@ -841,52 +759,28 @@
],
"output": {
"single": {
- "rightcocentraloperculum": {
+ "Left angular gyrus": {
"ppmi": {
"data": {
- "std": 0.45734674949851273,
- "min": 2.4939,
- "max": 5.8724,
- "lower_confidence": 3.5053227182886033,
- "mean": 3.962669467787116,
- "upper_confidence": 4.420016217285629
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.44127333959298076,
- "min": 2.44188,
- "max": 5.84437,
- "lower_confidence": 3.4762942589060795,
- "mean": 3.91756759849906,
- "upper_confidence": 4.358840938092041
- },
- "num_datapoints": 1066
- }
- },
- "lefthippocampus": {
- "ppmi": {
- "data": {
- "std": 0.2918412933538043,
- "min": 2.37,
- "max": 4.1781,
- "lower_confidence": 2.9186008635089418,
- "mean": 3.210442156862746,
- "upper_confidence": 3.50228345021655
+ "std": 1.069219793238794,
+ "max": 13.5823,
+ "min": 6.1273,
+ "mean": 9.502652941176473
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.3525825591468455,
- "min": 1.82293,
- "max": 3.97126,
- "lower_confidence": 2.5784590074572837,
- "mean": 2.9310415666041294,
- "upper_confidence": 3.283624125750975
+ "std": 1.0431046959561834,
+ "max": 12.5288,
+ "min": 5.75806,
+ "mean": 8.969901050656658
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -894,44 +788,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightcocentraloperculum": {
- "std": 0.45734674949851273,
- "min": 2.4939,
- "max": 5.8724,
- "lower_confidence": 3.5053227182886033,
- "mean": 3.962669467787116,
- "upper_confidence": 4.420016217285629
- },
- "lefthippocampus": {
- "std": 0.2918412933538043,
- "min": 2.37,
- "max": 4.1781,
- "lower_confidence": 2.9186008635089418,
- "mean": 3.210442156862746,
- "upper_confidence": 3.50228345021655
+ "Left angular gyrus": {
+ "std": 1.069219793238794,
+ "max": 13.5823,
+ "min": 6.1273,
+ "mean": 9.502652941176473
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightcocentraloperculum": {
- "std": 0.44127333959298076,
- "min": 2.44188,
- "max": 5.84437,
- "lower_confidence": 3.4762942589060795,
- "mean": 3.91756759849906,
- "upper_confidence": 4.358840938092041
- },
- "lefthippocampus": {
- "std": 0.3525825591468455,
- "min": 1.82293,
- "max": 3.97126,
- "lower_confidence": 2.5784590074572837,
- "mean": 2.9310415666041294,
- "upper_confidence": 3.283624125750975
+ "Left angular gyrus": {
+ "std": 1.0431046959561834,
+ "max": 12.5288,
+ "min": 5.75806,
+ "mean": 8.969901050656658
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -940,11 +818,11 @@
"input": [
{
"name": "y",
- "value": "rightangangulargyrus,leftcaudate,leftangangulargyrus"
+ "value": "leftaorganteriororbitalgyrus,leftsmcsupplementarymotorcortex"
},
{
"name": "dataset",
- "value": "adni,edsd"
+ "value": "adni,edsd,ppmi"
},
{
"name": "filter",
@@ -957,137 +835,134 @@
],
"output": {
"single": {
- "leftangangulargyrus": {
- "adni": {
+ "Left supplementary motor cortex": {
+ "ppmi": {
"data": {
- "std": 1.0431046959561834,
- "min": 5.75806,
- "max": 12.5288,
- "lower_confidence": 7.926796354700475,
- "mean": 8.969901050656658,
- "upper_confidence": 10.01300574661284
+ "std": 0.6299572278067757,
+ "max": 8.6787,
+ "min": 3.5573,
+ "mean": 5.4228557422969175
},
- "num_datapoints": 1066
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
- "edsd": {
- "data": {
- "std": 1.1124976258123522,
- "min": 2.2506,
- "max": 12.0496,
- "lower_confidence": 7.64796301491991,
- "mean": 8.760460640732262,
- "upper_confidence": 9.872958266544615
- },
- "num_datapoints": 437
- }
- },
- "rightangangulargyrus": {
"adni": {
"data": {
- "std": 1.1394791725677273,
- "min": 6.00759,
- "max": 13.6797,
- "lower_confidence": 8.80400651223525,
- "mean": 9.943485684802978,
- "upper_confidence": 11.082964857370705
+ "std": 0.6118021613792187,
+ "max": 8.61715,
+ "min": 3.11474,
+ "mean": 5.2813342964352685
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 1.252461112174001,
- "min": 1.1839,
- "max": 14.1407,
- "lower_confidence": 8.47483110750564,
- "mean": 9.72729221967964,
- "upper_confidence": 10.97975333185364
+ "std": 0.7872097027664064,
+ "max": 8.4787,
+ "min": 0.0,
+ "mean": 5.1485762013729985
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "leftcaudate": {
+ "Left anterior orbital gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.19668424281670233,
+ "max": 2.4559,
+ "min": 0.89933,
+ "mean": 1.5959525910364154
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"data": {
- "std": 0.4013034480667148,
- "min": 1.75582,
- "max": 4.7246,
- "lower_confidence": 2.554366570695014,
- "mean": 2.9556700187617286,
- "upper_confidence": 3.3569734668284434
+ "std": 0.18608946055251713,
+ "max": 2.1394,
+ "min": 0.806233,
+ "mean": 1.5050496078799265
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.472550482466418,
+ "std": 0.2421362079487094,
+ "max": 2.235,
"min": 0.0,
- "max": 3.7946,
- "lower_confidence": 2.2105562909889582,
- "mean": 2.683106773455376,
- "upper_confidence": 3.155657255921794
+ "mean": 1.4889852173913047
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Left supplementary motor cortex": {
+ "std": 0.6299572278067757,
+ "max": 8.6787,
+ "min": 3.5573,
+ "mean": 5.4228557422969175
+ },
+ "Left anterior orbital gyrus": {
+ "std": 0.19668424281670233,
+ "max": 2.4559,
+ "min": 0.89933,
+ "mean": 1.5959525910364154
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"num_datapoints": 1066,
"data": {
- "leftangangulargyrus": {
- "std": 1.0431046959561834,
- "min": 5.75806,
- "max": 12.5288,
- "lower_confidence": 7.926796354700475,
- "mean": 8.969901050656658,
- "upper_confidence": 10.01300574661284
- },
- "rightangangulargyrus": {
- "std": 1.1394791725677273,
- "min": 6.00759,
- "max": 13.6797,
- "lower_confidence": 8.80400651223525,
- "mean": 9.943485684802978,
- "upper_confidence": 11.082964857370705
+ "Left supplementary motor cortex": {
+ "std": 0.6118021613792187,
+ "max": 8.61715,
+ "min": 3.11474,
+ "mean": 5.2813342964352685
},
- "leftcaudate": {
- "std": 0.4013034480667148,
- "min": 1.75582,
- "max": 4.7246,
- "lower_confidence": 2.554366570695014,
- "mean": 2.9556700187617286,
- "upper_confidence": 3.3569734668284434
+ "Left anterior orbital gyrus": {
+ "std": 0.18608946055251713,
+ "max": 2.1394,
+ "min": 0.806233,
+ "mean": 1.5050496078799265
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "leftangangulargyrus": {
- "std": 1.1124976258123522,
- "min": 2.2506,
- "max": 12.0496,
- "lower_confidence": 7.64796301491991,
- "mean": 8.760460640732262,
- "upper_confidence": 9.872958266544615
- },
- "rightangangulargyrus": {
- "std": 1.252461112174001,
- "min": 1.1839,
- "max": 14.1407,
- "lower_confidence": 8.47483110750564,
- "mean": 9.72729221967964,
- "upper_confidence": 10.97975333185364
+ "Left supplementary motor cortex": {
+ "std": 0.7872097027664064,
+ "max": 8.4787,
+ "min": 0.0,
+ "mean": 5.1485762013729985
},
- "leftcaudate": {
- "std": 0.472550482466418,
+ "Left anterior orbital gyrus": {
+ "std": 0.2421362079487094,
+ "max": 2.235,
"min": 0.0,
- "max": 3.7946,
- "lower_confidence": 2.2105562909889582,
- "mean": 2.683106773455376,
- "upper_confidence": 3.155657255921794
+ "mean": 1.4889852173913047
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -1096,11 +971,11 @@
"input": [
{
"name": "y",
- "value": "leftfrpfrontalpole"
+ "value": "leftioginferioroccipitalgyrus"
},
{
"name": "dataset",
- "value": "edsd,adni,ppmi"
+ "value": "adni,ppmi"
},
{
"name": "filter",
@@ -1113,39 +988,28 @@
],
"output": {
"single": {
- "leftfrpfrontalpole": {
+ "Left inferior occipital gyrus": {
"ppmi": {
"data": {
- "std": 0.41822289030164245,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1559301909308504,
- "mean": 3.5741530812324926,
- "upper_confidence": 3.992375971534135
+ "std": 0.8060671697927769,
+ "max": 9.3496,
+ "min": 4.5309,
+ "mean": 6.627674929971987
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.42395479822257864,
- "min": 2.29383,
- "max": 5.20058,
- "lower_confidence": 3.1044813743852995,
- "mean": 3.528436172607878,
- "upper_confidence": 3.9523909708304563
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.5135545004098901,
- "min": 0.0,
- "max": 4.7688,
- "lower_confidence": 2.8161413805969744,
- "mean": 3.3296958810068644,
- "upper_confidence": 3.8432503814167545
+ "std": 0.7850966920124468,
+ "max": 8.99533,
+ "min": 3.80891,
+ "mean": 6.157853780487806
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -1153,41 +1017,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftfrpfrontalpole": {
- "std": 0.41822289030164245,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1559301909308504,
- "mean": 3.5741530812324926,
- "upper_confidence": 3.992375971534135
+ "Left inferior occipital gyrus": {
+ "std": 0.8060671697927769,
+ "max": 9.3496,
+ "min": 4.5309,
+ "mean": 6.627674929971987
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "leftfrpfrontalpole": {
- "std": 0.42395479822257864,
- "min": 2.29383,
- "max": 5.20058,
- "lower_confidence": 3.1044813743852995,
- "mean": 3.528436172607878,
- "upper_confidence": 3.9523909708304563
- }
- }
- },
- "edsd": {
- "num_datapoints": 437,
- "data": {
- "leftfrpfrontalpole": {
- "std": 0.5135545004098901,
- "min": 0.0,
- "max": 4.7688,
- "lower_confidence": 2.8161413805969744,
- "mean": 3.3296958810068644,
- "upper_confidence": 3.8432503814167545
+ "Left inferior occipital gyrus": {
+ "std": 0.7850966920124468,
+ "max": 8.99533,
+ "min": 3.80891,
+ "mean": 6.157853780487806
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -1196,7 +1047,7 @@
"input": [
{
"name": "y",
- "value": "rightfofrontaloperculum,rightmcggmiddlecingulategyrus,leftfrpfrontalpole,leftputamen,neurodegenerativescategories"
+ "value": "rightfugfusiformgyrus,rightlorglateralorbitalgyrus,rightententorhinalarea,leftententorhinalarea"
},
{
"name": "dataset",
@@ -1213,107 +1064,90 @@
],
"output": {
"single": {
- "leftputamen": {
- "ppmi": {
- "data": {
- "std": 0.47085426013502896,
- "min": 2.756,
- "max": 5.8814,
- "lower_confidence": 3.8313478407053045,
- "mean": 4.302202100840334,
- "upper_confidence": 4.773056360975363
- },
- "num_datapoints": 714
- }
- },
- "rightfofrontaloperculum": {
+ "Right lateral orbital gyrus": {
"ppmi": {
"data": {
- "std": 0.2138867750467644,
- "min": 1.005,
- "max": 2.8656,
- "lower_confidence": 1.7745322725722847,
- "mean": 1.988419047619049,
- "upper_confidence": 2.2023058226658137
+ "std": 0.25741593216231295,
+ "max": 3.2875,
+ "min": 1.2786,
+ "mean": 2.280890056022409
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
},
- "leftfrpfrontalpole": {
+ "Right entorhinal area": {
"ppmi": {
"data": {
- "std": 0.41822289030164245,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1559301909308504,
- "mean": 3.5741530812324926,
- "upper_confidence": 3.992375971534135
+ "std": 0.181360605544267,
+ "max": 2.4849,
+ "min": 1.1524,
+ "mean": 1.7363036414565813
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
},
- "rightmcggmiddlecingulategyrus": {
+ "Right fusiform gyrus": {
"ppmi": {
"data": {
- "std": 0.5523913575113728,
- "min": 3.0425,
- "max": 10.1014,
- "lower_confidence": 4.138518446410192,
- "mean": 4.690909803921564,
- "upper_confidence": 5.243301161432937
+ "std": 0.7289503970808117,
+ "max": 10.3175,
+ "min": 5.4376,
+ "mean": 7.6663631652661115
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
},
- "neurodegenerativescategories": {
+ "Left entorhinal area": {
"ppmi": {
"data": {
- "PD": 405
+ "std": 0.17314424479786125,
+ "max": 2.3952,
+ "min": 1.0429,
+ "mean": 1.704146918767507
},
- "num_datapoints": 405
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
}
},
"model": {
"ppmi": {
- "num_datapoints": 405,
+ "num_datapoints": 714,
"data": {
- "leftputamen": {
- "std": 0.4693890961239707,
- "min": 2.756,
- "max": 5.7811,
- "lower_confidence": 3.875923249555041,
- "mean": 4.3453123456790115,
- "upper_confidence": 4.814701441802982
- },
- "rightfofrontaloperculum": {
- "std": 0.20883597860616832,
- "min": 1.4187,
- "max": 2.8656,
- "lower_confidence": 1.7993217991716088,
- "mean": 2.008157777777777,
- "upper_confidence": 2.2169937563839452
+ "Right lateral orbital gyrus": {
+ "std": 0.25741593216231295,
+ "max": 3.2875,
+ "min": 1.2786,
+ "mean": 2.280890056022409
},
- "leftfrpfrontalpole": {
- "std": 0.4277286823552127,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1819174904842917,
- "mean": 3.6096461728395046,
- "upper_confidence": 4.0373748551947175
+ "Right entorhinal area": {
+ "std": 0.181360605544267,
+ "max": 2.4849,
+ "min": 1.1524,
+ "mean": 1.7363036414565813
},
- "rightmcggmiddlecingulategyrus": {
- "std": 0.6066701671242155,
- "min": 3.0638,
- "max": 10.1014,
- "lower_confidence": 4.146944894604178,
- "mean": 4.753615061728393,
- "upper_confidence": 5.360285228852608
+ "Right fusiform gyrus": {
+ "std": 0.7289503970808117,
+ "max": 10.3175,
+ "min": 5.4376,
+ "mean": 7.6663631652661115
},
- "neurodegenerativescategories": {
- "PD": 405
+ "Left entorhinal area": {
+ "std": 0.17314424479786125,
+ "max": 2.3952,
+ "min": 1.0429,
+ "mean": 1.704146918767507
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
}
}
}
@@ -1322,11 +1156,11 @@
"input": [
{
"name": "y",
- "value": "leftgregyrusrectus,rightpinsposteriorinsula"
+ "value": "alzheimerbroadcategory"
},
{
"name": "dataset",
- "value": "edsd,adni,ppmi"
+ "value": "edsd,adni"
},
{
"name": "filter",
@@ -1339,140 +1173,89 @@
],
"output": {
"single": {
- "leftgregyrusrectus": {
- "ppmi": {
- "data": {
- "std": 0.25428780455519984,
- "min": 1.4595,
- "max": 3.2094,
- "lower_confidence": 1.886464856509225,
- "mean": 2.140752661064425,
- "upper_confidence": 2.395040465619625
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.22560887278691688,
- "min": 1.05756,
- "max": 2.83963,
- "lower_confidence": 1.818677515580815,
- "mean": 2.044286388367732,
- "upper_confidence": 2.2698952611546486
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.2911948776855869,
- "min": 0.52539,
- "max": 3.5482,
- "lower_confidence": 1.7067376165935884,
- "mean": 1.9979324942791752,
- "upper_confidence": 2.2891273719647622
- },
- "num_datapoints": 437
- }
- },
- "rightpinsposteriorinsula": {
- "ppmi": {
- "data": {
- "std": 0.25023636693079615,
- "min": 1.6347,
- "max": 3.5259,
- "lower_confidence": 2.0911681148619197,
- "mean": 2.3414044817927158,
- "upper_confidence": 2.591640848723512
- },
- "num_datapoints": 714
- },
+ "Alzheimer Broad Category": {
"adni": {
"data": {
- "std": 0.2708308056507824,
- "min": 1.58004,
- "max": 3.35911,
- "lower_confidence": 2.0503190161128204,
- "mean": 2.3211498217636026,
- "upper_confidence": 2.591980627414385
- },
- "num_datapoints": 1066
+ "Other": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.2735766879874873,
- "min": 0.89588,
- "max": 3.3168,
- "lower_confidence": 1.9921347078935199,
- "mean": 2.265711395881007,
- "upper_confidence": 2.5392880838684944
+ "Other": {
+ "count": 76,
+ "percentage": 20.65
+ },
+ "CN": {
+ "count": 151,
+ "percentage": 41.03
+ },
+ "AD": {
+ "count": 141,
+ "percentage": 38.32
+ }
},
- "num_datapoints": 437
+ "num_datapoints": 368,
+ "num_nulls": 106,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "leftgregyrusrectus": {
- "std": 0.25428780455519984,
- "min": 1.4595,
- "max": 3.2094,
- "lower_confidence": 1.886464856509225,
- "mean": 2.140752661064425,
- "upper_confidence": 2.395040465619625
- },
- "rightpinsposteriorinsula": {
- "std": 0.25023636693079615,
- "min": 1.6347,
- "max": 3.5259,
- "lower_confidence": 2.0911681148619197,
- "mean": 2.3414044817927158,
- "upper_confidence": 2.591640848723512
- }
- }
- },
"adni": {
"num_datapoints": 1066,
"data": {
- "leftgregyrusrectus": {
- "std": 0.22560887278691688,
- "min": 1.05756,
- "max": 2.83963,
- "lower_confidence": 1.818677515580815,
- "mean": 2.044286388367732,
- "upper_confidence": 2.2698952611546486
- },
- "rightpinsposteriorinsula": {
- "std": 0.2708308056507824,
- "min": 1.58004,
- "max": 3.35911,
- "lower_confidence": 2.0503190161128204,
- "mean": 2.3211498217636026,
- "upper_confidence": 2.591980627414385
+ "Alzheimer Broad Category": {
+ "Other": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
- "num_datapoints": 437,
+ "num_datapoints": 368,
"data": {
- "leftgregyrusrectus": {
- "std": 0.2911948776855869,
- "min": 0.52539,
- "max": 3.5482,
- "lower_confidence": 1.7067376165935884,
- "mean": 1.9979324942791752,
- "upper_confidence": 2.2891273719647622
- },
- "rightpinsposteriorinsula": {
- "std": 0.2735766879874873,
- "min": 0.89588,
- "max": 3.3168,
- "lower_confidence": 1.9921347078935199,
- "mean": 2.265711395881007,
- "upper_confidence": 2.5392880838684944
+ "Alzheimer Broad Category": {
+ "Other": {
+ "count": 76,
+ "percentage": 20.65
+ },
+ "CN": {
+ "count": 151,
+ "percentage": 41.03
+ },
+ "AD": {
+ "count": 141,
+ "percentage": 38.32
+ }
}
- }
+ },
+ "num_nulls": 106,
+ "num_total": 474
}
}
}
@@ -1481,11 +1264,11 @@
"input": [
{
"name": "y",
- "value": "rightfrpfrontalpole,alzheimerbroadcategory"
+ "value": "leftfugfusiformgyrus"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -1498,84 +1281,28 @@
],
"output": {
"single": {
- "rightfrpfrontalpole": {
- "edsd": {
+ "Left fusiform gyrus": {
+ "ppmi": {
"data": {
- "std": 0.5601153865525501,
- "min": 0.0,
- "max": 5.8776,
- "lower_confidence": 3.025899258756377,
- "mean": 3.586014645308927,
- "upper_confidence": 4.146130031861477
+ "std": 0.6975626709639572,
+ "max": 9.9427,
+ "min": 5.3667,
+ "mean": 7.470950700280111
},
- "num_datapoints": 437
- }
- },
- "alzheimerbroadcategory": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"edsd": {
"data": {
- "Other": 76,
- "CN": 151,
- "AD": 141
- },
- "num_datapoints": 368
- }
- }
- },
- "model": {
- "edsd": {
- "num_datapoints": 368,
- "data": {
- "rightfrpfrontalpole": {
- "std": 0.43978399238542276,
- "min": 2.522,
- "max": 5.8776,
- "lower_confidence": 3.185102692397188,
- "mean": 3.624886684782611,
- "upper_confidence": 4.064670677168034
- },
- "alzheimerbroadcategory": {
- "Other": 76,
- "CN": 151,
- "AD": 141
- }
- }
- }
- }
- }
- },
- {
- "input": [
- {
- "name": "y",
- "value": "rightaorganteriororbitalgyrus"
- },
- {
- "name": "dataset",
- "value": "ppmi"
- },
- {
- "name": "filter",
- "value": ""
- },
- {
- "name": "pathology",
- "value": "dementia"
- }
- ],
- "output": {
- "single": {
- "rightaorganteriororbitalgyrus": {
- "ppmi": {
- "data": {
- "std": 0.2296497643316561,
- "min": 0.7806,
- "max": 2.5816,
- "lower_confidence": 1.5628790872089604,
- "mean": 1.7925288515406166,
- "upper_confidence": 2.0221786158722725
+ "std": 0.803725589864498,
+ "max": 9.7987,
+ "min": 3.9341,
+ "mean": 6.922675057208236
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -1583,15 +1310,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightaorganteriororbitalgyrus": {
- "std": 0.2296497643316561,
- "min": 0.7806,
- "max": 2.5816,
- "lower_confidence": 1.5628790872089604,
- "mean": 1.7925288515406166,
- "upper_confidence": 2.0221786158722725
+ "Left fusiform gyrus": {
+ "std": 0.6975626709639572,
+ "max": 9.9427,
+ "min": 5.3667,
+ "mean": 7.470950700280111
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Left fusiform gyrus": {
+ "std": 0.803725589864498,
+ "max": 9.7987,
+ "min": 3.9341,
+ "mean": 6.922675057208236
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -1600,7 +1340,7 @@
"input": [
{
"name": "y",
- "value": "leftfrpfrontalpole,leftlorglateralorbitalgyrus"
+ "value": "rightpinsposteriorinsula"
},
{
"name": "dataset",
@@ -1617,74 +1357,39 @@
],
"output": {
"single": {
- "leftlorglateralorbitalgyrus": {
- "ppmi": {
- "data": {
- "std": 0.27379386980711085,
- "min": 1.2581,
- "max": 3.4108,
- "lower_confidence": 2.166912432713898,
- "mean": 2.4407063025210087,
- "upper_confidence": 2.7145001723281195
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.2567218332350192,
- "min": 1.36195,
- "max": 3.26841,
- "lower_confidence": 2.074882997909448,
- "mean": 2.3316048311444675,
- "upper_confidence": 2.588326664379487
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.3441693368879193,
- "min": 0.02822,
- "max": 3.0911,
- "lower_confidence": 1.9453626997253544,
- "mean": 2.2895320366132736,
- "upper_confidence": 2.633701373501193
- },
- "num_datapoints": 437
- }
- },
- "leftfrpfrontalpole": {
+ "Right posterior insula": {
"ppmi": {
"data": {
- "std": 0.41822289030164245,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1559301909308504,
- "mean": 3.5741530812324926,
- "upper_confidence": 3.992375971534135
+ "std": 0.25023636693079615,
+ "max": 3.5259,
+ "min": 1.6347,
+ "mean": 2.3414044817927158
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.42395479822257864,
- "min": 2.29383,
- "max": 5.20058,
- "lower_confidence": 3.1044813743852995,
- "mean": 3.528436172607878,
- "upper_confidence": 3.9523909708304563
+ "std": 0.2708308056507824,
+ "max": 3.35911,
+ "min": 1.58004,
+ "mean": 2.3211498217636026
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.5135545004098901,
- "min": 0.0,
- "max": 4.7688,
- "lower_confidence": 2.8161413805969744,
- "mean": 3.3296958810068644,
- "upper_confidence": 3.8432503814167545
+ "std": 0.2735766879874873,
+ "max": 3.3168,
+ "min": 0.89588,
+ "mean": 2.265711395881007
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -1692,65 +1397,41 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftlorglateralorbitalgyrus": {
- "std": 0.27379386980711085,
- "min": 1.2581,
- "max": 3.4108,
- "lower_confidence": 2.166912432713898,
- "mean": 2.4407063025210087,
- "upper_confidence": 2.7145001723281195
- },
- "leftfrpfrontalpole": {
- "std": 0.41822289030164245,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1559301909308504,
- "mean": 3.5741530812324926,
- "upper_confidence": 3.992375971534135
+ "Right posterior insula": {
+ "std": 0.25023636693079615,
+ "max": 3.5259,
+ "min": 1.6347,
+ "mean": 2.3414044817927158
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "leftlorglateralorbitalgyrus": {
- "std": 0.2567218332350192,
- "min": 1.36195,
- "max": 3.26841,
- "lower_confidence": 2.074882997909448,
- "mean": 2.3316048311444675,
- "upper_confidence": 2.588326664379487
- },
- "leftfrpfrontalpole": {
- "std": 0.42395479822257864,
- "min": 2.29383,
- "max": 5.20058,
- "lower_confidence": 3.1044813743852995,
- "mean": 3.528436172607878,
- "upper_confidence": 3.9523909708304563
+ "Right posterior insula": {
+ "std": 0.2708308056507824,
+ "max": 3.35911,
+ "min": 1.58004,
+ "mean": 2.3211498217636026
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "leftlorglateralorbitalgyrus": {
- "std": 0.3441693368879193,
- "min": 0.02822,
- "max": 3.0911,
- "lower_confidence": 1.9453626997253544,
- "mean": 2.2895320366132736,
- "upper_confidence": 2.633701373501193
- },
- "leftfrpfrontalpole": {
- "std": 0.5135545004098901,
- "min": 0.0,
- "max": 4.7688,
- "lower_confidence": 2.8161413805969744,
- "mean": 3.3296958810068644,
- "upper_confidence": 3.8432503814167545
+ "Right posterior insula": {
+ "std": 0.2735766879874873,
+ "max": 3.3168,
+ "min": 0.89588,
+ "mean": 2.265711395881007
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -1759,11 +1440,11 @@
"input": [
{
"name": "y",
- "value": "rightofugoccipitalfusiformgyrus"
+ "value": "rightmsfgsuperiorfrontalgyrusmedialsegment"
},
{
"name": "dataset",
- "value": "ppmi,edsd,adni"
+ "value": "adni,ppmi,edsd"
},
{
"name": "filter",
@@ -1776,39 +1457,39 @@
],
"output": {
"single": {
- "rightofugoccipitalfusiformgyrus": {
+ "Right superior frontal gyrus medial segment": {
"ppmi": {
"data": {
- "std": 0.4647318609205073,
- "min": 2.9714,
- "max": 6.6355,
- "lower_confidence": 3.955155253925429,
- "mean": 4.419887114845936,
- "upper_confidence": 4.884618975766443
+ "std": 0.9946835471215848,
+ "max": 12.0931,
+ "min": 5.4889,
+ "mean": 7.9687023809523865
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.46145362727304845,
- "min": 2.70356,
- "max": 5.85866,
- "lower_confidence": 3.6407967104380203,
- "mean": 4.102250337711069,
- "upper_confidence": 4.563703964984117
+ "std": 0.9850629736934785,
+ "max": 11.4168,
+ "min": 4.85977,
+ "mean": 7.844091482176351
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.5215862428900659,
- "min": 1.0875,
- "max": 5.5638,
- "lower_confidence": 3.5656679905195428,
- "mean": 4.087254233409609,
- "upper_confidence": 4.608840476299674
+ "std": 1.1834363274904134,
+ "max": 11.2819,
+ "min": 0.00038,
+ "mean": 7.519692105263159
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -1816,41 +1497,41 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightofugoccipitalfusiformgyrus": {
- "std": 0.4647318609205073,
- "min": 2.9714,
- "max": 6.6355,
- "lower_confidence": 3.955155253925429,
- "mean": 4.419887114845936,
- "upper_confidence": 4.884618975766443
+ "Right superior frontal gyrus medial segment": {
+ "std": 0.9946835471215848,
+ "max": 12.0931,
+ "min": 5.4889,
+ "mean": 7.9687023809523865
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightofugoccipitalfusiformgyrus": {
- "std": 0.46145362727304845,
- "min": 2.70356,
- "max": 5.85866,
- "lower_confidence": 3.6407967104380203,
- "mean": 4.102250337711069,
- "upper_confidence": 4.563703964984117
+ "Right superior frontal gyrus medial segment": {
+ "std": 0.9850629736934785,
+ "max": 11.4168,
+ "min": 4.85977,
+ "mean": 7.844091482176351
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightofugoccipitalfusiformgyrus": {
- "std": 0.5215862428900659,
- "min": 1.0875,
- "max": 5.5638,
- "lower_confidence": 3.5656679905195428,
- "mean": 4.087254233409609,
- "upper_confidence": 4.608840476299674
+ "Right superior frontal gyrus medial segment": {
+ "std": 1.1834363274904134,
+ "max": 11.2819,
+ "min": 0.00038,
+ "mean": 7.519692105263159
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -1859,11 +1540,11 @@
"input": [
{
"name": "y",
- "value": "leftfofrontaloperculum,rightpogpostcentralgyrus"
+ "value": "rightacgganteriorcingulategyrus"
},
{
"name": "dataset",
- "value": "edsd,adni,ppmi"
+ "value": "ppmi,adni"
},
{
"name": "filter",
@@ -1876,74 +1557,28 @@
],
"output": {
"single": {
- "rightpogpostcentralgyrus": {
- "ppmi": {
- "data": {
- "std": 1.1737788484093188,
- "min": 6.3771,
- "max": 14.52,
- "lower_confidence": 9.288665969517861,
- "mean": 10.46244481792718,
- "upper_confidence": 11.636223666336498
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 1.187612168318115,
- "min": 6.70676,
- "max": 15.5928,
- "lower_confidence": 9.047387128117167,
- "mean": 10.234999296435282,
- "upper_confidence": 11.422611464753397
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 1.4670356360056158,
- "min": 0.0,
- "max": 13.6552,
- "lower_confidence": 8.34321253333077,
- "mean": 9.810248169336385,
- "upper_confidence": 11.277283805342
- },
- "num_datapoints": 437
- }
- },
- "leftfofrontaloperculum": {
+ "Right anterior cingulate gyrus": {
"ppmi": {
"data": {
- "std": 0.22111566635733293,
- "min": 1.0498,
- "max": 2.9576,
- "lower_confidence": 1.7857973588527503,
- "mean": 2.0069130252100833,
- "upper_confidence": 2.2280286915674163
+ "std": 0.5221361273368813,
+ "max": 6.1209,
+ "min": 2.4783,
+ "mean": 4.12053977591036
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.21028668217266916,
- "min": 1.31745,
- "max": 2.73465,
- "lower_confidence": 1.728838205256975,
- "mean": 1.9391248874296443,
- "upper_confidence": 2.1494115696023135
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.279815619705402,
- "min": 1e-05,
- "max": 2.6485,
- "lower_confidence": 1.6141670576401344,
- "mean": 1.8939826773455364,
- "upper_confidence": 2.173798297050938
+ "std": 0.5511387257731017,
+ "max": 5.98526,
+ "min": 2.6671,
+ "mean": 4.084949155722322
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -1951,65 +1586,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightpogpostcentralgyrus": {
- "std": 1.1737788484093188,
- "min": 6.3771,
- "max": 14.52,
- "lower_confidence": 9.288665969517861,
- "mean": 10.46244481792718,
- "upper_confidence": 11.636223666336498
- },
- "leftfofrontaloperculum": {
- "std": 0.22111566635733293,
- "min": 1.0498,
- "max": 2.9576,
- "lower_confidence": 1.7857973588527503,
- "mean": 2.0069130252100833,
- "upper_confidence": 2.2280286915674163
+ "Right anterior cingulate gyrus": {
+ "std": 0.5221361273368813,
+ "max": 6.1209,
+ "min": 2.4783,
+ "mean": 4.12053977591036
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightpogpostcentralgyrus": {
- "std": 1.187612168318115,
- "min": 6.70676,
- "max": 15.5928,
- "lower_confidence": 9.047387128117167,
- "mean": 10.234999296435282,
- "upper_confidence": 11.422611464753397
- },
- "leftfofrontaloperculum": {
- "std": 0.21028668217266916,
- "min": 1.31745,
- "max": 2.73465,
- "lower_confidence": 1.728838205256975,
- "mean": 1.9391248874296443,
- "upper_confidence": 2.1494115696023135
- }
- }
- },
- "edsd": {
- "num_datapoints": 437,
- "data": {
- "rightpogpostcentralgyrus": {
- "std": 1.4670356360056158,
- "min": 0.0,
- "max": 13.6552,
- "lower_confidence": 8.34321253333077,
- "mean": 9.810248169336385,
- "upper_confidence": 11.277283805342
- },
- "leftfofrontaloperculum": {
- "std": 0.279815619705402,
- "min": 1e-05,
- "max": 2.6485,
- "lower_confidence": 1.6141670576401344,
- "mean": 1.8939826773455364,
- "upper_confidence": 2.173798297050938
+ "Right anterior cingulate gyrus": {
+ "std": 0.5511387257731017,
+ "max": 5.98526,
+ "min": 2.6671,
+ "mean": 4.084949155722322
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -2018,11 +1616,11 @@
"input": [
{
"name": "y",
- "value": "leftputamen"
+ "value": "leftangangulargyrus"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "ppmi,edsd,adni"
},
{
"name": "filter",
@@ -2035,33 +1633,81 @@
],
"output": {
"single": {
- "leftputamen": {
+ "Left angular gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 1.069219793238794,
+ "max": 13.5823,
+ "min": 6.1273,
+ "mean": 9.502652941176473
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"data": {
- "std": 0.4305910374718846,
- "min": 2.4163,
- "max": 5.43217,
- "lower_confidence": 3.337903268344247,
- "mean": 3.7684943058161315,
- "upper_confidence": 4.199085343288016
+ "std": 1.0431046959561834,
+ "max": 12.5288,
+ "min": 5.75806,
+ "mean": 8.969901050656658
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 1.1124976258123522,
+ "max": 12.0496,
+ "min": 2.2506,
+ "mean": 8.760460640732262
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Left angular gyrus": {
+ "std": 1.069219793238794,
+ "max": 13.5823,
+ "min": 6.1273,
+ "mean": 9.502652941176473
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"num_datapoints": 1066,
"data": {
- "leftputamen": {
- "std": 0.4305910374718846,
- "min": 2.4163,
- "max": 5.43217,
- "lower_confidence": 3.337903268344247,
- "mean": 3.7684943058161315,
- "upper_confidence": 4.199085343288016
+ "Left angular gyrus": {
+ "std": 1.0431046959561834,
+ "max": 12.5288,
+ "min": 5.75806,
+ "mean": 8.969901050656658
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Left angular gyrus": {
+ "std": 1.1124976258123522,
+ "max": 12.0496,
+ "min": 2.2506,
+ "mean": 8.760460640732262
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -2070,11 +1716,11 @@
"input": [
{
"name": "y",
- "value": "rightioginferioroccipitalgyrus"
+ "value": "rightporgposteriororbitalgyrus"
},
{
"name": "dataset",
- "value": "adni,edsd"
+ "value": "ppmi"
},
{
"name": "filter",
@@ -2087,57 +1733,33 @@
],
"output": {
"single": {
- "rightioginferioroccipitalgyrus": {
- "adni": {
- "data": {
- "std": 0.798416485346769,
- "min": 4.04371,
- "max": 9.78156,
- "lower_confidence": 5.637280297017211,
- "mean": 6.43569678236398,
- "upper_confidence": 7.2341132677107485
- },
- "num_datapoints": 1066
- },
- "edsd": {
+ "Right posterior orbital gyrus": {
+ "ppmi": {
"data": {
- "std": 0.8216183409532369,
- "min": 4.083,
- "max": 8.7332,
- "lower_confidence": 5.531758775751565,
- "mean": 6.353377116704802,
- "upper_confidence": 7.1749954576580395
+ "std": 0.24164282210287388,
+ "max": 3.2702,
+ "min": 1.369,
+ "mean": 2.3648021008403375
},
- "num_datapoints": 437
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
}
},
"model": {
- "adni": {
- "num_datapoints": 1066,
- "data": {
- "rightioginferioroccipitalgyrus": {
- "std": 0.798416485346769,
- "min": 4.04371,
- "max": 9.78156,
- "lower_confidence": 5.637280297017211,
- "mean": 6.43569678236398,
- "upper_confidence": 7.2341132677107485
- }
- }
- },
- "edsd": {
- "num_datapoints": 437,
+ "ppmi": {
+ "num_datapoints": 714,
"data": {
- "rightioginferioroccipitalgyrus": {
- "std": 0.8216183409532369,
- "min": 4.083,
- "max": 8.7332,
- "lower_confidence": 5.531758775751565,
- "mean": 6.353377116704802,
- "upper_confidence": 7.1749954576580395
+ "Right posterior orbital gyrus": {
+ "std": 0.24164282210287388,
+ "max": 3.2702,
+ "min": 1.369,
+ "mean": 2.3648021008403375
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
}
}
}
@@ -2146,11 +1768,11 @@
"input": [
{
"name": "y",
- "value": "rs2718058_g,rs1476679_c"
+ "value": "leftpallidum,rightpogpostcentralgyrus"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "edsd"
},
{
"name": "filter",
@@ -2163,42 +1785,52 @@
],
"output": {
"single": {
- "rs1476679_c": {
- "adni": {
+ "Left Pallidum": {
+ "edsd": {
"data": {
- "1": 206,
- "0": 282,
- "2": 47
+ "std": 0.19744227246264087,
+ "max": 2.3875,
+ "min": 0.19332,
+ "mean": 1.5209102517162492
},
- "num_datapoints": 535
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rs2718058_g": {
- "adni": {
+ "Right postcentral gyrus": {
+ "edsd": {
"data": {
- "1": 250,
- "0": 227,
- "2": 75
+ "std": 1.4670356360056158,
+ "max": 13.6552,
+ "min": 0.0,
+ "mean": 9.810248169336385
},
- "num_datapoints": 552
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 196,
+ "edsd": {
+ "num_datapoints": 437,
"data": {
- "rs1476679_c": {
- "1": 77,
- "0": 99,
- "2": 20
+ "Left Pallidum": {
+ "std": 0.19744227246264087,
+ "max": 2.3875,
+ "min": 0.19332,
+ "mean": 1.5209102517162492
},
- "rs2718058_g": {
- "1": 88,
- "0": 79,
- "2": 29
+ "Right postcentral gyrus": {
+ "std": 1.4670356360056158,
+ "max": 13.6552,
+ "min": 0.0,
+ "mean": 9.810248169336385
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -2207,11 +1839,11 @@
"input": [
{
"name": "y",
- "value": "rightcocentraloperculum,rightmcggmiddlecingulategyrus,rightmfgmiddlefrontalgyrus"
+ "value": "leftcalccalcarinecortex,leftphgparahippocampalgyrus"
},
{
"name": "dataset",
- "value": "edsd,ppmi,adni"
+ "value": "edsd,adni,ppmi"
},
{
"name": "filter",
@@ -2224,109 +1856,74 @@
],
"output": {
"single": {
- "rightcocentraloperculum": {
- "ppmi": {
- "data": {
- "std": 0.45734674949851273,
- "min": 2.4939,
- "max": 5.8724,
- "lower_confidence": 3.5053227182886033,
- "mean": 3.962669467787116,
- "upper_confidence": 4.420016217285629
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.44127333959298076,
- "min": 2.44188,
- "max": 5.84437,
- "lower_confidence": 3.4762942589060795,
- "mean": 3.91756759849906,
- "upper_confidence": 4.358840938092041
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.5694463618454609,
- "min": 2e-05,
- "max": 5.3782,
- "lower_confidence": 3.253553706804423,
- "mean": 3.823000068649884,
- "upper_confidence": 4.392446430495345
- },
- "num_datapoints": 437
- }
- },
- "rightmcggmiddlecingulategyrus": {
+ "Left parahippocampal gyrus": {
"ppmi": {
"data": {
- "std": 0.5523913575113728,
- "min": 3.0425,
- "max": 10.1014,
- "lower_confidence": 4.138518446410192,
- "mean": 4.690909803921564,
- "upper_confidence": 5.243301161432937
+ "std": 0.2764222816120589,
+ "max": 4.1332,
+ "min": 2.3659,
+ "mean": 3.252158683473389
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.5527900622143483,
- "min": 2.93644,
- "max": 9.84033,
- "lower_confidence": 3.996453174183407,
- "mean": 4.549243236397755,
- "upper_confidence": 5.1020332986121035
+ "std": 0.32137573174034656,
+ "max": 4.05192,
+ "min": 2.10045,
+ "mean": 3.032245375234521
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.6823909372576454,
- "min": 0.0,
- "max": 8.5193,
- "lower_confidence": 3.779219154275535,
- "mean": 4.4616100915331804,
- "upper_confidence": 5.144001028790826
+ "std": 0.31241110382125886,
+ "max": 4.1027,
+ "min": 2.0225,
+ "mean": 3.037619908466817
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rightmfgmiddlefrontalgyrus": {
+ "Left calcarine cortex": {
"ppmi": {
"data": {
- "std": 2.096951668861678,
- "min": 10.7621,
- "max": 26.1728,
- "lower_confidence": 16.520812616852613,
- "mean": 18.61776428571429,
- "upper_confidence": 20.71471595457597
+ "std": 0.4868242479309984,
+ "max": 5.5892,
+ "min": 1.8119,
+ "mean": 3.2550935574229722
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 2.008586497232484,
- "min": 11.3756,
- "max": 25.9978,
- "lower_confidence": 15.934234703517996,
- "mean": 17.94282120075048,
- "upper_confidence": 19.951407697982965
+ "std": 0.4903814701785902,
+ "max": 5.56209,
+ "min": 1.76704,
+ "mean": 3.156891848030018
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 2.6629152993837026,
- "min": 0.0,
- "max": 25.3498,
- "lower_confidence": 15.037770970639173,
- "mean": 17.700686270022874,
- "upper_confidence": 20.363601569406576
+ "std": 0.4439780232512154,
+ "max": 5.3609,
+ "min": 1.8742,
+ "mean": 3.009671167048051
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -2334,89 +1931,59 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightcocentraloperculum": {
- "std": 0.45734674949851273,
- "min": 2.4939,
- "max": 5.8724,
- "lower_confidence": 3.5053227182886033,
- "mean": 3.962669467787116,
- "upper_confidence": 4.420016217285629
- },
- "rightmcggmiddlecingulategyrus": {
- "std": 0.5523913575113728,
- "min": 3.0425,
- "max": 10.1014,
- "lower_confidence": 4.138518446410192,
- "mean": 4.690909803921564,
- "upper_confidence": 5.243301161432937
- },
- "rightmfgmiddlefrontalgyrus": {
- "std": 2.096951668861678,
- "min": 10.7621,
- "max": 26.1728,
- "lower_confidence": 16.520812616852613,
- "mean": 18.61776428571429,
- "upper_confidence": 20.71471595457597
+ "Left parahippocampal gyrus": {
+ "std": 0.2764222816120589,
+ "max": 4.1332,
+ "min": 2.3659,
+ "mean": 3.252158683473389
+ },
+ "Left calcarine cortex": {
+ "std": 0.4868242479309984,
+ "max": 5.5892,
+ "min": 1.8119,
+ "mean": 3.2550935574229722
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightcocentraloperculum": {
- "std": 0.44127333959298076,
- "min": 2.44188,
- "max": 5.84437,
- "lower_confidence": 3.4762942589060795,
- "mean": 3.91756759849906,
- "upper_confidence": 4.358840938092041
- },
- "rightmcggmiddlecingulategyrus": {
- "std": 0.5527900622143483,
- "min": 2.93644,
- "max": 9.84033,
- "lower_confidence": 3.996453174183407,
- "mean": 4.549243236397755,
- "upper_confidence": 5.1020332986121035
- },
- "rightmfgmiddlefrontalgyrus": {
- "std": 2.008586497232484,
- "min": 11.3756,
- "max": 25.9978,
- "lower_confidence": 15.934234703517996,
- "mean": 17.94282120075048,
- "upper_confidence": 19.951407697982965
+ "Left parahippocampal gyrus": {
+ "std": 0.32137573174034656,
+ "max": 4.05192,
+ "min": 2.10045,
+ "mean": 3.032245375234521
+ },
+ "Left calcarine cortex": {
+ "std": 0.4903814701785902,
+ "max": 5.56209,
+ "min": 1.76704,
+ "mean": 3.156891848030018
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightcocentraloperculum": {
- "std": 0.5694463618454609,
- "min": 2e-05,
- "max": 5.3782,
- "lower_confidence": 3.253553706804423,
- "mean": 3.823000068649884,
- "upper_confidence": 4.392446430495345
- },
- "rightmcggmiddlecingulategyrus": {
- "std": 0.6823909372576454,
- "min": 0.0,
- "max": 8.5193,
- "lower_confidence": 3.779219154275535,
- "mean": 4.4616100915331804,
- "upper_confidence": 5.144001028790826
+ "Left parahippocampal gyrus": {
+ "std": 0.31241110382125886,
+ "max": 4.1027,
+ "min": 2.0225,
+ "mean": 3.037619908466817
},
- "rightmfgmiddlefrontalgyrus": {
- "std": 2.6629152993837026,
- "min": 0.0,
- "max": 25.3498,
- "lower_confidence": 15.037770970639173,
- "mean": 17.700686270022874,
- "upper_confidence": 20.363601569406576
+ "Left calcarine cortex": {
+ "std": 0.4439780232512154,
+ "max": 5.3609,
+ "min": 1.8742,
+ "mean": 3.009671167048051
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -2425,11 +1992,11 @@
"input": [
{
"name": "y",
- "value": "rightpcuprecuneus"
+ "value": "rightphgparahippocampalgyrus,rightsmgsupramarginalgyrus"
},
{
"name": "dataset",
- "value": "adni,ppmi,edsd"
+ "value": "edsd"
},
{
"name": "filter",
@@ -2442,81 +2009,52 @@
],
"output": {
"single": {
- "rightpcuprecuneus": {
- "ppmi": {
- "data": {
- "std": 1.2126428460396093,
- "min": 7.213,
- "max": 16.2714,
- "lower_confidence": 9.785217237994008,
- "mean": 10.997860084033617,
- "upper_confidence": 12.210502930073226
- },
- "num_datapoints": 714
- },
- "adni": {
+ "Right parahippocampal gyrus": {
+ "edsd": {
"data": {
- "std": 1.1759208214696257,
- "min": 7.46971,
- "max": 15.0858,
- "lower_confidence": 9.437534844571665,
- "mean": 10.613455666041292,
- "upper_confidence": 11.789376487510918
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
},
- "num_datapoints": 1066
- },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right supramarginal gyrus": {
"edsd": {
"data": {
- "std": 1.261096457884922,
- "min": 2.9491,
- "max": 14.9955,
- "lower_confidence": 8.949212466600217,
- "mean": 10.210308924485139,
- "upper_confidence": 11.47140538237006
+ "std": 1.1163042783023602,
+ "max": 10.7194,
+ "min": 0.01333,
+ "mean": 7.616723455377567
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "rightpcuprecuneus": {
- "std": 1.2126428460396093,
- "min": 7.213,
- "max": 16.2714,
- "lower_confidence": 9.785217237994008,
- "mean": 10.997860084033617,
- "upper_confidence": 12.210502930073226
- }
- }
- },
- "adni": {
- "num_datapoints": 1066,
- "data": {
- "rightpcuprecuneus": {
- "std": 1.1759208214696257,
- "min": 7.46971,
- "max": 15.0858,
- "lower_confidence": 9.437534844571665,
- "mean": 10.613455666041292,
- "upper_confidence": 11.789376487510918
- }
- }
- },
"edsd": {
"num_datapoints": 437,
"data": {
- "rightpcuprecuneus": {
- "std": 1.261096457884922,
- "min": 2.9491,
- "max": 14.9955,
- "lower_confidence": 8.949212466600217,
- "mean": 10.210308924485139,
- "upper_confidence": 11.47140538237006
+ "Right parahippocampal gyrus": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
+ },
+ "Right supramarginal gyrus": {
+ "std": 1.1163042783023602,
+ "max": 10.7194,
+ "min": 0.01333,
+ "mean": 7.616723455377567
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -2525,11 +2063,11 @@
"input": [
{
"name": "y",
- "value": "rightofugoccipitalfusiformgyrus"
+ "value": "rightaorganteriororbitalgyrus"
},
{
"name": "dataset",
- "value": "adni,edsd,ppmi"
+ "value": "edsd,adni"
},
{
"name": "filter",
@@ -2542,81 +2080,57 @@
],
"output": {
"single": {
- "rightofugoccipitalfusiformgyrus": {
- "ppmi": {
- "data": {
- "std": 0.4647318609205073,
- "min": 2.9714,
- "max": 6.6355,
- "lower_confidence": 3.955155253925429,
- "mean": 4.419887114845936,
- "upper_confidence": 4.884618975766443
- },
- "num_datapoints": 714
- },
+ "Right anterior orbital gyrus": {
"adni": {
"data": {
- "std": 0.46145362727304845,
- "min": 2.70356,
- "max": 5.85866,
- "lower_confidence": 3.6407967104380203,
- "mean": 4.102250337711069,
- "upper_confidence": 4.563703964984117
+ "std": 0.20988788679102507,
+ "max": 2.49793,
+ "min": 0.886175,
+ "mean": 1.7091453555347098
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.5215862428900659,
- "min": 1.0875,
- "max": 5.5638,
- "lower_confidence": 3.5656679905195428,
- "mean": 4.087254233409609,
- "upper_confidence": 4.608840476299674
+ "std": 0.27829646493901633,
+ "max": 2.7957,
+ "min": 0.0,
+ "mean": 1.6966385125858117
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "rightofugoccipitalfusiformgyrus": {
- "std": 0.4647318609205073,
- "min": 2.9714,
- "max": 6.6355,
- "lower_confidence": 3.955155253925429,
- "mean": 4.419887114845936,
- "upper_confidence": 4.884618975766443
- }
- }
- },
"adni": {
"num_datapoints": 1066,
"data": {
- "rightofugoccipitalfusiformgyrus": {
- "std": 0.46145362727304845,
- "min": 2.70356,
- "max": 5.85866,
- "lower_confidence": 3.6407967104380203,
- "mean": 4.102250337711069,
- "upper_confidence": 4.563703964984117
+ "Right anterior orbital gyrus": {
+ "std": 0.20988788679102507,
+ "max": 2.49793,
+ "min": 0.886175,
+ "mean": 1.7091453555347098
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightofugoccipitalfusiformgyrus": {
- "std": 0.5215862428900659,
- "min": 1.0875,
- "max": 5.5638,
- "lower_confidence": 3.5656679905195428,
- "mean": 4.087254233409609,
- "upper_confidence": 4.608840476299674
+ "Right anterior orbital gyrus": {
+ "std": 0.27829646493901633,
+ "max": 2.7957,
+ "min": 0.0,
+ "mean": 1.6966385125858117
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -2625,11 +2139,11 @@
"input": [
{
"name": "y",
- "value": "rightmogmiddleoccipitalgyrus"
+ "value": "righthippocampus,rightphgparahippocampalgyrus"
},
{
"name": "dataset",
- "value": "ppmi,edsd"
+ "value": "edsd,adni,ppmi"
},
{
"name": "filter",
@@ -2642,28 +2156,74 @@
],
"output": {
"single": {
- "rightmogmiddleoccipitalgyrus": {
+ "Right Hippocampus": {
"ppmi": {
"data": {
- "std": 0.6513377559135607,
- "min": 3.6371,
- "max": 7.4312,
- "lower_confidence": 4.770203840725096,
- "mean": 5.421541596638657,
- "upper_confidence": 6.072879352552218
+ "std": 0.3000049420191848,
+ "max": 4.4035,
+ "min": 2.581,
+ "mean": 3.409496918767508
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.37436720449403965,
+ "max": 4.27919,
+ "min": 1.85114,
+ "mean": 3.134559596622891
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.629020003686436,
- "min": 3.2197,
- "max": 7.0774,
- "lower_confidence": 4.362123932240332,
- "mean": 4.991143935926767,
- "upper_confidence": 5.620163939613203
+ "std": 0.3755222858982453,
+ "max": 4.58,
+ "min": 1.1821,
+ "mean": 3.1844766590389035
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right parahippocampal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.3066679707387874,
+ "max": 3.87243,
+ "min": 1.79738,
+ "mean": 2.8090392213883644
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -2671,74 +2231,59 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightmogmiddleoccipitalgyrus": {
- "std": 0.6513377559135607,
- "min": 3.6371,
- "max": 7.4312,
- "lower_confidence": 4.770203840725096,
- "mean": 5.421541596638657,
- "upper_confidence": 6.072879352552218
+ "Right Hippocampus": {
+ "std": 0.3000049420191848,
+ "max": 4.4035,
+ "min": 2.581,
+ "mean": 3.409496918767508
+ },
+ "Right parahippocampal gyrus": {
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
- "edsd": {
- "num_datapoints": 437,
+ "adni": {
+ "num_datapoints": 1066,
"data": {
- "rightmogmiddleoccipitalgyrus": {
- "std": 0.629020003686436,
- "min": 3.2197,
- "max": 7.0774,
- "lower_confidence": 4.362123932240332,
- "mean": 4.991143935926767,
- "upper_confidence": 5.620163939613203
- }
- }
- }
- }
- }
- },
- {
- "input": [
- {
- "name": "y",
- "value": "alzheimerbroadcategory"
- },
- {
- "name": "dataset",
- "value": "edsd"
- },
- {
- "name": "filter",
- "value": ""
- },
- {
- "name": "pathology",
- "value": "dementia"
- }
- ],
- "output": {
- "single": {
- "alzheimerbroadcategory": {
- "edsd": {
- "data": {
- "Other": 76,
- "CN": 151,
- "AD": 141
+ "Right Hippocampus": {
+ "std": 0.37436720449403965,
+ "max": 4.27919,
+ "min": 1.85114,
+ "mean": 3.134559596622891
},
- "num_datapoints": 368
- }
- }
- },
- "model": {
+ "Right parahippocampal gyrus": {
+ "std": 0.3066679707387874,
+ "max": 3.87243,
+ "min": 1.79738,
+ "mean": 2.8090392213883644
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
- "num_datapoints": 368,
+ "num_datapoints": 437,
"data": {
- "alzheimerbroadcategory": {
- "Other": 76,
- "CN": 151,
- "AD": 141
+ "Right Hippocampus": {
+ "std": 0.3755222858982453,
+ "max": 4.58,
+ "min": 1.1821,
+ "mean": 3.1844766590389035
+ },
+ "Right parahippocampal gyrus": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -2747,11 +2292,11 @@
"input": [
{
"name": "y",
- "value": "leftprgprecentralgyrus,leftpoparietaloperculum"
+ "value": "rightmorgmedialorbitalgyrus,leftopifgopercularpartoftheinferiorfrontalgyrus"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "edsd,ppmi"
},
{
"name": "filter",
@@ -2764,54 +2309,93 @@
],
"output": {
"single": {
- "leftprgprecentralgyrus": {
+ "Left opercular part of the inferior frontal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.3864260143812992,
+ "max": 4.6716,
+ "min": 1.7325,
+ "mean": 3.355332773109241
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"edsd": {
"data": {
- "std": 1.7964629367494684,
+ "std": 0.4885484103637412,
+ "max": 4.7752,
"min": 0.0,
- "max": 16.7357,
- "lower_confidence": 10.195834088422156,
- "mean": 11.992297025171625,
- "upper_confidence": 13.788759961921095
+ "mean": 3.224807734553775
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "leftpoparietaloperculum": {
+ "Right medial orbital gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.4180940851626489,
+ "max": 5.5534,
+ "min": 2.3589,
+ "mean": 3.8763394957983186
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"edsd": {
"data": {
- "std": 0.362051053063454,
- "min": 0.02077,
- "max": 3.2184,
- "lower_confidence": 1.944144438927393,
- "mean": 2.306195491990847,
- "upper_confidence": 2.668246545054301
+ "std": 0.49960355418387337,
+ "max": 5.6107,
+ "min": 0.5615,
+ "mean": 3.6864475972540043
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Left opercular part of the inferior frontal gyrus": {
+ "std": 0.3864260143812992,
+ "max": 4.6716,
+ "min": 1.7325,
+ "mean": 3.355332773109241
+ },
+ "Right medial orbital gyrus": {
+ "std": 0.4180940851626489,
+ "max": 5.5534,
+ "min": 2.3589,
+ "mean": 3.8763394957983186
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"edsd": {
"num_datapoints": 437,
"data": {
- "leftprgprecentralgyrus": {
- "std": 1.7964629367494684,
+ "Left opercular part of the inferior frontal gyrus": {
+ "std": 0.4885484103637412,
+ "max": 4.7752,
"min": 0.0,
- "max": 16.7357,
- "lower_confidence": 10.195834088422156,
- "mean": 11.992297025171625,
- "upper_confidence": 13.788759961921095
+ "mean": 3.224807734553775
},
- "leftpoparietaloperculum": {
- "std": 0.362051053063454,
- "min": 0.02077,
- "max": 3.2184,
- "lower_confidence": 1.944144438927393,
- "mean": 2.306195491990847,
- "upper_confidence": 2.668246545054301
+ "Right medial orbital gyrus": {
+ "std": 0.49960355418387337,
+ "max": 5.6107,
+ "min": 0.5615,
+ "mean": 3.6864475972540043
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -2820,11 +2404,11 @@
"input": [
{
"name": "y",
- "value": "rightioginferioroccipitalgyrus,minimentalstate"
+ "value": "rightsfgsuperiorfrontalgyrus"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "edsd"
},
{
"name": "filter",
@@ -2837,54 +2421,33 @@
],
"output": {
"single": {
- "rightioginferioroccipitalgyrus": {
- "adni": {
- "data": {
- "std": 0.798416485346769,
- "min": 4.04371,
- "max": 9.78156,
- "lower_confidence": 5.637280297017211,
- "mean": 6.43569678236398,
- "upper_confidence": 7.2341132677107485
- },
- "num_datapoints": 1066
- }
- },
- "minimentalstate": {
- "adni": {
+ "Right superior frontal gyrus": {
+ "edsd": {
"data": {
- "std": 2.7060684595162,
- "min": 19,
- "max": 30,
- "lower_confidence": 24.3080028350429,
- "mean": 27.0140712945591,
- "upper_confidence": 29.720139754075298
+ "std": 2.0653162712129576,
+ "max": 19.5882,
+ "min": 0.00029,
+ "mean": 13.919113089244853
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 1066,
+ "edsd": {
+ "num_datapoints": 437,
"data": {
- "rightioginferioroccipitalgyrus": {
- "std": 0.798416485346769,
- "min": 4.04371,
- "max": 9.78156,
- "lower_confidence": 5.637280297017211,
- "mean": 6.43569678236398,
- "upper_confidence": 7.2341132677107485
- },
- "minimentalstate": {
- "std": 2.7060684595162,
- "min": 19.0,
- "max": 30.0,
- "lower_confidence": 24.3080028350429,
- "mean": 27.0140712945591,
- "upper_confidence": 29.720139754075298
+ "Right superior frontal gyrus": {
+ "std": 2.0653162712129576,
+ "max": 19.5882,
+ "min": 0.00029,
+ "mean": 13.919113089244853
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -2893,7 +2456,7 @@
"input": [
{
"name": "y",
- "value": "rightacgganteriorcingulategyrus,leftpinsposteriorinsula"
+ "value": "rightmpogpostcentralgyrusmedialsegment"
},
{
"name": "dataset",
@@ -2910,30 +2473,17 @@
],
"output": {
"single": {
- "leftpinsposteriorinsula": {
- "ppmi": {
- "data": {
- "std": 0.25046887396227535,
- "min": 1.7073,
- "max": 3.0882,
- "lower_confidence": 2.107933647046127,
- "mean": 2.3584025210084025,
- "upper_confidence": 2.608871394970678
- },
- "num_datapoints": 714
- }
- },
- "rightacgganteriorcingulategyrus": {
+ "Right postcentral gyrus medial segment": {
"ppmi": {
"data": {
- "std": 0.5221361273368813,
- "min": 2.4783,
- "max": 6.1209,
- "lower_confidence": 3.5984036485734787,
- "mean": 4.12053977591036,
- "upper_confidence": 4.642675903247241
+ "std": 0.15216133131407455,
+ "max": 1.804,
+ "min": 0.72321,
+ "mean": 1.1058147478991596
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
}
},
@@ -2941,23 +2491,15 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftpinsposteriorinsula": {
- "std": 0.25046887396227535,
- "min": 1.7073,
- "max": 3.0882,
- "lower_confidence": 2.107933647046127,
- "mean": 2.3584025210084025,
- "upper_confidence": 2.608871394970678
- },
- "rightacgganteriorcingulategyrus": {
- "std": 0.5221361273368813,
- "min": 2.4783,
- "max": 6.1209,
- "lower_confidence": 3.5984036485734787,
- "mean": 4.12053977591036,
- "upper_confidence": 4.642675903247241
+ "Right postcentral gyrus medial segment": {
+ "std": 0.15216133131407455,
+ "max": 1.804,
+ "min": 0.72321,
+ "mean": 1.1058147478991596
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
}
}
}
@@ -2966,11 +2508,11 @@
"input": [
{
"name": "y",
- "value": "rightsplsuperiorparietallobule"
+ "value": "rightphgparahippocampalgyrus"
},
{
"name": "dataset",
- "value": "ppmi,adni"
+ "value": "adni,edsd,ppmi"
},
{
"name": "filter",
@@ -2983,28 +2525,39 @@
],
"output": {
"single": {
- "rightsplsuperiorparietallobule": {
+ "Right parahippocampal gyrus": {
"ppmi": {
"data": {
- "std": 1.1958387996701134,
- "min": 6.013,
- "max": 14.7662,
- "lower_confidence": 9.500160780161822,
- "mean": 10.695999579831936,
- "upper_confidence": 11.89183837950205
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 1.185359793874018,
- "min": 7.16417,
- "max": 15.5338,
- "lower_confidence": 9.124502213630656,
- "mean": 10.309862007504673,
- "upper_confidence": 11.49522180137869
+ "std": 0.3066679707387874,
+ "max": 3.87243,
+ "min": 1.79738,
+ "mean": 2.8090392213883644
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -3012,28 +2565,41 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightsplsuperiorparietallobule": {
- "std": 1.1958387996701134,
- "min": 6.013,
- "max": 14.7662,
- "lower_confidence": 9.500160780161822,
- "mean": 10.695999579831936,
- "upper_confidence": 11.89183837950205
+ "Right parahippocampal gyrus": {
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightsplsuperiorparietallobule": {
- "std": 1.185359793874018,
- "min": 7.16417,
- "max": 15.5338,
- "lower_confidence": 9.124502213630656,
- "mean": 10.309862007504673,
- "upper_confidence": 11.49522180137869
+ "Right parahippocampal gyrus": {
+ "std": 0.3066679707387874,
+ "max": 3.87243,
+ "min": 1.79738,
+ "mean": 2.8090392213883644
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right parahippocampal gyrus": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -3042,11 +2608,11 @@
"input": [
{
"name": "y",
- "value": "rightcalccalcarinecortex"
+ "value": "rightthalamusproper,rightphgparahippocampalgyrus"
},
{
"name": "dataset",
- "value": "adni,ppmi,edsd"
+ "value": "adni,edsd,ppmi"
},
{
"name": "filter",
@@ -3059,39 +2625,74 @@
],
"output": {
"single": {
- "rightcalccalcarinecortex": {
+ "Right parahippocampal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.3066679707387874,
+ "max": 3.87243,
+ "min": 1.79738,
+ "mean": 2.8090392213883644
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right Thalamus": {
"ppmi": {
"data": {
- "std": 0.4785887325676578,
- "min": 2.1455,
- "max": 5.5832,
- "lower_confidence": 2.8866545447432723,
- "mean": 3.36524327731093,
- "upper_confidence": 3.843832009878588
+ "std": 0.7622705775020566,
+ "max": 11.077,
+ "min": 5.8133,
+ "mean": 8.10525238095238
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.48297457330755994,
- "min": 1.90772,
- "max": 5.32945,
- "lower_confidence": 2.7624399670301485,
- "mean": 3.2454145403377086,
- "upper_confidence": 3.7283891136452687
+ "std": 0.6633602259875785,
+ "max": 9.15485,
+ "min": 4.45451,
+ "mean": 6.649514183864915
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.4540125335410803,
- "min": 1.7932,
- "max": 5.0955,
- "lower_confidence": 2.6576339195481684,
- "mean": 3.1116464530892487,
- "upper_confidence": 3.565658986630329
+ "std": 0.7873090909488191,
+ "max": 9.902,
+ "min": 1.8203,
+ "mean": 6.553360411899309
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -3099,41 +2700,59 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightcalccalcarinecortex": {
- "std": 0.4785887325676578,
- "min": 2.1455,
- "max": 5.5832,
- "lower_confidence": 2.8866545447432723,
- "mean": 3.36524327731093,
- "upper_confidence": 3.843832009878588
+ "Right parahippocampal gyrus": {
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
+ },
+ "Right Thalamus": {
+ "std": 0.7622705775020566,
+ "max": 11.077,
+ "min": 5.8133,
+ "mean": 8.10525238095238
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightcalccalcarinecortex": {
- "std": 0.48297457330755994,
- "min": 1.90772,
- "max": 5.32945,
- "lower_confidence": 2.7624399670301485,
- "mean": 3.2454145403377086,
- "upper_confidence": 3.7283891136452687
+ "Right parahippocampal gyrus": {
+ "std": 0.3066679707387874,
+ "max": 3.87243,
+ "min": 1.79738,
+ "mean": 2.8090392213883644
+ },
+ "Right Thalamus": {
+ "std": 0.6633602259875785,
+ "max": 9.15485,
+ "min": 4.45451,
+ "mean": 6.649514183864915
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightcalccalcarinecortex": {
- "std": 0.4540125335410803,
- "min": 1.7932,
- "max": 5.0955,
- "lower_confidence": 2.6576339195481684,
- "mean": 3.1116464530892487,
- "upper_confidence": 3.565658986630329
+ "Right parahippocampal gyrus": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
+ },
+ "Right Thalamus": {
+ "std": 0.7873090909488191,
+ "max": 9.902,
+ "min": 1.8203,
+ "mean": 6.553360411899309
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -3142,7 +2761,7 @@
"input": [
{
"name": "y",
- "value": "rightopifgopercularpartoftheinferiorfrontalgyrus,leftscasubcallosalarea"
+ "value": "leftsfgsuperiorfrontalgyrus,rs17125944_c"
},
{
"name": "dataset",
@@ -3159,54 +2778,68 @@
],
"output": {
"single": {
- "leftscasubcallosalarea": {
+ "rs17125944_C": {
"adni": {
"data": {
- "std": 0.1434750620014274,
- "min": 0.787747,
- "max": 1.74043,
- "lower_confidence": 1.0810640721449147,
- "mean": 1.224539134146342,
- "upper_confidence": 1.3680141961477694
- },
- "num_datapoints": 1066
- }
- },
- "rightopifgopercularpartoftheinferiorfrontalgyrus": {
+ "1": {
+ "count": 141,
+ "percentage": 15.88
+ },
+ "0": {
+ "count": 740,
+ "percentage": 83.33
+ },
+ "2": {
+ "count": 7,
+ "percentage": 0.79
+ }
+ },
+ "num_datapoints": 888,
+ "num_nulls": 178,
+ "num_total": 1066
+ }
+ },
+ "Left superior frontal gyrus": {
"adni": {
"data": {
- "std": 0.3781179841741,
- "min": 2.30122,
- "max": 4.69298,
- "lower_confidence": 2.9641229257696238,
- "mean": 3.342240909943724,
- "upper_confidence": 3.720358894117824
+ "std": 1.578945206670207,
+ "max": 20.011,
+ "min": 8.17187,
+ "mean": 14.255983742964341
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
"model": {
"adni": {
- "num_datapoints": 1066,
+ "num_datapoints": 888,
"data": {
- "leftscasubcallosalarea": {
- "std": 0.1434750620014274,
- "min": 0.787747,
- "max": 1.74043,
- "lower_confidence": 1.0810640721449147,
- "mean": 1.224539134146342,
- "upper_confidence": 1.3680141961477694
+ "rs17125944_C": {
+ "1": {
+ "count": 141,
+ "percentage": 15.88
+ },
+ "0": {
+ "count": 740,
+ "percentage": 83.33
+ },
+ "2": {
+ "count": 7,
+ "percentage": 0.79
+ }
},
- "rightopifgopercularpartoftheinferiorfrontalgyrus": {
- "std": 0.3781179841741,
- "min": 2.30122,
- "max": 4.69298,
- "lower_confidence": 2.9641229257696238,
- "mean": 3.342240909943724,
- "upper_confidence": 3.720358894117824
+ "Left superior frontal gyrus": {
+ "std": 1.5450526258612929,
+ "max": 20.011,
+ "min": 10.1531,
+ "mean": 14.286193806306295
}
- }
+ },
+ "num_nulls": 178,
+ "num_total": 1066
}
}
}
@@ -3215,11 +2848,11 @@
"input": [
{
"name": "y",
- "value": "gender"
+ "value": "rightphgparahippocampalgyrus,rightacgganteriorcingulategyrus,leftorifgorbitalpartoftheinferiorfrontalgyrus,rightpoparietaloperculum"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -3232,13 +2865,100 @@
],
"output": {
"single": {
- "gender": {
+ "Left orbital part of the inferior frontal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.1887805996344365,
+ "max": 2.2023,
+ "min": 0.73418,
+ "mean": 1.5368287114845927
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "data": {
+ "std": 0.22985179699254343,
+ "max": 2.08,
+ "min": 0.00156,
+ "mean": 1.4437167505720818
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right parahippocampal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "data": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right parietal operculum": {
+ "ppmi": {
+ "data": {
+ "std": 0.3164410640785628,
+ "max": 3.4457,
+ "min": 1.3588,
+ "mean": 2.2435745098039233
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "data": {
+ "std": 0.3619819401510522,
+ "max": 3.2482,
+ "min": 0.0,
+ "mean": 2.124535423340962
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right anterior cingulate gyrus": {
"ppmi": {
"data": {
- "M": 458,
- "F": 256
+ "std": 0.5221361273368813,
+ "max": 6.1209,
+ "min": 2.4783,
+ "mean": 4.12053977591036
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "data": {
+ "std": 0.641067542864868,
+ "max": 6.2992,
+ "min": 6e-05,
+ "mean": 3.975364210526319
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -3246,11 +2966,64 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "gender": {
- "M": 458,
- "F": 256
+ "Left orbital part of the inferior frontal gyrus": {
+ "std": 0.1887805996344365,
+ "max": 2.2023,
+ "min": 0.73418,
+ "mean": 1.5368287114845927
+ },
+ "Right parahippocampal gyrus": {
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
+ },
+ "Right parietal operculum": {
+ "std": 0.3164410640785628,
+ "max": 3.4457,
+ "min": 1.3588,
+ "mean": 2.2435745098039233
+ },
+ "Right anterior cingulate gyrus": {
+ "std": 0.5221361273368813,
+ "max": 6.1209,
+ "min": 2.4783,
+ "mean": 4.12053977591036
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Left orbital part of the inferior frontal gyrus": {
+ "std": 0.22985179699254343,
+ "max": 2.08,
+ "min": 0.00156,
+ "mean": 1.4437167505720818
+ },
+ "Right parahippocampal gyrus": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
+ },
+ "Right parietal operculum": {
+ "std": 0.3619819401510522,
+ "max": 3.2482,
+ "min": 0.0,
+ "mean": 2.124535423340962
+ },
+ "Right anterior cingulate gyrus": {
+ "std": 0.641067542864868,
+ "max": 6.2992,
+ "min": 6e-05,
+ "mean": 3.975364210526319
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -3259,11 +3032,11 @@
"input": [
{
"name": "y",
- "value": "lefthippocampus"
+ "value": "rightofugoccipitalfusiformgyrus"
},
{
"name": "dataset",
- "value": "ppmi,edsd"
+ "value": "ppmi,edsd,adni"
},
{
"name": "filter",
@@ -3276,28 +3049,39 @@
],
"output": {
"single": {
- "lefthippocampus": {
+ "Right occipital fusiform gyrus": {
"ppmi": {
"data": {
- "std": 0.2918412933538043,
- "min": 2.37,
- "max": 4.1781,
- "lower_confidence": 2.9186008635089418,
- "mean": 3.210442156862746,
- "upper_confidence": 3.50228345021655
+ "std": 0.4647318609205073,
+ "max": 6.6355,
+ "min": 2.9714,
+ "mean": 4.419887114845936
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.46145362727304845,
+ "max": 5.85866,
+ "min": 2.70356,
+ "mean": 4.102250337711069
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.3638672581047783,
- "min": 1.3047,
- "max": 4.4519,
- "lower_confidence": 2.6244194695840077,
- "mean": 2.988286727688786,
- "upper_confidence": 3.3521539857935645
+ "std": 0.5215862428900659,
+ "max": 5.5638,
+ "min": 1.0875,
+ "mean": 4.087254233409609
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -3305,28 +3089,41 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "lefthippocampus": {
- "std": 0.2918412933538043,
- "min": 2.37,
- "max": 4.1781,
- "lower_confidence": 2.9186008635089418,
- "mean": 3.210442156862746,
- "upper_confidence": 3.50228345021655
+ "Right occipital fusiform gyrus": {
+ "std": 0.4647318609205073,
+ "max": 6.6355,
+ "min": 2.9714,
+ "mean": 4.419887114845936
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Right occipital fusiform gyrus": {
+ "std": 0.46145362727304845,
+ "max": 5.85866,
+ "min": 2.70356,
+ "mean": 4.102250337711069
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "lefthippocampus": {
- "std": 0.3638672581047783,
- "min": 1.3047,
- "max": 4.4519,
- "lower_confidence": 2.6244194695840077,
- "mean": 2.988286727688786,
- "upper_confidence": 3.3521539857935645
+ "Right occipital fusiform gyrus": {
+ "std": 0.5215862428900659,
+ "max": 5.5638,
+ "min": 1.0875,
+ "mean": 4.087254233409609
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -3335,11 +3132,11 @@
"input": [
{
"name": "y",
- "value": "rightprgprecentralgyrus,rightbasalforebrain"
+ "value": "rightaccumbensarea,leftscasubcallosalarea,leftorifgorbitalpartoftheinferiorfrontalgyrus,rs10498633_t"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "adni"
},
{
"name": "filter",
@@ -3352,54 +3149,106 @@
],
"output": {
"single": {
- "rightprgprecentralgyrus": {
- "edsd": {
+ "Left orbital part of the inferior frontal gyrus": {
+ "adni": {
"data": {
- "std": 1.7310257642288833,
- "min": 0.0,
- "max": 16.6497,
- "lower_confidence": 10.088076295267665,
- "mean": 11.819102059496549,
- "upper_confidence": 13.550127823725433
+ "std": 0.1780494478606911,
+ "max": 2.10842,
+ "min": 0.814066,
+ "mean": 1.486154222326452
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
},
- "rightbasalforebrain": {
- "edsd": {
+ "Left subcallosal area": {
+ "adni": {
+ "data": {
+ "std": 0.1434750620014274,
+ "max": 1.74043,
+ "min": 0.787747,
+ "mean": 1.224539134146342
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "Right Accumbens Area": {
+ "adni": {
+ "data": {
+ "std": 0.04813504919392478,
+ "max": 0.549402,
+ "min": 0.191923,
+ "mean": 0.37349971294559053
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "rs10498633_T": {
+ "adni": {
"data": {
- "std": 0.04123069309725813,
- "min": 0.13082,
- "max": 0.57889,
- "lower_confidence": 0.33022324282951543,
- "mean": 0.37145393592677356,
- "upper_confidence": 0.4126846290240317
+ "1": {
+ "count": 289,
+ "percentage": 32.4
+ },
+ "0": {
+ "count": 559,
+ "percentage": 62.67
+ },
+ "2": {
+ "count": 44,
+ "percentage": 4.93
+ }
},
- "num_datapoints": 437
+ "num_datapoints": 892,
+ "num_nulls": 174,
+ "num_total": 1066
}
}
},
"model": {
- "edsd": {
- "num_datapoints": 437,
+ "adni": {
+ "num_datapoints": 892,
"data": {
- "rightprgprecentralgyrus": {
- "std": 1.7310257642288833,
- "min": 0.0,
- "max": 16.6497,
- "lower_confidence": 10.088076295267665,
- "mean": 11.819102059496549,
- "upper_confidence": 13.550127823725433
+ "Left orbital part of the inferior frontal gyrus": {
+ "std": 0.17490734585426837,
+ "max": 2.10842,
+ "min": 0.897952,
+ "mean": 1.4911455997757843
},
- "rightbasalforebrain": {
- "std": 0.04123069309725813,
- "min": 0.13082,
- "max": 0.57889,
- "lower_confidence": 0.33022324282951543,
- "mean": 0.37145393592677356,
- "upper_confidence": 0.4126846290240317
- }
- }
+ "Left subcallosal area": {
+ "std": 0.14038316967450323,
+ "max": 1.74043,
+ "min": 0.870761,
+ "mean": 1.2257228867713015
+ },
+ "Right Accumbens Area": {
+ "std": 0.04764908067209862,
+ "max": 0.549402,
+ "min": 0.191923,
+ "mean": 0.37426581502242084
+ },
+ "rs10498633_T": {
+ "1": {
+ "count": 289,
+ "percentage": 32.4
+ },
+ "0": {
+ "count": 559,
+ "percentage": 62.67
+ },
+ "2": {
+ "count": 44,
+ "percentage": 4.93
+ }
+ }
+ },
+ "num_nulls": 174,
+ "num_total": 1066
}
}
}
@@ -3408,11 +3257,11 @@
"input": [
{
"name": "y",
- "value": "leftmfcmedialfrontalcortex"
+ "value": "leftsmgsupramarginalgyrus,rightmogmiddleoccipitalgyrus"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "edsd,ppmi"
},
{
"name": "filter",
@@ -3425,33 +3274,93 @@
],
"output": {
"single": {
- "leftmfcmedialfrontalcortex": {
- "adni": {
+ "Right middle occipital gyrus": {
+ "ppmi": {
"data": {
- "std": 0.2307118944209133,
- "min": 0.967331,
- "max": 2.59496,
- "lower_confidence": 1.5405976937591979,
- "mean": 1.771309588180111,
- "upper_confidence": 2.0020214826010245
+ "std": 0.6513377559135607,
+ "max": 7.4312,
+ "min": 3.6371,
+ "mean": 5.421541596638657
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "data": {
+ "std": 0.629020003686436,
+ "max": 7.0774,
+ "min": 3.2197,
+ "mean": 4.991143935926767
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left supramarginal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.9950528955216256,
+ "max": 12.9766,
+ "min": 5.8702,
+ "mean": 9.095355462184862
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "data": {
+ "std": 1.1898430196180192,
+ "max": 12.1,
+ "min": 0.29404,
+ "mean": 8.490322745995421
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 1066,
+ "ppmi": {
+ "num_datapoints": 714,
"data": {
- "leftmfcmedialfrontalcortex": {
- "std": 0.2307118944209133,
- "min": 0.967331,
- "max": 2.59496,
- "lower_confidence": 1.5405976937591979,
- "mean": 1.771309588180111,
- "upper_confidence": 2.0020214826010245
+ "Right middle occipital gyrus": {
+ "std": 0.6513377559135607,
+ "max": 7.4312,
+ "min": 3.6371,
+ "mean": 5.421541596638657
+ },
+ "Left supramarginal gyrus": {
+ "std": 0.9950528955216256,
+ "max": 12.9766,
+ "min": 5.8702,
+ "mean": 9.095355462184862
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right middle occipital gyrus": {
+ "std": 0.629020003686436,
+ "max": 7.0774,
+ "min": 3.2197,
+ "mean": 4.991143935926767
+ },
+ "Left supramarginal gyrus": {
+ "std": 1.1898430196180192,
+ "max": 12.1,
+ "min": 0.29404,
+ "mean": 8.490322745995421
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -3460,11 +3369,11 @@
"input": [
{
"name": "y",
- "value": "leftofugoccipitalfusiformgyrus,leftscasubcallosalarea,lefttmptemporalpole"
+ "value": "leftptplanumtemporale,leftpinsposteriorinsula,leftlorglateralorbitalgyrus"
},
{
"name": "dataset",
- "value": "ppmi,edsd"
+ "value": "edsd,adni"
},
{
"name": "filter",
@@ -3477,137 +3386,129 @@
],
"output": {
"single": {
- "leftscasubcallosalarea": {
- "ppmi": {
+ "Left planum temporale": {
+ "adni": {
"data": {
- "std": 0.1463794296235994,
- "min": 0.77532,
- "max": 1.7445,
- "lower_confidence": 1.0991715087517484,
- "mean": 1.2455509383753478,
- "upper_confidence": 1.3919303679989472
+ "std": 0.29583402080883164,
+ "max": 3.21332,
+ "min": 1.16204,
+ "mean": 2.009343133208257
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.1512809988774746,
- "min": 0.64464,
- "max": 1.6854,
- "lower_confidence": 1.0609900537541057,
- "mean": 1.2122710526315803,
- "upper_confidence": 1.363552051509055
+ "std": 0.3014735282238393,
+ "max": 2.9964,
+ "min": 0.26866,
+ "mean": 1.958033546910756
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "leftofugoccipitalfusiformgyrus": {
- "ppmi": {
+ "Left posterior insula": {
+ "adni": {
"data": {
- "std": 0.46628251671452386,
- "min": 3.0193,
- "max": 6.3604,
- "lower_confidence": 3.9506463348260943,
- "mean": 4.416928851540618,
- "upper_confidence": 4.883211368255142
+ "std": 0.26834864241107276,
+ "max": 3.38977,
+ "min": 1.6439,
+ "mean": 2.324148536585367
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.5335674387349483,
- "min": 0.40331,
- "max": 5.784,
- "lower_confidence": 3.5669383049721466,
- "mean": 4.100505743707095,
- "upper_confidence": 4.634073182442044
+ "std": 0.27160909491385976,
+ "max": 3.1971,
+ "min": 1.2675,
+ "mean": 2.272651258581236
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "lefttmptemporalpole": {
- "ppmi": {
+ "Left lateral orbital gyrus": {
+ "adni": {
"data": {
- "std": 0.7936955782328489,
- "min": 5.4171,
- "max": 10.7787,
- "lower_confidence": 6.95254615846183,
- "mean": 7.746241736694679,
- "upper_confidence": 8.539937314927528
+ "std": 0.2567218332350192,
+ "max": 3.26841,
+ "min": 1.36195,
+ "mean": 2.3316048311444675
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.9280320758133737,
- "min": 2.5612,
- "max": 10.4928,
- "lower_confidence": 6.30652032693262,
- "mean": 7.234552402745994,
- "upper_confidence": 8.162584478559367
+ "std": 0.3441693368879193,
+ "max": 3.0911,
+ "min": 0.02822,
+ "mean": 2.2895320366132736
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "adni": {
+ "num_datapoints": 1066,
"data": {
- "leftscasubcallosalarea": {
- "std": 0.1463794296235994,
- "min": 0.77532,
- "max": 1.7445,
- "lower_confidence": 1.0991715087517484,
- "mean": 1.2455509383753478,
- "upper_confidence": 1.3919303679989472
+ "Left planum temporale": {
+ "std": 0.29583402080883164,
+ "max": 3.21332,
+ "min": 1.16204,
+ "mean": 2.009343133208257
},
- "leftofugoccipitalfusiformgyrus": {
- "std": 0.46628251671452386,
- "min": 3.0193,
- "max": 6.3604,
- "lower_confidence": 3.9506463348260943,
- "mean": 4.416928851540618,
- "upper_confidence": 4.883211368255142
+ "Left posterior insula": {
+ "std": 0.26834864241107276,
+ "max": 3.38977,
+ "min": 1.6439,
+ "mean": 2.324148536585367
},
- "lefttmptemporalpole": {
- "std": 0.7936955782328489,
- "min": 5.4171,
- "max": 10.7787,
- "lower_confidence": 6.95254615846183,
- "mean": 7.746241736694679,
- "upper_confidence": 8.539937314927528
+ "Left lateral orbital gyrus": {
+ "std": 0.2567218332350192,
+ "max": 3.26841,
+ "min": 1.36195,
+ "mean": 2.3316048311444675
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "leftscasubcallosalarea": {
- "std": 0.1512809988774746,
- "min": 0.64464,
- "max": 1.6854,
- "lower_confidence": 1.0609900537541057,
- "mean": 1.2122710526315803,
- "upper_confidence": 1.363552051509055
+ "Left planum temporale": {
+ "std": 0.3014735282238393,
+ "max": 2.9964,
+ "min": 0.26866,
+ "mean": 1.958033546910756
},
- "leftofugoccipitalfusiformgyrus": {
- "std": 0.5335674387349483,
- "min": 0.40331,
- "max": 5.784,
- "lower_confidence": 3.5669383049721466,
- "mean": 4.100505743707095,
- "upper_confidence": 4.634073182442044
+ "Left posterior insula": {
+ "std": 0.27160909491385976,
+ "max": 3.1971,
+ "min": 1.2675,
+ "mean": 2.272651258581236
},
- "lefttmptemporalpole": {
- "std": 0.9280320758133737,
- "min": 2.5612,
- "max": 10.4928,
- "lower_confidence": 6.30652032693262,
- "mean": 7.234552402745994,
- "upper_confidence": 8.162584478559367
+ "Left lateral orbital gyrus": {
+ "std": 0.3441693368879193,
+ "max": 3.0911,
+ "min": 0.02822,
+ "mean": 2.2895320366132736
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -3616,11 +3517,11 @@
"input": [
{
"name": "y",
- "value": "leftmfcmedialfrontalcortex"
+ "value": "righttmptemporalpole"
},
{
"name": "dataset",
- "value": "edsd,adni"
+ "value": "adni"
},
{
"name": "filter",
@@ -3633,28 +3534,17 @@
],
"output": {
"single": {
- "leftmfcmedialfrontalcortex": {
+ "Right temporal pole": {
"adni": {
"data": {
- "std": 0.2307118944209133,
- "min": 0.967331,
- "max": 2.59496,
- "lower_confidence": 1.5405976937591979,
- "mean": 1.771309588180111,
- "upper_confidence": 2.0020214826010245
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.28562958927228876,
- "min": 0.03454,
- "max": 3.0114,
- "lower_confidence": 1.4337684885309154,
- "mean": 1.719398077803204,
- "upper_confidence": 2.0050276670754927
+ "std": 0.8590345669558728,
+ "max": 9.8447,
+ "min": 4.89716,
+ "mean": 7.526009559099434
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -3662,28 +3552,15 @@
"adni": {
"num_datapoints": 1066,
"data": {
- "leftmfcmedialfrontalcortex": {
- "std": 0.2307118944209133,
- "min": 0.967331,
- "max": 2.59496,
- "lower_confidence": 1.5405976937591979,
- "mean": 1.771309588180111,
- "upper_confidence": 2.0020214826010245
- }
- }
- },
- "edsd": {
- "num_datapoints": 437,
- "data": {
- "leftmfcmedialfrontalcortex": {
- "std": 0.28562958927228876,
- "min": 0.03454,
- "max": 3.0114,
- "lower_confidence": 1.4337684885309154,
- "mean": 1.719398077803204,
- "upper_confidence": 2.0050276670754927
+ "Right temporal pole": {
+ "std": 0.8590345669558728,
+ "max": 9.8447,
+ "min": 4.89716,
+ "mean": 7.526009559099434
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -3692,11 +3569,11 @@
"input": [
{
"name": "y",
- "value": "rightamygdala"
+ "value": "rightofugoccipitalfusiformgyrus"
},
{
"name": "dataset",
- "value": "edsd,adni"
+ "value": "adni"
},
{
"name": "filter",
@@ -3709,28 +3586,17 @@
],
"output": {
"single": {
- "rightamygdala": {
+ "Right occipital fusiform gyrus": {
"adni": {
"data": {
- "std": 0.11498650673739534,
- "min": 0.457031,
- "max": 1.13049,
- "lower_confidence": 0.684937792512136,
- "mean": 0.7999242992495313,
- "upper_confidence": 0.9149108059869266
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.1180423580639335,
- "min": 0.18236,
- "max": 1.2526,
- "lower_confidence": 0.6787939119589498,
- "mean": 0.7968362700228833,
- "upper_confidence": 0.9148786280868167
+ "std": 0.46145362727304845,
+ "max": 5.85866,
+ "min": 2.70356,
+ "mean": 4.102250337711069
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -3738,28 +3604,15 @@
"adni": {
"num_datapoints": 1066,
"data": {
- "rightamygdala": {
- "std": 0.11498650673739534,
- "min": 0.457031,
- "max": 1.13049,
- "lower_confidence": 0.684937792512136,
- "mean": 0.7999242992495313,
- "upper_confidence": 0.9149108059869266
- }
- }
- },
- "edsd": {
- "num_datapoints": 437,
- "data": {
- "rightamygdala": {
- "std": 0.1180423580639335,
- "min": 0.18236,
- "max": 1.2526,
- "lower_confidence": 0.6787939119589498,
- "mean": 0.7968362700228833,
- "upper_confidence": 0.9148786280868167
+ "Right occipital fusiform gyrus": {
+ "std": 0.46145362727304845,
+ "max": 5.85866,
+ "min": 2.70356,
+ "mean": 4.102250337711069
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -3768,11 +3621,11 @@
"input": [
{
"name": "y",
- "value": "leftmfcmedialfrontalcortex,rightpinsposteriorinsula,leftententorhinalarea"
+ "value": "leftcaudate,rightsplsuperiorparietallobule,rightthalamusproper,leftitginferiortemporalgyrus"
},
{
"name": "dataset",
- "value": "edsd,ppmi"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -3785,76 +3638,100 @@
],
"output": {
"single": {
- "leftmfcmedialfrontalcortex": {
+ "Left inferior temporal gyrus": {
"ppmi": {
"data": {
- "std": 0.24109440138149815,
- "min": 1.1814,
- "max": 2.7813,
- "lower_confidence": 1.6160131616437128,
- "mean": 1.857107563025211,
- "upper_confidence": 2.098201964406709
+ "std": 1.2048783713787288,
+ "max": 15.0815,
+ "min": 7.6335,
+ "mean": 11.380762184873952
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"data": {
- "std": 0.28562958927228876,
- "min": 0.03454,
- "max": 3.0114,
- "lower_confidence": 1.4337684885309154,
- "mean": 1.719398077803204,
- "upper_confidence": 2.0050276670754927
+ "std": 1.327469497055511,
+ "max": 14.593,
+ "min": 5.4301,
+ "mean": 10.647539816933635
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "leftententorhinalarea": {
+ "Right superior parietal lobule": {
"ppmi": {
"data": {
- "std": 0.17314424479786125,
- "min": 1.0429,
- "max": 2.3952,
- "lower_confidence": 1.5310026739696456,
- "mean": 1.704146918767507,
- "upper_confidence": 1.8772911635653682
+ "std": 1.1958387996701134,
+ "max": 14.7662,
+ "min": 6.013,
+ "mean": 10.695999579831936
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"data": {
- "std": 0.2295528271274821,
- "min": 0.39954,
- "max": 2.4015,
- "lower_confidence": 1.304085387975492,
- "mean": 1.533638215102974,
- "upper_confidence": 1.763191042230456
+ "std": 1.4399070931190756,
+ "max": 15.7637,
+ "min": 0.04308,
+ "mean": 9.917742402746011
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rightpinsposteriorinsula": {
+ "Left Caudate": {
"ppmi": {
"data": {
- "std": 0.25023636693079615,
- "min": 1.6347,
- "max": 3.5259,
- "lower_confidence": 2.0911681148619197,
- "mean": 2.3414044817927158,
- "upper_confidence": 2.591640848723512
+ "std": 0.37723320190585524,
+ "max": 4.7487,
+ "min": 1.9841,
+ "mean": 3.1018658263305348
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"data": {
- "std": 0.2735766879874873,
- "min": 0.89588,
- "max": 3.3168,
- "lower_confidence": 1.9921347078935199,
- "mean": 2.265711395881007,
- "upper_confidence": 2.5392880838684944
+ "std": 0.472550482466418,
+ "max": 3.7946,
+ "min": 0.0,
+ "mean": 2.683106773455376
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right Thalamus": {
+ "ppmi": {
+ "data": {
+ "std": 0.7622705775020566,
+ "max": 11.077,
+ "min": 5.8133,
+ "mean": 8.10525238095238
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "data": {
+ "std": 0.7873090909488191,
+ "max": 9.902,
+ "min": 1.8203,
+ "mean": 6.553360411899309
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -3862,60 +3739,64 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftmfcmedialfrontalcortex": {
- "std": 0.24109440138149815,
- "min": 1.1814,
- "max": 2.7813,
- "lower_confidence": 1.6160131616437128,
- "mean": 1.857107563025211,
- "upper_confidence": 2.098201964406709
+ "Left inferior temporal gyrus": {
+ "std": 1.2048783713787288,
+ "max": 15.0815,
+ "min": 7.6335,
+ "mean": 11.380762184873952
},
- "leftententorhinalarea": {
- "std": 0.17314424479786125,
- "min": 1.0429,
- "max": 2.3952,
- "lower_confidence": 1.5310026739696456,
- "mean": 1.704146918767507,
- "upper_confidence": 1.8772911635653682
+ "Right superior parietal lobule": {
+ "std": 1.1958387996701134,
+ "max": 14.7662,
+ "min": 6.013,
+ "mean": 10.695999579831936
},
- "rightpinsposteriorinsula": {
- "std": 0.25023636693079615,
- "min": 1.6347,
- "max": 3.5259,
- "lower_confidence": 2.0911681148619197,
- "mean": 2.3414044817927158,
- "upper_confidence": 2.591640848723512
+ "Left Caudate": {
+ "std": 0.37723320190585524,
+ "max": 4.7487,
+ "min": 1.9841,
+ "mean": 3.1018658263305348
+ },
+ "Right Thalamus": {
+ "std": 0.7622705775020566,
+ "max": 11.077,
+ "min": 5.8133,
+ "mean": 8.10525238095238
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"num_datapoints": 437,
"data": {
- "leftmfcmedialfrontalcortex": {
- "std": 0.28562958927228876,
- "min": 0.03454,
- "max": 3.0114,
- "lower_confidence": 1.4337684885309154,
- "mean": 1.719398077803204,
- "upper_confidence": 2.0050276670754927
+ "Left inferior temporal gyrus": {
+ "std": 1.327469497055511,
+ "max": 14.593,
+ "min": 5.4301,
+ "mean": 10.647539816933635
},
- "leftententorhinalarea": {
- "std": 0.2295528271274821,
- "min": 0.39954,
- "max": 2.4015,
- "lower_confidence": 1.304085387975492,
- "mean": 1.533638215102974,
- "upper_confidence": 1.763191042230456
+ "Right superior parietal lobule": {
+ "std": 1.4399070931190756,
+ "max": 15.7637,
+ "min": 0.04308,
+ "mean": 9.917742402746011
},
- "rightpinsposteriorinsula": {
- "std": 0.2735766879874873,
- "min": 0.89588,
- "max": 3.3168,
- "lower_confidence": 1.9921347078935199,
- "mean": 2.265711395881007,
- "upper_confidence": 2.5392880838684944
+ "Left Caudate": {
+ "std": 0.472550482466418,
+ "max": 3.7946,
+ "min": 0.0,
+ "mean": 2.683106773455376
+ },
+ "Right Thalamus": {
+ "std": 0.7873090909488191,
+ "max": 9.902,
+ "min": 1.8203,
+ "mean": 6.553360411899309
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -3924,11 +3805,11 @@
"input": [
{
"name": "y",
- "value": "leftlorglateralorbitalgyrus,leftpallidum"
+ "value": "rightptplanumtemporale"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "ppmi"
},
{
"name": "filter",
@@ -3941,54 +3822,33 @@
],
"output": {
"single": {
- "leftlorglateralorbitalgyrus": {
- "adni": {
- "data": {
- "std": 0.2567218332350192,
- "min": 1.36195,
- "max": 3.26841,
- "lower_confidence": 2.074882997909448,
- "mean": 2.3316048311444675,
- "upper_confidence": 2.588326664379487
- },
- "num_datapoints": 1066
- }
- },
- "leftpallidum": {
- "adni": {
+ "Right planum temporale": {
+ "ppmi": {
"data": {
- "std": 0.17587826722127436,
- "min": 1.08448,
- "max": 2.12979,
- "lower_confidence": 1.3328241624222523,
- "mean": 1.5087024296435267,
- "upper_confidence": 1.6845806968648012
+ "std": 0.26190136951224824,
+ "max": 2.8503,
+ "min": 1.1837,
+ "mean": 1.9330813725490184
},
- "num_datapoints": 1066
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
}
},
"model": {
- "adni": {
- "num_datapoints": 1066,
+ "ppmi": {
+ "num_datapoints": 714,
"data": {
- "leftlorglateralorbitalgyrus": {
- "std": 0.2567218332350192,
- "min": 1.36195,
- "max": 3.26841,
- "lower_confidence": 2.074882997909448,
- "mean": 2.3316048311444675,
- "upper_confidence": 2.588326664379487
- },
- "leftpallidum": {
- "std": 0.17587826722127436,
- "min": 1.08448,
- "max": 2.12979,
- "lower_confidence": 1.3328241624222523,
- "mean": 1.5087024296435267,
- "upper_confidence": 1.6845806968648012
+ "Right planum temporale": {
+ "std": 0.26190136951224824,
+ "max": 2.8503,
+ "min": 1.1837,
+ "mean": 1.9330813725490184
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
}
}
}
@@ -3997,11 +3857,11 @@
"input": [
{
"name": "y",
- "value": "rightangangulargyrus,lefthippocampus,rightsmgsupramarginalgyrus,rightocpoccipitalpole,subjectage,rightmorgmedialorbitalgyrus,rightpinsposteriorinsula,rightsogsuperioroccipitalgyrus,righttmptemporalpole"
+ "value": "rightainsanteriorinsula"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "edsd"
},
{
"name": "filter",
@@ -4014,201 +3874,33 @@
],
"output": {
"single": {
- "rightocpoccipitalpole": {
- "adni": {
- "data": {
- "std": 0.45728197553453465,
- "min": 1.69073,
- "max": 4.44937,
- "lower_confidence": 2.4479385216512073,
- "mean": 2.905220497185742,
- "upper_confidence": 3.3625024727202764
- },
- "num_datapoints": 1066
- }
- },
- "rightsogsuperioroccipitalgyrus": {
- "adni": {
- "data": {
- "std": 0.5218479602254812,
- "min": 2.72391,
- "max": 6.34525,
- "lower_confidence": 3.695894938461199,
- "mean": 4.21774289868668,
- "upper_confidence": 4.739590858912162
- },
- "num_datapoints": 1066
- }
- },
- "lefthippocampus": {
- "adni": {
- "data": {
- "std": 0.3525825591468455,
- "min": 1.82293,
- "max": 3.97126,
- "lower_confidence": 2.5784590074572837,
- "mean": 2.9310415666041294,
- "upper_confidence": 3.283624125750975
- },
- "num_datapoints": 1066
- }
- },
- "rightsmgsupramarginalgyrus": {
- "adni": {
- "data": {
- "std": 0.8656352870364729,
- "min": 5.36295,
- "max": 11.6158,
- "lower_confidence": 6.963215153864092,
- "mean": 7.828850440900565,
- "upper_confidence": 8.694485727937037
- },
- "num_datapoints": 1066
- }
- },
- "rightmorgmedialorbitalgyrus": {
- "adni": {
- "data": {
- "std": 0.37878057457843145,
- "min": 2.03675,
- "max": 5.07738,
- "lower_confidence": 3.3021851852714783,
- "mean": 3.6809657598499097,
- "upper_confidence": 4.0597463344283415
- },
- "num_datapoints": 1066
- }
- },
- "rightangangulargyrus": {
- "adni": {
- "data": {
- "std": 1.1394791725677273,
- "min": 6.00759,
- "max": 13.6797,
- "lower_confidence": 8.80400651223525,
- "mean": 9.943485684802978,
- "upper_confidence": 11.082964857370705
- },
- "num_datapoints": 1066
- }
- },
- "rightpinsposteriorinsula": {
- "adni": {
- "data": {
- "std": 0.2708308056507824,
- "min": 1.58004,
- "max": 3.35911,
- "lower_confidence": 2.0503190161128204,
- "mean": 2.3211498217636026,
- "upper_confidence": 2.591980627414385
- },
- "num_datapoints": 1066
- }
- },
- "subjectage": {
- "adni": {
- "data": {
- "std": 7.359694643166729,
- "min": 55.0438,
- "max": 90.9562,
- "lower_confidence": 66.4086315294411,
- "mean": 73.76832617260783,
- "upper_confidence": 81.12802081577456
- },
- "num_datapoints": 1066
- }
- },
- "righttmptemporalpole": {
- "adni": {
+ "Right anterior insula": {
+ "edsd": {
"data": {
- "std": 0.8590345669558728,
- "min": 4.89716,
- "max": 9.8447,
- "lower_confidence": 6.666974992143561,
- "mean": 7.526009559099434,
- "upper_confidence": 8.385044126055305
+ "std": 0.5376034585613356,
+ "max": 5.378,
+ "min": 0.12458,
+ "mean": 3.912540022883295
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 1066,
+ "edsd": {
+ "num_datapoints": 437,
"data": {
- "rightocpoccipitalpole": {
- "std": 0.45728197553453465,
- "min": 1.69073,
- "max": 4.44937,
- "lower_confidence": 2.4479385216512073,
- "mean": 2.905220497185742,
- "upper_confidence": 3.3625024727202764
- },
- "rightsogsuperioroccipitalgyrus": {
- "std": 0.5218479602254812,
- "min": 2.72391,
- "max": 6.34525,
- "lower_confidence": 3.695894938461199,
- "mean": 4.21774289868668,
- "upper_confidence": 4.739590858912162
- },
- "lefthippocampus": {
- "std": 0.3525825591468455,
- "min": 1.82293,
- "max": 3.97126,
- "lower_confidence": 2.5784590074572837,
- "mean": 2.9310415666041294,
- "upper_confidence": 3.283624125750975
- },
- "rightsmgsupramarginalgyrus": {
- "std": 0.8656352870364729,
- "min": 5.36295,
- "max": 11.6158,
- "lower_confidence": 6.963215153864092,
- "mean": 7.828850440900565,
- "upper_confidence": 8.694485727937037
- },
- "rightmorgmedialorbitalgyrus": {
- "std": 0.37878057457843145,
- "min": 2.03675,
- "max": 5.07738,
- "lower_confidence": 3.3021851852714783,
- "mean": 3.6809657598499097,
- "upper_confidence": 4.0597463344283415
- },
- "rightangangulargyrus": {
- "std": 1.1394791725677273,
- "min": 6.00759,
- "max": 13.6797,
- "lower_confidence": 8.80400651223525,
- "mean": 9.943485684802978,
- "upper_confidence": 11.082964857370705
- },
- "rightpinsposteriorinsula": {
- "std": 0.2708308056507824,
- "min": 1.58004,
- "max": 3.35911,
- "lower_confidence": 2.0503190161128204,
- "mean": 2.3211498217636026,
- "upper_confidence": 2.591980627414385
- },
- "subjectage": {
- "std": 7.359694643166729,
- "min": 55.0438,
- "max": 90.9562,
- "lower_confidence": 66.4086315294411,
- "mean": 73.76832617260783,
- "upper_confidence": 81.12802081577456
- },
- "righttmptemporalpole": {
- "std": 0.8590345669558728,
- "min": 4.89716,
- "max": 9.8447,
- "lower_confidence": 6.666974992143561,
- "mean": 7.526009559099434,
- "upper_confidence": 8.385044126055305
+ "Right anterior insula": {
+ "std": 0.5376034585613356,
+ "max": 5.378,
+ "min": 0.12458,
+ "mean": 3.912540022883295
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -4217,11 +3909,11 @@
"input": [
{
"name": "y",
- "value": "leftfrpfrontalpole,rightsmcsupplementarymotorcortex"
+ "value": "leftcaudate"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -4234,30 +3926,28 @@
],
"output": {
"single": {
- "leftfrpfrontalpole": {
+ "Left Caudate": {
"ppmi": {
"data": {
- "std": 0.41822289030164245,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1559301909308504,
- "mean": 3.5741530812324926,
- "upper_confidence": 3.992375971534135
+ "std": 0.37723320190585524,
+ "max": 4.7487,
+ "min": 1.9841,
+ "mean": 3.1018658263305348
},
- "num_datapoints": 714
- }
- },
- "rightsmcsupplementarymotorcortex": {
- "ppmi": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
"data": {
- "std": 0.6364834770841865,
- "min": 3.5954,
- "max": 8.2411,
- "lower_confidence": 4.790960220394802,
- "mean": 5.427443697478989,
- "upper_confidence": 6.063927174563175
+ "std": 0.472550482466418,
+ "max": 3.7946,
+ "min": 0.0,
+ "mean": 2.683106773455376
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -4265,23 +3955,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftfrpfrontalpole": {
- "std": 0.41822289030164245,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1559301909308504,
- "mean": 3.5741530812324926,
- "upper_confidence": 3.992375971534135
- },
- "rightsmcsupplementarymotorcortex": {
- "std": 0.6364834770841865,
- "min": 3.5954,
- "max": 8.2411,
- "lower_confidence": 4.790960220394802,
- "mean": 5.427443697478989,
- "upper_confidence": 6.063927174563175
+ "Left Caudate": {
+ "std": 0.37723320190585524,
+ "max": 4.7487,
+ "min": 1.9841,
+ "mean": 3.1018658263305348
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Left Caudate": {
+ "std": 0.472550482466418,
+ "max": 3.7946,
+ "min": 0.0,
+ "mean": 2.683106773455376
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -4290,11 +3985,11 @@
"input": [
{
"name": "y",
- "value": "rightppplanumpolare,rightpogpostcentralgyrus,leftphgparahippocampalgyrus"
+ "value": "leftfofrontaloperculum"
},
{
"name": "dataset",
- "value": "ppmi,adni"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -4307,76 +4002,28 @@
],
"output": {
"single": {
- "rightpogpostcentralgyrus": {
- "ppmi": {
- "data": {
- "std": 1.1737788484093188,
- "min": 6.3771,
- "max": 14.52,
- "lower_confidence": 9.288665969517861,
- "mean": 10.46244481792718,
- "upper_confidence": 11.636223666336498
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 1.187612168318115,
- "min": 6.70676,
- "max": 15.5928,
- "lower_confidence": 9.047387128117167,
- "mean": 10.234999296435282,
- "upper_confidence": 11.422611464753397
- },
- "num_datapoints": 1066
- }
- },
- "leftphgparahippocampalgyrus": {
- "ppmi": {
- "data": {
- "std": 0.2764222816120589,
- "min": 2.3659,
- "max": 4.1332,
- "lower_confidence": 2.9757364018613304,
- "mean": 3.252158683473389,
- "upper_confidence": 3.528580965085448
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.32137573174034656,
- "min": 2.10045,
- "max": 4.05192,
- "lower_confidence": 2.710869643494174,
- "mean": 3.032245375234521,
- "upper_confidence": 3.3536211069748676
- },
- "num_datapoints": 1066
- }
- },
- "rightppplanumpolare": {
+ "Left frontal operculum": {
"ppmi": {
"data": {
- "std": 0.2237844630087201,
- "min": 1.4105,
- "max": 2.9748,
- "lower_confidence": 1.8580434081397401,
- "mean": 2.08182787114846,
- "upper_confidence": 2.30561233415718
+ "std": 0.22111566635733293,
+ "max": 2.9576,
+ "min": 1.0498,
+ "mean": 2.0069130252100833
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
- "adni": {
+ "edsd": {
"data": {
- "std": 0.23177901975736745,
- "min": 1.38045,
- "max": 3.29822,
- "lower_confidence": 1.850666580617865,
- "mean": 2.0824456003752325,
- "upper_confidence": 2.3142246201325998
+ "std": 0.279815619705402,
+ "max": 2.6485,
+ "min": 1e-05,
+ "mean": 1.8939826773455364
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -4384,60 +4031,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightpogpostcentralgyrus": {
- "std": 1.1737788484093188,
- "min": 6.3771,
- "max": 14.52,
- "lower_confidence": 9.288665969517861,
- "mean": 10.46244481792718,
- "upper_confidence": 11.636223666336498
- },
- "leftphgparahippocampalgyrus": {
- "std": 0.2764222816120589,
- "min": 2.3659,
- "max": 4.1332,
- "lower_confidence": 2.9757364018613304,
- "mean": 3.252158683473389,
- "upper_confidence": 3.528580965085448
- },
- "rightppplanumpolare": {
- "std": 0.2237844630087201,
- "min": 1.4105,
- "max": 2.9748,
- "lower_confidence": 1.8580434081397401,
- "mean": 2.08182787114846,
- "upper_confidence": 2.30561233415718
+ "Left frontal operculum": {
+ "std": 0.22111566635733293,
+ "max": 2.9576,
+ "min": 1.0498,
+ "mean": 2.0069130252100833
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
- "adni": {
- "num_datapoints": 1066,
+ "edsd": {
+ "num_datapoints": 437,
"data": {
- "rightpogpostcentralgyrus": {
- "std": 1.187612168318115,
- "min": 6.70676,
- "max": 15.5928,
- "lower_confidence": 9.047387128117167,
- "mean": 10.234999296435282,
- "upper_confidence": 11.422611464753397
- },
- "leftphgparahippocampalgyrus": {
- "std": 0.32137573174034656,
- "min": 2.10045,
- "max": 4.05192,
- "lower_confidence": 2.710869643494174,
- "mean": 3.032245375234521,
- "upper_confidence": 3.3536211069748676
- },
- "rightppplanumpolare": {
- "std": 0.23177901975736745,
- "min": 1.38045,
- "max": 3.29822,
- "lower_confidence": 1.850666580617865,
- "mean": 2.0824456003752325,
- "upper_confidence": 2.3142246201325998
+ "Left frontal operculum": {
+ "std": 0.279815619705402,
+ "max": 2.6485,
+ "min": 1e-05,
+ "mean": 1.8939826773455364
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -4446,11 +4061,11 @@
"input": [
{
"name": "y",
- "value": "leftpcuprecuneus,rightangangulargyrus"
+ "value": "leftorifgorbitalpartoftheinferiorfrontalgyrus"
},
{
"name": "dataset",
- "value": "adni,edsd"
+ "value": "edsd,adni"
},
{
"name": "filter",
@@ -4460,55 +4075,31 @@
"name": "pathology",
"value": "dementia"
}
- ],
- "output": {
- "single": {
- "rightangangulargyrus": {
- "adni": {
- "data": {
- "std": 1.1394791725677273,
- "min": 6.00759,
- "max": 13.6797,
- "lower_confidence": 8.80400651223525,
- "mean": 9.943485684802978,
- "upper_confidence": 11.082964857370705
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 1.252461112174001,
- "min": 1.1839,
- "max": 14.1407,
- "lower_confidence": 8.47483110750564,
- "mean": 9.72729221967964,
- "upper_confidence": 10.97975333185364
- },
- "num_datapoints": 437
- }
- },
- "leftpcuprecuneus": {
+ ],
+ "output": {
+ "single": {
+ "Left orbital part of the inferior frontal gyrus": {
"adni": {
"data": {
- "std": 1.1833543220617853,
- "min": 7.35483,
- "max": 14.5636,
- "lower_confidence": 9.452005312084546,
- "mean": 10.635359634146331,
- "upper_confidence": 11.818713956208116
+ "std": 0.1780494478606911,
+ "max": 2.10842,
+ "min": 0.814066,
+ "mean": 1.486154222326452
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 1.2396762970143003,
- "min": 3.5147,
- "max": 15.0284,
- "lower_confidence": 8.948853908935366,
- "mean": 10.188530205949666,
- "upper_confidence": 11.428206502963967
+ "std": 0.22985179699254343,
+ "max": 2.08,
+ "min": 0.00156,
+ "mean": 1.4437167505720818
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -4516,44 +4107,28 @@
"adni": {
"num_datapoints": 1066,
"data": {
- "rightangangulargyrus": {
- "std": 1.1394791725677273,
- "min": 6.00759,
- "max": 13.6797,
- "lower_confidence": 8.80400651223525,
- "mean": 9.943485684802978,
- "upper_confidence": 11.082964857370705
- },
- "leftpcuprecuneus": {
- "std": 1.1833543220617853,
- "min": 7.35483,
- "max": 14.5636,
- "lower_confidence": 9.452005312084546,
- "mean": 10.635359634146331,
- "upper_confidence": 11.818713956208116
+ "Left orbital part of the inferior frontal gyrus": {
+ "std": 0.1780494478606911,
+ "max": 2.10842,
+ "min": 0.814066,
+ "mean": 1.486154222326452
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightangangulargyrus": {
- "std": 1.252461112174001,
- "min": 1.1839,
- "max": 14.1407,
- "lower_confidence": 8.47483110750564,
- "mean": 9.72729221967964,
- "upper_confidence": 10.97975333185364
- },
- "leftpcuprecuneus": {
- "std": 1.2396762970143003,
- "min": 3.5147,
- "max": 15.0284,
- "lower_confidence": 8.948853908935366,
- "mean": 10.188530205949666,
- "upper_confidence": 11.428206502963967
+ "Left orbital part of the inferior frontal gyrus": {
+ "std": 0.22985179699254343,
+ "max": 2.08,
+ "min": 0.00156,
+ "mean": 1.4437167505720818
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -4562,11 +4137,11 @@
"input": [
{
"name": "y",
- "value": "rightphgparahippocampalgyrus"
+ "value": "rightmfcmedialfrontalcortex"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "adni"
},
{
"name": "filter",
@@ -4579,33 +4154,33 @@
],
"output": {
"single": {
- "rightphgparahippocampalgyrus": {
- "ppmi": {
+ "Right medial frontal cortex": {
+ "adni": {
"data": {
- "std": 0.26399744494277355,
- "min": 2.1372,
- "max": 3.9314,
- "lower_confidence": 2.7438557763457436,
- "mean": 3.007853221288517,
- "upper_confidence": 3.2718506662312907
+ "std": 0.22947153462222578,
+ "max": 2.57231,
+ "min": 0.996768,
+ "mean": 1.763317568480297
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "adni": {
+ "num_datapoints": 1066,
"data": {
- "rightphgparahippocampalgyrus": {
- "std": 0.26399744494277355,
- "min": 2.1372,
- "max": 3.9314,
- "lower_confidence": 2.7438557763457436,
- "mean": 3.007853221288517,
- "upper_confidence": 3.2718506662312907
+ "Right medial frontal cortex": {
+ "std": 0.22947153462222578,
+ "max": 2.57231,
+ "min": 0.996768,
+ "mean": 1.763317568480297
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -4614,11 +4189,11 @@
"input": [
{
"name": "y",
- "value": "leftainsanteriorinsula,agegroup,gender"
+ "value": "leftppplanumpolare"
},
{
"name": "dataset",
- "value": "adni,edsd,ppmi"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -4631,93 +4206,28 @@
],
"output": {
"single": {
- "gender": {
- "ppmi": {
- "data": {
- "M": 458,
- "F": 256
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "M": 581,
- "F": 485
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "M": 227,
- "F": 247
- },
- "num_datapoints": 474
- }
- },
- "agegroup": {
- "ppmi": {
- "data": {
- "70-79y": 149,
- "60-69y": 281,
- "+80y": 19,
- "50-59y": 183,
- "-50y": 82
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "70-79y": 544,
- "60-69y": 255,
- "+80y": 223,
- "50-59y": 44
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "70-79y": 170,
- "60-69y": 117,
- "+80y": 47,
- "50-59y": 22,
- "-50y": 118
- },
- "num_datapoints": 474
- }
- },
- "leftainsanteriorinsula": {
+ "Left planum polare": {
"ppmi": {
"data": {
- "std": 0.4382453388912246,
- "min": 3.1347,
- "max": 5.9416,
- "lower_confidence": 3.8994815518650823,
- "mean": 4.337726890756307,
- "upper_confidence": 4.7759722296475315
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.45203139126981035,
- "min": 2.97578,
- "max": 5.81951,
- "lower_confidence": 3.7936331115444464,
- "mean": 4.245664502814257,
- "upper_confidence": 4.697695894084067
+ "std": 0.23710347459539502,
+ "max": 3.0006,
+ "min": 1.6444,
+ "mean": 2.2993941176470583
},
- "num_datapoints": 1066
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"data": {
- "std": 0.5454672158163502,
- "min": 0.46849,
- "max": 5.7224,
- "lower_confidence": 3.548252532467404,
- "mean": 4.093719748283754,
- "upper_confidence": 4.639186964100104
+ "std": 0.25170178678475863,
+ "max": 3.3079,
+ "min": 1.4588,
+ "mean": 2.236940045766589
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -4725,73 +4235,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "gender": {
- "M": 458,
- "F": 256
- },
- "agegroup": {
- "70-79y": 149,
- "60-69y": 281,
- "+80y": 19,
- "50-59y": 183,
- "-50y": 82
- },
- "leftainsanteriorinsula": {
- "std": 0.4382453388912246,
- "min": 3.1347,
- "max": 5.9416,
- "lower_confidence": 3.8994815518650823,
- "mean": 4.337726890756307,
- "upper_confidence": 4.7759722296475315
- }
- }
- },
- "adni": {
- "num_datapoints": 1066,
- "data": {
- "gender": {
- "M": 581,
- "F": 485
- },
- "agegroup": {
- "70-79y": 544,
- "60-69y": 255,
- "+80y": 223,
- "50-59y": 44
- },
- "leftainsanteriorinsula": {
- "std": 0.45203139126981035,
- "min": 2.97578,
- "max": 5.81951,
- "lower_confidence": 3.7936331115444464,
- "mean": 4.245664502814257,
- "upper_confidence": 4.697695894084067
+ "Left planum polare": {
+ "std": 0.23710347459539502,
+ "max": 3.0006,
+ "min": 1.6444,
+ "mean": 2.2993941176470583
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"num_datapoints": 437,
"data": {
- "gender": {
- "M": 205,
- "F": 232
- },
- "agegroup": {
- "70-79y": 170,
- "60-69y": 117,
- "+80y": 47,
- "50-59y": 22,
- "-50y": 81
- },
- "leftainsanteriorinsula": {
- "std": 0.5454672158163502,
- "min": 0.46849,
- "max": 5.7224,
- "lower_confidence": 3.548252532467404,
- "mean": 4.093719748283754,
- "upper_confidence": 4.639186964100104
+ "Left planum polare": {
+ "std": 0.25170178678475863,
+ "max": 3.3079,
+ "min": 1.4588,
+ "mean": 2.236940045766589
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -4800,11 +4265,11 @@
"input": [
{
"name": "y",
- "value": "leftppplanumpolare"
+ "value": "leftitginferiortemporalgyrus"
},
{
"name": "dataset",
- "value": "ppmi,edsd,adni"
+ "value": "adni,edsd,ppmi"
},
{
"name": "filter",
@@ -4817,39 +4282,39 @@
],
"output": {
"single": {
- "leftppplanumpolare": {
+ "Left inferior temporal gyrus": {
"ppmi": {
"data": {
- "std": 0.23710347459539502,
- "min": 1.6444,
- "max": 3.0006,
- "lower_confidence": 2.0622906430516634,
- "mean": 2.2993941176470583,
- "upper_confidence": 2.536497592242453
+ "std": 1.2048783713787288,
+ "max": 15.0815,
+ "min": 7.6335,
+ "mean": 11.380762184873952
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.2435077065359157,
- "min": 1.59984,
- "max": 3.17503,
- "lower_confidence": 2.0296874060344354,
- "mean": 2.273195112570351,
- "upper_confidence": 2.516702819106267
+ "std": 1.247032782648002,
+ "max": 15.0442,
+ "min": 6.60284,
+ "mean": 10.539472242026276
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.25170178678475863,
- "min": 1.4588,
- "max": 3.3079,
- "lower_confidence": 1.9852382589818303,
- "mean": 2.236940045766589,
- "upper_confidence": 2.4886418325513473
+ "std": 1.327469497055511,
+ "max": 14.593,
+ "min": 5.4301,
+ "mean": 10.647539816933635
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -4857,41 +4322,41 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftppplanumpolare": {
- "std": 0.23710347459539502,
- "min": 1.6444,
- "max": 3.0006,
- "lower_confidence": 2.0622906430516634,
- "mean": 2.2993941176470583,
- "upper_confidence": 2.536497592242453
+ "Left inferior temporal gyrus": {
+ "std": 1.2048783713787288,
+ "max": 15.0815,
+ "min": 7.6335,
+ "mean": 11.380762184873952
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "leftppplanumpolare": {
- "std": 0.2435077065359157,
- "min": 1.59984,
- "max": 3.17503,
- "lower_confidence": 2.0296874060344354,
- "mean": 2.273195112570351,
- "upper_confidence": 2.516702819106267
+ "Left inferior temporal gyrus": {
+ "std": 1.247032782648002,
+ "max": 15.0442,
+ "min": 6.60284,
+ "mean": 10.539472242026276
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "leftppplanumpolare": {
- "std": 0.25170178678475863,
- "min": 1.4588,
- "max": 3.3079,
- "lower_confidence": 1.9852382589818303,
- "mean": 2.236940045766589,
- "upper_confidence": 2.4886418325513473
+ "Left inferior temporal gyrus": {
+ "std": 1.327469497055511,
+ "max": 14.593,
+ "min": 5.4301,
+ "mean": 10.647539816933635
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -4900,11 +4365,11 @@
"input": [
{
"name": "y",
- "value": "leftstgsuperiortemporalgyrus,rightpallidum,rightmfcmedialfrontalcortex,rightpoparietaloperculum,rs11136000_t"
+ "value": "leftptplanumtemporale,leftitginferiortemporalgyrus,gender"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "ppmi,edsd,adni"
},
{
"name": "filter",
@@ -4917,163 +4382,211 @@
],
"output": {
"single": {
- "leftstgsuperiortemporalgyrus": {
- "adni": {
+ "Left inferior temporal gyrus": {
+ "ppmi": {
"data": {
- "std": 0.8093229506914276,
- "min": 4.01336,
- "max": 9.35151,
- "lower_confidence": 6.14987951647554,
- "mean": 6.959202467166968,
- "upper_confidence": 7.768525417858395
+ "std": 1.2048783713787288,
+ "max": 15.0815,
+ "min": 7.6335,
+ "mean": 11.380762184873952
},
- "num_datapoints": 1066
- }
- },
- "rs11136000_t": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"data": {
- "1": 451,
- "0": 314,
- "2": 126
+ "std": 1.247032782648002,
+ "max": 15.0442,
+ "min": 6.60284,
+ "mean": 10.539472242026276
},
- "num_datapoints": 891
- }
- },
- "rightpoparietaloperculum": {
- "adni": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
"data": {
- "std": 0.302360127286798,
- "min": 1.30568,
- "max": 3.34823,
- "lower_confidence": 1.8688803792798023,
- "mean": 2.1712405065666003,
- "upper_confidence": 2.4736006338533985
+ "std": 1.327469497055511,
+ "max": 14.593,
+ "min": 5.4301,
+ "mean": 10.647539816933635
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rightmfcmedialfrontalcortex": {
- "adni": {
+ "Left planum temporale": {
+ "ppmi": {
"data": {
- "std": 0.22947153462222578,
- "min": 0.996768,
- "max": 2.57231,
- "lower_confidence": 1.5338460338580713,
- "mean": 1.763317568480297,
- "upper_confidence": 1.9927891031025229
+ "std": 0.30456382948777316,
+ "max": 3.4814,
+ "min": 1.3796,
+ "mean": 2.0743514005602233
},
- "num_datapoints": 1066
- }
- },
- "rightpallidum": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"data": {
- "std": 0.17508784575009098,
- "min": 1.03479,
- "max": 2.13739,
- "lower_confidence": 1.3397802217921244,
- "mean": 1.5148680675422155,
- "upper_confidence": 1.6899559132923065
- },
- "num_datapoints": 1066
- }
- }
- },
- "model": {
- "adni": {
- "num_datapoints": 891,
- "data": {
- "leftstgsuperiortemporalgyrus": {
- "std": 0.8016827396876238,
- "min": 4.01336,
- "max": 9.35151,
- "lower_confidence": 6.181094230009333,
- "mean": 6.982776969696957,
- "upper_confidence": 7.78445970938458
- },
- "rs11136000_t": {
- "1": 451,
- "0": 314,
- "2": 126
- },
- "rightpoparietaloperculum": {
- "std": 0.2952088713482468,
- "min": 1.30568,
- "max": 3.34823,
- "lower_confidence": 1.8756005562611773,
- "mean": 2.170809427609424,
- "upper_confidence": 2.466018298957671
+ "std": 0.29583402080883164,
+ "max": 3.21332,
+ "min": 1.16204,
+ "mean": 2.009343133208257
},
- "rightmfcmedialfrontalcortex": {
- "std": 0.22595291526869243,
- "min": 0.996768,
- "max": 2.57231,
- "lower_confidence": 1.5410259489288372,
- "mean": 1.7669788641975295,
- "upper_confidence": 1.9929317794662218
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.3014735282238393,
+ "max": 2.9964,
+ "min": 0.26866,
+ "mean": 1.958033546910756
},
- "rightpallidum": {
- "std": 0.17481868725886454,
- "min": 1.07975,
- "max": 2.13739,
- "lower_confidence": 1.3410449715514612,
- "mean": 1.5158636588103258,
- "upper_confidence": 1.6906823460691904
- }
- }
- }
- }
- }
- },
- {
- "input": [
- {
- "name": "y",
- "value": "leftacgganteriorcingulategyrus"
- },
- {
- "name": "dataset",
- "value": "adni"
- },
- {
- "name": "filter",
- "value": ""
- },
- {
- "name": "pathology",
- "value": "dementia"
- }
- ],
- "output": {
- "single": {
- "leftacgganteriorcingulategyrus": {
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Gender": {
+ "ppmi": {
+ "data": {
+ "M": {
+ "count": 458,
+ "percentage": 64.15
+ },
+ "F": {
+ "count": 256,
+ "percentage": 35.85
+ }
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"data": {
- "std": 0.559072095313077,
- "min": 2.71921,
- "max": 6.63962,
- "lower_confidence": 4.00316002476197,
- "mean": 4.562232120075047,
- "upper_confidence": 5.121304215388124
+ "M": {
+ "count": 581,
+ "percentage": 54.5
+ },
+ "F": {
+ "count": 485,
+ "percentage": 45.5
+ }
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "M": {
+ "count": 227,
+ "percentage": 47.89
+ },
+ "F": {
+ "count": 247,
+ "percentage": 52.11
+ }
},
- "num_datapoints": 1066
+ "num_datapoints": 474,
+ "num_nulls": 0,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Left inferior temporal gyrus": {
+ "std": 1.2048783713787288,
+ "max": 15.0815,
+ "min": 7.6335,
+ "mean": 11.380762184873952
+ },
+ "Left planum temporale": {
+ "std": 0.30456382948777316,
+ "max": 3.4814,
+ "min": 1.3796,
+ "mean": 2.0743514005602233
+ },
+ "Gender": {
+ "M": {
+ "count": 458,
+ "percentage": 64.15
+ },
+ "F": {
+ "count": 256,
+ "percentage": 35.85
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"num_datapoints": 1066,
"data": {
- "leftacgganteriorcingulategyrus": {
- "std": 0.559072095313077,
- "min": 2.71921,
- "max": 6.63962,
- "lower_confidence": 4.00316002476197,
- "mean": 4.562232120075047,
- "upper_confidence": 5.121304215388124
+ "Left inferior temporal gyrus": {
+ "std": 1.247032782648002,
+ "max": 15.0442,
+ "min": 6.60284,
+ "mean": 10.539472242026276
+ },
+ "Left planum temporale": {
+ "std": 0.29583402080883164,
+ "max": 3.21332,
+ "min": 1.16204,
+ "mean": 2.009343133208257
+ },
+ "Gender": {
+ "M": {
+ "count": 581,
+ "percentage": 54.5
+ },
+ "F": {
+ "count": 485,
+ "percentage": 45.5
+ }
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Left inferior temporal gyrus": {
+ "std": 1.327469497055511,
+ "max": 14.593,
+ "min": 5.4301,
+ "mean": 10.647539816933635
+ },
+ "Left planum temporale": {
+ "std": 0.3014735282238393,
+ "max": 2.9964,
+ "min": 0.26866,
+ "mean": 1.958033546910756
+ },
+ "Gender": {
+ "M": {
+ "count": 205,
+ "percentage": 46.91
+ },
+ "F": {
+ "count": 232,
+ "percentage": 53.09
+ }
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -5082,11 +4595,11 @@
"input": [
{
"name": "y",
- "value": "rightmogmiddleoccipitalgyrus"
+ "value": "leftioginferioroccipitalgyrus"
},
{
"name": "dataset",
- "value": "adni,edsd"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -5099,57 +4612,57 @@
],
"output": {
"single": {
- "rightmogmiddleoccipitalgyrus": {
- "adni": {
+ "Left inferior occipital gyrus": {
+ "ppmi": {
"data": {
- "std": 0.6057400050951689,
- "min": 3.44362,
- "max": 7.09844,
- "lower_confidence": 4.496197790402014,
- "mean": 5.101937795497182,
- "upper_confidence": 5.707677800592351
+ "std": 0.8060671697927769,
+ "max": 9.3496,
+ "min": 4.5309,
+ "mean": 6.627674929971987
},
- "num_datapoints": 1066
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"data": {
- "std": 0.629020003686436,
- "min": 3.2197,
- "max": 7.0774,
- "lower_confidence": 4.362123932240332,
- "mean": 4.991143935926767,
- "upper_confidence": 5.620163939613203
+ "std": 0.7977629457381716,
+ "max": 8.9127,
+ "min": 2.918,
+ "mean": 6.125588329519452
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 1066,
+ "ppmi": {
+ "num_datapoints": 714,
"data": {
- "rightmogmiddleoccipitalgyrus": {
- "std": 0.6057400050951689,
- "min": 3.44362,
- "max": 7.09844,
- "lower_confidence": 4.496197790402014,
- "mean": 5.101937795497182,
- "upper_confidence": 5.707677800592351
+ "Left inferior occipital gyrus": {
+ "std": 0.8060671697927769,
+ "max": 9.3496,
+ "min": 4.5309,
+ "mean": 6.627674929971987
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightmogmiddleoccipitalgyrus": {
- "std": 0.629020003686436,
- "min": 3.2197,
- "max": 7.0774,
- "lower_confidence": 4.362123932240332,
- "mean": 4.991143935926767,
- "upper_confidence": 5.620163939613203
+ "Left inferior occipital gyrus": {
+ "std": 0.7977629457381716,
+ "max": 8.9127,
+ "min": 2.918,
+ "mean": 6.125588329519452
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -5158,11 +4671,11 @@
"input": [
{
"name": "y",
- "value": "rs190982_g"
+ "value": "rightaorganteriororbitalgyrus,rightmpogpostcentralgyrusmedialsegment"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "edsd,ppmi,adni"
},
{
"name": "filter",
@@ -5175,27 +4688,134 @@
],
"output": {
"single": {
- "rs190982_g": {
+ "Right postcentral gyrus medial segment": {
+ "ppmi": {
+ "data": {
+ "std": 0.15216133131407455,
+ "max": 1.804,
+ "min": 0.72321,
+ "mean": 1.1058147478991596
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.15251070421228516,
+ "max": 1.64085,
+ "min": 0.694227,
+ "mean": 1.0772342045028134
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.1778717733892989,
+ "max": 1.5659,
+ "min": 0.0,
+ "mean": 1.0395185125858122
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right anterior orbital gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.2296497643316561,
+ "max": 2.5816,
+ "min": 0.7806,
+ "mean": 1.7925288515406166
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"data": {
- "1": 247,
- "0": 218,
- "2": 71
+ "std": 0.20988788679102507,
+ "max": 2.49793,
+ "min": 0.886175,
+ "mean": 1.7091453555347098
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.27829646493901633,
+ "max": 2.7957,
+ "min": 0.0,
+ "mean": 1.6966385125858117
},
- "num_datapoints": 536
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Right postcentral gyrus medial segment": {
+ "std": 0.15216133131407455,
+ "max": 1.804,
+ "min": 0.72321,
+ "mean": 1.1058147478991596
+ },
+ "Right anterior orbital gyrus": {
+ "std": 0.2296497643316561,
+ "max": 2.5816,
+ "min": 0.7806,
+ "mean": 1.7925288515406166
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
- "num_datapoints": 536,
+ "num_datapoints": 1066,
"data": {
- "rs190982_g": {
- "1": 247,
- "0": 218,
- "2": 71
+ "Right postcentral gyrus medial segment": {
+ "std": 0.15251070421228516,
+ "max": 1.64085,
+ "min": 0.694227,
+ "mean": 1.0772342045028134
+ },
+ "Right anterior orbital gyrus": {
+ "std": 0.20988788679102507,
+ "max": 2.49793,
+ "min": 0.886175,
+ "mean": 1.7091453555347098
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right postcentral gyrus medial segment": {
+ "std": 0.1778717733892989,
+ "max": 1.5659,
+ "min": 0.0,
+ "mean": 1.0395185125858122
+ },
+ "Right anterior orbital gyrus": {
+ "std": 0.27829646493901633,
+ "max": 2.7957,
+ "min": 0.0,
+ "mean": 1.6966385125858117
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -5204,11 +4824,11 @@
"input": [
{
"name": "y",
- "value": "leftaorganteriororbitalgyrus"
+ "value": "rightsogsuperioroccipitalgyrus,dataset"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "edsd,adni"
},
{
"name": "filter",
@@ -5221,33 +4841,93 @@
],
"output": {
"single": {
- "leftaorganteriororbitalgyrus": {
- "ppmi": {
+ "Right superior occipital gyrus": {
+ "adni": {
"data": {
- "std": 0.19668424281670233,
- "min": 0.89933,
- "max": 2.4559,
- "lower_confidence": 1.399268348219713,
- "mean": 1.5959525910364154,
- "upper_confidence": 1.7926368338531178
+ "std": 0.5218479602254812,
+ "max": 6.34525,
+ "min": 2.72391,
+ "mean": 4.21774289868668
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.5215490971366722,
+ "max": 5.9885,
+ "min": 2.7508,
+ "mean": 4.092889931350114
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Dataset": {
+ "adni": {
+ "data": {
+ "adni": {
+ "count": 1066,
+ "percentage": 100.0
+ }
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "edsd": {
+ "count": 474,
+ "percentage": 100.0
+ }
+ },
+ "num_datapoints": 474,
+ "num_nulls": 0,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "adni": {
+ "num_datapoints": 1066,
"data": {
- "leftaorganteriororbitalgyrus": {
- "std": 0.19668424281670233,
- "min": 0.89933,
- "max": 2.4559,
- "lower_confidence": 1.399268348219713,
- "mean": 1.5959525910364154,
- "upper_confidence": 1.7926368338531178
+ "Right superior occipital gyrus": {
+ "std": 0.5218479602254812,
+ "max": 6.34525,
+ "min": 2.72391,
+ "mean": 4.21774289868668
+ },
+ "Dataset": {
+ "adni": {
+ "count": 1066,
+ "percentage": 100.0
+ }
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right superior occipital gyrus": {
+ "std": 0.5215490971366722,
+ "max": 5.9885,
+ "min": 2.7508,
+ "mean": 4.092889931350114
+ },
+ "Dataset": {
+ "edsd": {
+ "count": 437,
+ "percentage": 100.0
+ }
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -5256,11 +4936,11 @@
"input": [
{
"name": "y",
- "value": "rightsogsuperioroccipitalgyrus,rightpogpostcentralgyrus,gender"
+ "value": "rightfugfusiformgyrus,leftmtgmiddletemporalgyrus"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "ppmi,adni,edsd"
},
{
"name": "filter",
@@ -5273,67 +4953,134 @@
],
"output": {
"single": {
- "rightpogpostcentralgyrus": {
- "edsd": {
+ "Left middle temporal gyrus": {
+ "ppmi": {
"data": {
- "std": 1.4670356360056158,
- "min": 0.0,
- "max": 13.6552,
- "lower_confidence": 8.34321253333077,
- "mean": 9.810248169336385,
- "upper_confidence": 11.277283805342
+ "std": 1.551868554861766,
+ "max": 20.5341,
+ "min": 8.8172,
+ "mean": 14.007781232492997
},
- "num_datapoints": 437
- }
- },
- "rightsogsuperioroccipitalgyrus": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 1.5742329008623004,
+ "max": 18.0946,
+ "min": 7.80915,
+ "mean": 13.004238367729828
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
"data": {
- "std": 0.5215490971366722,
- "min": 2.7508,
- "max": 5.9885,
- "lower_confidence": 3.5713408342134416,
- "mean": 4.092889931350114,
- "upper_confidence": 4.614439028486786
+ "std": 1.6484373239127161,
+ "max": 18.8747,
+ "min": 7.3624,
+ "mean": 13.175991533180794
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "gender": {
+ "Right fusiform gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.7289503970808117,
+ "max": 10.3175,
+ "min": 5.4376,
+ "mean": 7.6663631652661115
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.7853017578190323,
+ "max": 9.38824,
+ "min": 4.33262,
+ "mean": 7.087820375234526
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
"data": {
- "M": 227,
- "F": 247
+ "std": 0.8350911331339516,
+ "max": 9.4739,
+ "min": 3.8349,
+ "mean": 7.07725881006865
},
- "num_datapoints": 474
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Left middle temporal gyrus": {
+ "std": 1.551868554861766,
+ "max": 20.5341,
+ "min": 8.8172,
+ "mean": 14.007781232492997
+ },
+ "Right fusiform gyrus": {
+ "std": 0.7289503970808117,
+ "max": 10.3175,
+ "min": 5.4376,
+ "mean": 7.6663631652661115
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Left middle temporal gyrus": {
+ "std": 1.5742329008623004,
+ "max": 18.0946,
+ "min": 7.80915,
+ "mean": 13.004238367729828
+ },
+ "Right fusiform gyrus": {
+ "std": 0.7853017578190323,
+ "max": 9.38824,
+ "min": 4.33262,
+ "mean": 7.087820375234526
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
"num_datapoints": 437,
"data": {
- "rightpogpostcentralgyrus": {
- "std": 1.4670356360056158,
- "min": 0.0,
- "max": 13.6552,
- "lower_confidence": 8.34321253333077,
- "mean": 9.810248169336385,
- "upper_confidence": 11.277283805342
- },
- "rightsogsuperioroccipitalgyrus": {
- "std": 0.5215490971366722,
- "min": 2.7508,
- "max": 5.9885,
- "lower_confidence": 3.5713408342134416,
- "mean": 4.092889931350114,
- "upper_confidence": 4.614439028486786
+ "Left middle temporal gyrus": {
+ "std": 1.6484373239127161,
+ "max": 18.8747,
+ "min": 7.3624,
+ "mean": 13.175991533180794
},
- "gender": {
- "M": 205,
- "F": 232
+ "Right fusiform gyrus": {
+ "std": 0.8350911331339516,
+ "max": 9.4739,
+ "min": 3.8349,
+ "mean": 7.07725881006865
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -5342,11 +5089,11 @@
"input": [
{
"name": "y",
- "value": "rightainsanteriorinsula"
+ "value": "rightangangulargyrus,leftcocentraloperculum"
},
{
"name": "dataset",
- "value": "ppmi,adni,edsd"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -5359,39 +5106,52 @@
],
"output": {
"single": {
- "rightainsanteriorinsula": {
+ "Left central operculum": {
"ppmi": {
"data": {
- "std": 0.41353978965982746,
- "min": 2.8196,
- "max": 5.4263,
- "lower_confidence": 3.722177297174907,
- "mean": 4.135717086834735,
- "upper_confidence": 4.549256876494562
+ "std": 0.46076888740600624,
+ "max": 5.6602,
+ "min": 2.6704,
+ "mean": 4.073828011204488
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
- "adni": {
+ "edsd": {
"data": {
- "std": 0.4315800600282298,
- "min": 2.78153,
- "max": 5.76227,
- "lower_confidence": 3.600260277682838,
- "mean": 4.031840337711068,
- "upper_confidence": 4.463420397739298
+ "std": 0.5717634346267644,
+ "max": 5.4632,
+ "min": 0.00108,
+ "mean": 3.9359432723112127
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right angular gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 1.1761203743308688,
+ "max": 15.1495,
+ "min": 6.906,
+ "mean": 10.560376190476191
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"data": {
- "std": 0.5376034585613356,
- "min": 0.12458,
- "max": 5.378,
- "lower_confidence": 3.3749365643219598,
- "mean": 3.912540022883295,
- "upper_confidence": 4.450143481444631
+ "std": 1.252461112174001,
+ "max": 14.1407,
+ "min": 1.1839,
+ "mean": 9.72729221967964
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -5399,41 +5159,40 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightainsanteriorinsula": {
- "std": 0.41353978965982746,
- "min": 2.8196,
- "max": 5.4263,
- "lower_confidence": 3.722177297174907,
- "mean": 4.135717086834735,
- "upper_confidence": 4.549256876494562
- }
- }
- },
- "adni": {
- "num_datapoints": 1066,
- "data": {
- "rightainsanteriorinsula": {
- "std": 0.4315800600282298,
- "min": 2.78153,
- "max": 5.76227,
- "lower_confidence": 3.600260277682838,
- "mean": 4.031840337711068,
- "upper_confidence": 4.463420397739298
+ "Left central operculum": {
+ "std": 0.46076888740600624,
+ "max": 5.6602,
+ "min": 2.6704,
+ "mean": 4.073828011204488
+ },
+ "Right angular gyrus": {
+ "std": 1.1761203743308688,
+ "max": 15.1495,
+ "min": 6.906,
+ "mean": 10.560376190476191
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightainsanteriorinsula": {
- "std": 0.5376034585613356,
- "min": 0.12458,
- "max": 5.378,
- "lower_confidence": 3.3749365643219598,
- "mean": 3.912540022883295,
- "upper_confidence": 4.450143481444631
+ "Left central operculum": {
+ "std": 0.5717634346267644,
+ "max": 5.4632,
+ "min": 0.00108,
+ "mean": 3.9359432723112127
+ },
+ "Right angular gyrus": {
+ "std": 1.252461112174001,
+ "max": 14.1407,
+ "min": 1.1839,
+ "mean": 9.72729221967964
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -5442,11 +5201,11 @@
"input": [
{
"name": "y",
- "value": "leftthalamusproper"
+ "value": "rightpoparietaloperculum"
},
{
"name": "dataset",
- "value": "ppmi,adni,edsd"
+ "value": "edsd,adni"
},
{
"name": "filter",
@@ -5459,81 +5218,57 @@
],
"output": {
"single": {
- "leftthalamusproper": {
- "ppmi": {
- "data": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
- },
- "num_datapoints": 714
- },
+ "Right parietal operculum": {
"adni": {
"data": {
- "std": 0.6776934758472383,
- "min": 4.35751,
- "max": 9.16314,
- "lower_confidence": 6.247326589818806,
- "mean": 6.925020065666045,
- "upper_confidence": 7.602713541513284
+ "std": 0.302360127286798,
+ "max": 3.34823,
+ "min": 1.30568,
+ "mean": 2.1712405065666003
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.8046144468144254,
- "min": 2.2488,
- "max": 9.7296,
- "lower_confidence": 6.006959695062009,
- "mean": 6.811574141876434,
- "upper_confidence": 7.61618858869086
+ "std": 0.3619819401510522,
+ "max": 3.2482,
+ "min": 0.0,
+ "mean": 2.124535423340962
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "leftthalamusproper": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
- }
- }
- },
"adni": {
"num_datapoints": 1066,
"data": {
- "leftthalamusproper": {
- "std": 0.6776934758472383,
- "min": 4.35751,
- "max": 9.16314,
- "lower_confidence": 6.247326589818806,
- "mean": 6.925020065666045,
- "upper_confidence": 7.602713541513284
+ "Right parietal operculum": {
+ "std": 0.302360127286798,
+ "max": 3.34823,
+ "min": 1.30568,
+ "mean": 2.1712405065666003
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "leftthalamusproper": {
- "std": 0.8046144468144254,
- "min": 2.2488,
- "max": 9.7296,
- "lower_confidence": 6.006959695062009,
- "mean": 6.811574141876434,
- "upper_confidence": 7.61618858869086
+ "Right parietal operculum": {
+ "std": 0.3619819401510522,
+ "max": 3.2482,
+ "min": 0.0,
+ "mean": 2.124535423340962
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -5542,11 +5277,11 @@
"input": [
{
"name": "y",
- "value": "leftcaudate"
+ "value": "leftgregyrusrectus"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "ppmi,adni"
},
{
"name": "filter",
@@ -5559,17 +5294,28 @@
],
"output": {
"single": {
- "leftcaudate": {
+ "Left gyrus rectus": {
"ppmi": {
"data": {
- "std": 0.37723320190585524,
- "min": 1.9841,
- "max": 4.7487,
- "lower_confidence": 2.7246326244246797,
- "mean": 3.1018658263305348,
- "upper_confidence": 3.47909902823639
+ "std": 0.25428780455519984,
+ "max": 3.2094,
+ "min": 1.4595,
+ "mean": 2.140752661064425
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.22560887278691688,
+ "max": 2.83963,
+ "min": 1.05756,
+ "mean": 2.044286388367732
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -5577,15 +5323,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftcaudate": {
- "std": 0.37723320190585524,
- "min": 1.9841,
- "max": 4.7487,
- "lower_confidence": 2.7246326244246797,
- "mean": 3.1018658263305348,
- "upper_confidence": 3.47909902823639
+ "Left gyrus rectus": {
+ "std": 0.25428780455519984,
+ "max": 3.2094,
+ "min": 1.4595,
+ "mean": 2.140752661064425
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Left gyrus rectus": {
+ "std": 0.22560887278691688,
+ "max": 2.83963,
+ "min": 1.05756,
+ "mean": 2.044286388367732
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -5594,11 +5353,11 @@
"input": [
{
"name": "y",
- "value": "rightliglingualgyrus,rightscasubcallosalarea,leftacgganteriorcingulategyrus"
+ "value": "righthippocampus,rightpcggposteriorcingulategyrus"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "ppmi"
},
{
"name": "filter",
@@ -5611,75 +5370,52 @@
],
"output": {
"single": {
- "rightscasubcallosalarea": {
- "edsd": {
- "data": {
- "std": 0.14895662653876302,
- "min": 0.43488,
- "max": 1.6682,
- "lower_confidence": 1.0127920691134116,
- "mean": 1.1617486956521745,
- "upper_confidence": 1.3107053221909375
- },
- "num_datapoints": 437
- }
- },
- "rightliglingualgyrus": {
- "edsd": {
+ "Right Hippocampus": {
+ "ppmi": {
"data": {
- "std": 0.8775697679048492,
- "min": 4.9555,
- "max": 10.6299,
- "lower_confidence": 6.828220392278214,
- "mean": 7.705790160183064,
- "upper_confidence": 8.583359928087912
+ "std": 0.3000049420191848,
+ "max": 4.4035,
+ "min": 2.581,
+ "mean": 3.409496918767508
},
- "num_datapoints": 437
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
},
- "leftacgganteriorcingulategyrus": {
- "edsd": {
+ "Right posterior cingulate gyrus": {
+ "ppmi": {
"data": {
- "std": 0.6968857633215452,
- "min": 0.00124,
- "max": 6.5349,
- "lower_confidence": 3.757288172605231,
- "mean": 4.454173935926776,
- "upper_confidence": 5.1510596992483215
+ "std": 0.460302624281719,
+ "max": 5.8708,
+ "min": 2.5717,
+ "mean": 4.132762044817929
},
- "num_datapoints": 437
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
}
},
"model": {
- "edsd": {
- "num_datapoints": 437,
+ "ppmi": {
+ "num_datapoints": 714,
"data": {
- "rightscasubcallosalarea": {
- "std": 0.14895662653876302,
- "min": 0.43488,
- "max": 1.6682,
- "lower_confidence": 1.0127920691134116,
- "mean": 1.1617486956521745,
- "upper_confidence": 1.3107053221909375
- },
- "rightliglingualgyrus": {
- "std": 0.8775697679048492,
- "min": 4.9555,
- "max": 10.6299,
- "lower_confidence": 6.828220392278214,
- "mean": 7.705790160183064,
- "upper_confidence": 8.583359928087912
- },
- "leftacgganteriorcingulategyrus": {
- "std": 0.6968857633215452,
- "min": 0.00124,
- "max": 6.5349,
- "lower_confidence": 3.757288172605231,
- "mean": 4.454173935926776,
- "upper_confidence": 5.1510596992483215
+ "Right Hippocampus": {
+ "std": 0.3000049420191848,
+ "max": 4.4035,
+ "min": 2.581,
+ "mean": 3.409496918767508
+ },
+ "Right posterior cingulate gyrus": {
+ "std": 0.460302624281719,
+ "max": 5.8708,
+ "min": 2.5717,
+ "mean": 4.132762044817929
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
}
}
}
@@ -5688,11 +5424,11 @@
"input": [
{
"name": "y",
- "value": "rightententorhinalarea,leftporgposteriororbitalgyrus,leftorifgorbitalpartoftheinferiorfrontalgyrus,csfglobal,dataset"
+ "value": "leftthalamusproper,leftlorglateralorbitalgyrus,leftangangulargyrus"
},
{
"name": "dataset",
- "value": "edsd,ppmi"
+ "value": "adni,edsd"
},
{
"name": "filter",
@@ -5705,270 +5441,129 @@
],
"output": {
"single": {
- "rightententorhinalarea": {
- "ppmi": {
- "data": {
- "std": 0.181360605544267,
- "min": 1.1524,
- "max": 2.4849,
- "lower_confidence": 1.5549430359123144,
- "mean": 1.7363036414565813,
- "upper_confidence": 1.9176642470008483
- },
- "num_datapoints": 714
- },
- "edsd": {
- "data": {
- "std": 0.23294603841839354,
- "min": 0.34445,
- "max": 2.4117,
- "lower_confidence": 1.3293860668447643,
- "mean": 1.5623321052631578,
- "upper_confidence": 1.7952781436815513
- },
- "num_datapoints": 437
- }
- },
- "dataset": {
- "ppmi": {
- "data": {
- "ppmi": 714
- },
- "num_datapoints": 714
- },
- "edsd": {
- "data": {
- "edsd": 474
- },
- "num_datapoints": 474
- }
- },
- "csfglobal": {
- "ppmi": {
+ "Left angular gyrus": {
+ "adni": {
"data": {
- "std": 0.4409542336832194,
- "min": 0.60997,
- "max": 4.2014,
- "lower_confidence": 0.9206707803223825,
- "mean": 1.3616250140056019,
- "upper_confidence": 1.8025792476888212
+ "std": 1.0431046959561834,
+ "max": 12.5288,
+ "min": 5.75806,
+ "mean": 8.969901050656658
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.48339364674321944,
- "min": 0.39686,
- "max": 3.7567,
- "lower_confidence": 1.0986036072613574,
- "mean": 1.5819972540045768,
- "upper_confidence": 2.065390900747796
+ "std": 1.1124976258123522,
+ "max": 12.0496,
+ "min": 2.2506,
+ "mean": 8.760460640732262
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "leftporgposteriororbitalgyrus": {
- "ppmi": {
+ "Left Thalamus": {
+ "adni": {
"data": {
- "std": 0.2535647877430602,
- "min": 1.7223,
- "max": 3.6873,
- "lower_confidence": 2.2746899741617037,
- "mean": 2.5282547619047637,
- "upper_confidence": 2.7818195496478237
+ "std": 0.6776934758472383,
+ "max": 9.16314,
+ "min": 4.35751,
+ "mean": 6.925020065666045
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.29568506180046333,
- "min": 0.90385,
- "max": 3.2494,
- "lower_confidence": 2.1159880503276827,
- "mean": 2.411673112128146,
- "upper_confidence": 2.707358173928609
+ "std": 0.8046144468144254,
+ "max": 9.7296,
+ "min": 2.2488,
+ "mean": 6.811574141876434
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "leftorifgorbitalpartoftheinferiorfrontalgyrus": {
- "ppmi": {
+ "Left lateral orbital gyrus": {
+ "adni": {
"data": {
- "std": 0.1887805996344365,
- "min": 0.73418,
- "max": 2.2023,
- "lower_confidence": 1.3480481118501562,
- "mean": 1.5368287114845927,
- "upper_confidence": 1.7256093111190292
+ "std": 0.2567218332350192,
+ "max": 3.26841,
+ "min": 1.36195,
+ "mean": 2.3316048311444675
},
- "num_datapoints": 714
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.22985179699254343,
- "min": 0.00156,
- "max": 2.08,
- "lower_confidence": 1.2138649535795385,
- "mean": 1.4437167505720818,
- "upper_confidence": 1.6735685475646251
- },
- "num_datapoints": 437
- }
- }
- },
- "model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "rightententorhinalarea": {
- "std": 0.181360605544267,
- "min": 1.1524,
- "max": 2.4849,
- "lower_confidence": 1.5549430359123144,
- "mean": 1.7363036414565813,
- "upper_confidence": 1.9176642470008483
- },
- "dataset": {
- "ppmi": 714
- },
- "csfglobal": {
- "std": 0.4409542336832194,
- "min": 0.60997,
- "max": 4.2014,
- "lower_confidence": 0.9206707803223825,
- "mean": 1.3616250140056019,
- "upper_confidence": 1.8025792476888212
- },
- "leftporgposteriororbitalgyrus": {
- "std": 0.2535647877430602,
- "min": 1.7223,
- "max": 3.6873,
- "lower_confidence": 2.2746899741617037,
- "mean": 2.5282547619047637,
- "upper_confidence": 2.7818195496478237
- },
- "leftorifgorbitalpartoftheinferiorfrontalgyrus": {
- "std": 0.1887805996344365,
- "min": 0.73418,
- "max": 2.2023,
- "lower_confidence": 1.3480481118501562,
- "mean": 1.5368287114845927,
- "upper_confidence": 1.7256093111190292
- }
- }
- },
- "edsd": {
- "num_datapoints": 437,
- "data": {
- "rightententorhinalarea": {
- "std": 0.23294603841839354,
- "min": 0.34445,
- "max": 2.4117,
- "lower_confidence": 1.3293860668447643,
- "mean": 1.5623321052631578,
- "upper_confidence": 1.7952781436815513
- },
- "dataset": {
- "edsd": 437
- },
- "csfglobal": {
- "std": 0.48339364674321944,
- "min": 0.39686,
- "max": 3.7567,
- "lower_confidence": 1.0986036072613574,
- "mean": 1.5819972540045768,
- "upper_confidence": 2.065390900747796
- },
- "leftporgposteriororbitalgyrus": {
- "std": 0.29568506180046333,
- "min": 0.90385,
- "max": 3.2494,
- "lower_confidence": 2.1159880503276827,
- "mean": 2.411673112128146,
- "upper_confidence": 2.707358173928609
- },
- "leftorifgorbitalpartoftheinferiorfrontalgyrus": {
- "std": 0.22985179699254343,
- "min": 0.00156,
- "max": 2.08,
- "lower_confidence": 1.2138649535795385,
- "mean": 1.4437167505720818,
- "upper_confidence": 1.6735685475646251
- }
- }
- }
- }
- }
- },
- {
- "input": [
- {
- "name": "y",
- "value": "leftthalamusproper,leftptplanumtemporale"
- },
- {
- "name": "dataset",
- "value": "ppmi"
- },
- {
- "name": "filter",
- "value": ""
- },
- {
- "name": "pathology",
- "value": "dementia"
- }
- ],
- "output": {
- "single": {
- "leftthalamusproper": {
- "ppmi": {
- "data": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
- },
- "num_datapoints": 714
- }
- },
- "leftptplanumtemporale": {
- "ppmi": {
- "data": {
- "std": 0.30456382948777316,
- "min": 1.3796,
- "max": 3.4814,
- "lower_confidence": 1.7697875710724502,
- "mean": 2.0743514005602233,
- "upper_confidence": 2.3789152300479963
+ "std": 0.3441693368879193,
+ "max": 3.0911,
+ "min": 0.02822,
+ "mean": 2.2895320366132736
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "adni": {
+ "num_datapoints": 1066,
"data": {
- "leftthalamusproper": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
+ "Left angular gyrus": {
+ "std": 1.0431046959561834,
+ "max": 12.5288,
+ "min": 5.75806,
+ "mean": 8.969901050656658
},
- "leftptplanumtemporale": {
- "std": 0.30456382948777316,
- "min": 1.3796,
- "max": 3.4814,
- "lower_confidence": 1.7697875710724502,
- "mean": 2.0743514005602233,
- "upper_confidence": 2.3789152300479963
+ "Left Thalamus": {
+ "std": 0.6776934758472383,
+ "max": 9.16314,
+ "min": 4.35751,
+ "mean": 6.925020065666045
+ },
+ "Left lateral orbital gyrus": {
+ "std": 0.2567218332350192,
+ "max": 3.26841,
+ "min": 1.36195,
+ "mean": 2.3316048311444675
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Left angular gyrus": {
+ "std": 1.1124976258123522,
+ "max": 12.0496,
+ "min": 2.2506,
+ "mean": 8.760460640732262
+ },
+ "Left Thalamus": {
+ "std": 0.8046144468144254,
+ "max": 9.7296,
+ "min": 2.2488,
+ "mean": 6.811574141876434
+ },
+ "Left lateral orbital gyrus": {
+ "std": 0.3441693368879193,
+ "max": 3.0911,
+ "min": 0.02822,
+ "mean": 2.2895320366132736
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -5977,11 +5572,11 @@
"input": [
{
"name": "y",
- "value": "opticchiasm,leftthalamusproper,rightlorglateralorbitalgyrus,rightitginferiortemporalgyrus,leftventraldc,leftfrpfrontalpole,rightainsanteriorinsula"
+ "value": "leftcalccalcarinecortex,rightmorgmedialorbitalgyrus,rightcocentraloperculum"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "edsd,adni"
},
{
"name": "filter",
@@ -5994,159 +5589,129 @@
],
"output": {
"single": {
- "leftthalamusproper": {
- "ppmi": {
- "data": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
- },
- "num_datapoints": 714
- }
- },
- "rightitginferiortemporalgyrus": {
- "ppmi": {
+ "Right central operculum": {
+ "adni": {
"data": {
- "std": 1.2184846780623546,
- "min": 7.5613,
- "max": 15.883,
- "lower_confidence": 10.498633669276588,
- "mean": 11.717118347338943,
- "upper_confidence": 12.935603025401297
+ "std": 0.44127333959298076,
+ "max": 5.84437,
+ "min": 2.44188,
+ "mean": 3.91756759849906
},
- "num_datapoints": 714
- }
- },
- "leftfrpfrontalpole": {
- "ppmi": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
"data": {
- "std": 0.41822289030164245,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1559301909308504,
- "mean": 3.5741530812324926,
- "upper_confidence": 3.992375971534135
+ "std": 0.5694463618454609,
+ "max": 5.3782,
+ "min": 2e-05,
+ "mean": 3.823000068649884
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "leftventraldc": {
- "ppmi": {
+ "Right medial orbital gyrus": {
+ "adni": {
"data": {
- "std": 0.46039819411151933,
- "min": 3.5549,
- "max": 6.5984,
- "lower_confidence": 4.353136679838065,
- "mean": 4.8135348739495845,
- "upper_confidence": 5.273933068061104
+ "std": 0.37878057457843145,
+ "max": 5.07738,
+ "min": 2.03675,
+ "mean": 3.6809657598499097
},
- "num_datapoints": 714
- }
- },
- "rightlorglateralorbitalgyrus": {
- "ppmi": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
"data": {
- "std": 0.25741593216231295,
- "min": 1.2786,
- "max": 3.2875,
- "lower_confidence": 2.0234741238600957,
- "mean": 2.280890056022409,
- "upper_confidence": 2.538305988184722
+ "std": 0.49960355418387337,
+ "max": 5.6107,
+ "min": 0.5615,
+ "mean": 3.6864475972540043
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rightainsanteriorinsula": {
- "ppmi": {
+ "Left calcarine cortex": {
+ "adni": {
"data": {
- "std": 0.41353978965982746,
- "min": 2.8196,
- "max": 5.4263,
- "lower_confidence": 3.722177297174907,
- "mean": 4.135717086834735,
- "upper_confidence": 4.549256876494562
+ "std": 0.4903814701785902,
+ "max": 5.56209,
+ "min": 1.76704,
+ "mean": 3.156891848030018
},
- "num_datapoints": 714
- }
- },
- "opticchiasm": {
- "ppmi": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
"data": {
- "std": 0.009150537565032724,
- "min": 0.038146,
- "max": 0.10033,
- "lower_confidence": 0.06722147784112979,
- "mean": 0.07637201540616252,
- "upper_confidence": 0.08552255297119525
+ "std": 0.4439780232512154,
+ "max": 5.3609,
+ "min": 1.8742,
+ "mean": 3.009671167048051
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "adni": {
+ "num_datapoints": 1066,
"data": {
- "leftthalamusproper": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
- },
- "rightitginferiortemporalgyrus": {
- "std": 1.2184846780623546,
- "min": 7.5613,
- "max": 15.883,
- "lower_confidence": 10.498633669276588,
- "mean": 11.717118347338943,
- "upper_confidence": 12.935603025401297
- },
- "leftfrpfrontalpole": {
- "std": 0.41822289030164245,
- "min": 2.5555,
- "max": 4.9831,
- "lower_confidence": 3.1559301909308504,
- "mean": 3.5741530812324926,
- "upper_confidence": 3.992375971534135
- },
- "leftventraldc": {
- "std": 0.46039819411151933,
- "min": 3.5549,
- "max": 6.5984,
- "lower_confidence": 4.353136679838065,
- "mean": 4.8135348739495845,
- "upper_confidence": 5.273933068061104
- },
- "rightlorglateralorbitalgyrus": {
- "std": 0.25741593216231295,
- "min": 1.2786,
- "max": 3.2875,
- "lower_confidence": 2.0234741238600957,
- "mean": 2.280890056022409,
- "upper_confidence": 2.538305988184722
+ "Right central operculum": {
+ "std": 0.44127333959298076,
+ "max": 5.84437,
+ "min": 2.44188,
+ "mean": 3.91756759849906
+ },
+ "Right medial orbital gyrus": {
+ "std": 0.37878057457843145,
+ "max": 5.07738,
+ "min": 2.03675,
+ "mean": 3.6809657598499097
+ },
+ "Left calcarine cortex": {
+ "std": 0.4903814701785902,
+ "max": 5.56209,
+ "min": 1.76704,
+ "mean": 3.156891848030018
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right central operculum": {
+ "std": 0.5694463618454609,
+ "max": 5.3782,
+ "min": 2e-05,
+ "mean": 3.823000068649884
},
- "rightainsanteriorinsula": {
- "std": 0.41353978965982746,
- "min": 2.8196,
- "max": 5.4263,
- "lower_confidence": 3.722177297174907,
- "mean": 4.135717086834735,
- "upper_confidence": 4.549256876494562
+ "Right medial orbital gyrus": {
+ "std": 0.49960355418387337,
+ "max": 5.6107,
+ "min": 0.5615,
+ "mean": 3.6864475972540043
},
- "opticchiasm": {
- "std": 0.009150537565032724,
- "min": 0.038146,
- "max": 0.10033,
- "lower_confidence": 0.06722147784112979,
- "mean": 0.07637201540616252,
- "upper_confidence": 0.08552255297119525
+ "Left calcarine cortex": {
+ "std": 0.4439780232512154,
+ "max": 5.3609,
+ "min": 1.8742,
+ "mean": 3.009671167048051
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -6155,11 +5720,11 @@
"input": [
{
"name": "y",
- "value": "leftmpogpostcentralgyrusmedialsegment,rightacgganteriorcingulategyrus"
+ "value": "agegroup"
},
{
"name": "dataset",
- "value": "edsd,adni"
+ "value": "edsd,adni,ppmi"
},
{
"name": "filter",
@@ -6172,97 +5737,169 @@
],
"output": {
"single": {
- "leftmpogpostcentralgyrusmedialsegment": {
- "adni": {
+ "agegroup": {
+ "ppmi": {
"data": {
- "std": 0.15416003202576872,
- "min": 0.722792,
- "max": 1.68537,
- "lower_confidence": 0.9689952146909278,
- "mean": 1.1231552467166965,
- "upper_confidence": 1.2773152787424653
- },
- "num_datapoints": 1066
+ "70-79y": {
+ "count": 149,
+ "percentage": 20.87
+ },
+ "60-69y": {
+ "count": 281,
+ "percentage": 39.36
+ },
+ "+80y": {
+ "count": 19,
+ "percentage": 2.66
+ },
+ "50-59y": {
+ "count": 183,
+ "percentage": 25.63
+ },
+ "-50y": {
+ "count": 82,
+ "percentage": 11.48
+ }
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
- "edsd": {
- "data": {
- "std": 0.18691220581159879,
- "min": 0.0,
- "max": 2.0477,
- "lower_confidence": 0.9004438124950367,
- "mean": 1.0873560183066355,
- "upper_confidence": 1.2742682241182344
- },
- "num_datapoints": 437
- }
- },
- "rightacgganteriorcingulategyrus": {
"adni": {
"data": {
- "std": 0.5511387257731017,
- "min": 2.6671,
- "max": 5.98526,
- "lower_confidence": 3.53381042994922,
- "mean": 4.084949155722322,
- "upper_confidence": 4.636087881495424
- },
- "num_datapoints": 1066
+ "70-79y": {
+ "count": 544,
+ "percentage": 51.03
+ },
+ "60-69y": {
+ "count": 255,
+ "percentage": 23.92
+ },
+ "+80y": {
+ "count": 223,
+ "percentage": 20.92
+ },
+ "50-59y": {
+ "count": 44,
+ "percentage": 4.13
+ }
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.641067542864868,
- "min": 6e-05,
- "max": 6.2992,
- "lower_confidence": 3.3342966676614507,
- "mean": 3.975364210526319,
- "upper_confidence": 4.616431753391187
- },
- "num_datapoints": 437
+ "70-79y": {
+ "count": 170,
+ "percentage": 35.86
+ },
+ "60-69y": {
+ "count": 117,
+ "percentage": 24.68
+ },
+ "+80y": {
+ "count": 47,
+ "percentage": 9.92
+ },
+ "50-59y": {
+ "count": 22,
+ "percentage": 4.64
+ },
+ "-50y": {
+ "count": 118,
+ "percentage": 24.89
+ }
+ },
+ "num_datapoints": 474,
+ "num_nulls": 0,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "agegroup": {
+ "70-79y": {
+ "count": 149,
+ "percentage": 20.87
+ },
+ "60-69y": {
+ "count": 281,
+ "percentage": 39.36
+ },
+ "+80y": {
+ "count": 19,
+ "percentage": 2.66
+ },
+ "50-59y": {
+ "count": 183,
+ "percentage": 25.63
+ },
+ "-50y": {
+ "count": 82,
+ "percentage": 11.48
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"num_datapoints": 1066,
"data": {
- "leftmpogpostcentralgyrusmedialsegment": {
- "std": 0.15416003202576872,
- "min": 0.722792,
- "max": 1.68537,
- "lower_confidence": 0.9689952146909278,
- "mean": 1.1231552467166965,
- "upper_confidence": 1.2773152787424653
- },
- "rightacgganteriorcingulategyrus": {
- "std": 0.5511387257731017,
- "min": 2.6671,
- "max": 5.98526,
- "lower_confidence": 3.53381042994922,
- "mean": 4.084949155722322,
- "upper_confidence": 4.636087881495424
- }
- }
+ "agegroup": {
+ "70-79y": {
+ "count": 544,
+ "percentage": 51.03
+ },
+ "60-69y": {
+ "count": 255,
+ "percentage": 23.92
+ },
+ "+80y": {
+ "count": 223,
+ "percentage": 20.92
+ },
+ "50-59y": {
+ "count": 44,
+ "percentage": 4.13
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
- "num_datapoints": 437,
+ "num_datapoints": 474,
"data": {
- "leftmpogpostcentralgyrusmedialsegment": {
- "std": 0.18691220581159879,
- "min": 0.0,
- "max": 2.0477,
- "lower_confidence": 0.9004438124950367,
- "mean": 1.0873560183066355,
- "upper_confidence": 1.2742682241182344
- },
- "rightacgganteriorcingulategyrus": {
- "std": 0.641067542864868,
- "min": 6e-05,
- "max": 6.2992,
- "lower_confidence": 3.3342966676614507,
- "mean": 3.975364210526319,
- "upper_confidence": 4.616431753391187
- }
- }
+ "agegroup": {
+ "70-79y": {
+ "count": 170,
+ "percentage": 35.86
+ },
+ "60-69y": {
+ "count": 117,
+ "percentage": 24.68
+ },
+ "+80y": {
+ "count": 47,
+ "percentage": 9.92
+ },
+ "50-59y": {
+ "count": 22,
+ "percentage": 4.64
+ },
+ "-50y": {
+ "count": 118,
+ "percentage": 24.89
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 474
}
}
}
@@ -6271,11 +5908,11 @@
"input": [
{
"name": "y",
- "value": "leftfugfusiformgyrus"
+ "value": "leftfofrontaloperculum,rightmfgmiddlefrontalgyrus,righttrifgtriangularpartoftheinferiorfrontalgyrus,leftamygdala"
},
{
"name": "dataset",
- "value": "adni,edsd"
+ "value": "ppmi,edsd,adni"
},
{
"name": "filter",
@@ -6288,57 +5925,240 @@
],
"output": {
"single": {
- "leftfugfusiformgyrus": {
+ "Left frontal operculum": {
+ "ppmi": {
+ "data": {
+ "std": 0.22111566635733293,
+ "max": 2.9576,
+ "min": 1.0498,
+ "mean": 2.0069130252100833
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"data": {
- "std": 0.7354961379719027,
- "min": 4.85218,
- "max": 9.46734,
- "lower_confidence": 6.157211516812334,
- "mean": 6.892707654784236,
- "upper_confidence": 7.628203792756139
+ "std": 0.21028668217266916,
+ "max": 2.73465,
+ "min": 1.31745,
+ "mean": 1.9391248874296443
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.803725589864498,
- "min": 3.9341,
- "max": 9.7987,
- "lower_confidence": 6.118949467343739,
- "mean": 6.922675057208236,
- "upper_confidence": 7.726400647072734
+ "std": 0.279815619705402,
+ "max": 2.6485,
+ "min": 1e-05,
+ "mean": 1.8939826773455364
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left Amygdala": {
+ "ppmi": {
+ "data": {
+ "std": 0.08856156116773851,
+ "max": 1.2276,
+ "min": 0.58602,
+ "mean": 0.8865948879551825
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.11762830515182261,
+ "max": 1.14743,
+ "min": 0.43301,
+ "mean": 0.7946160412757973
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.12155421194350144,
+ "max": 1.3139,
+ "min": 0.18576,
+ "mean": 0.7934707322654461
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right triangular part of the inferior frontal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.423394760629302,
+ "max": 4.9885,
+ "min": 1.9661,
+ "mean": 3.5784386554621825
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.40218044437492184,
+ "max": 5.03748,
+ "min": 2.20985,
+ "mean": 3.4812625891181974
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.5378465749612739,
+ "max": 4.9804,
+ "min": 0.0,
+ "mean": 3.418061556064075
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right middle frontal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 2.096951668861678,
+ "max": 26.1728,
+ "min": 10.7621,
+ "mean": 18.61776428571429
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 2.008586497232484,
+ "max": 25.9978,
+ "min": 11.3756,
+ "mean": 17.94282120075048
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 2.6629152993837026,
+ "max": 25.3498,
+ "min": 0.0,
+ "mean": 17.700686270022874
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Left frontal operculum": {
+ "std": 0.22111566635733293,
+ "max": 2.9576,
+ "min": 1.0498,
+ "mean": 2.0069130252100833
+ },
+ "Left Amygdala": {
+ "std": 0.08856156116773851,
+ "max": 1.2276,
+ "min": 0.58602,
+ "mean": 0.8865948879551825
+ },
+ "Right triangular part of the inferior frontal gyrus": {
+ "std": 0.423394760629302,
+ "max": 4.9885,
+ "min": 1.9661,
+ "mean": 3.5784386554621825
+ },
+ "Right middle frontal gyrus": {
+ "std": 2.096951668861678,
+ "max": 26.1728,
+ "min": 10.7621,
+ "mean": 18.61776428571429
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"num_datapoints": 1066,
"data": {
- "leftfugfusiformgyrus": {
- "std": 0.7354961379719027,
- "min": 4.85218,
- "max": 9.46734,
- "lower_confidence": 6.157211516812334,
- "mean": 6.892707654784236,
- "upper_confidence": 7.628203792756139
+ "Left frontal operculum": {
+ "std": 0.21028668217266916,
+ "max": 2.73465,
+ "min": 1.31745,
+ "mean": 1.9391248874296443
+ },
+ "Left Amygdala": {
+ "std": 0.11762830515182261,
+ "max": 1.14743,
+ "min": 0.43301,
+ "mean": 0.7946160412757973
+ },
+ "Right triangular part of the inferior frontal gyrus": {
+ "std": 0.40218044437492184,
+ "max": 5.03748,
+ "min": 2.20985,
+ "mean": 3.4812625891181974
+ },
+ "Right middle frontal gyrus": {
+ "std": 2.008586497232484,
+ "max": 25.9978,
+ "min": 11.3756,
+ "mean": 17.94282120075048
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "leftfugfusiformgyrus": {
- "std": 0.803725589864498,
- "min": 3.9341,
- "max": 9.7987,
- "lower_confidence": 6.118949467343739,
- "mean": 6.922675057208236,
- "upper_confidence": 7.726400647072734
+ "Left frontal operculum": {
+ "std": 0.279815619705402,
+ "max": 2.6485,
+ "min": 1e-05,
+ "mean": 1.8939826773455364
+ },
+ "Left Amygdala": {
+ "std": 0.12155421194350144,
+ "max": 1.3139,
+ "min": 0.18576,
+ "mean": 0.7934707322654461
+ },
+ "Right triangular part of the inferior frontal gyrus": {
+ "std": 0.5378465749612739,
+ "max": 4.9804,
+ "min": 0.0,
+ "mean": 3.418061556064075
+ },
+ "Right middle frontal gyrus": {
+ "std": 2.6629152993837026,
+ "max": 25.3498,
+ "min": 0.0,
+ "mean": 17.700686270022874
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -6347,11 +6167,11 @@
"input": [
{
"name": "y",
- "value": "leftmcggmiddlecingulategyrus,leftppplanumpolare,leftptplanumtemporale,leftaccumbensarea,lefttmptemporalpole,rightgregyrusrectus,leftfrpfrontalpole,leftioginferioroccipitalgyrus"
+ "value": "agegroup"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "ppmi,adni,edsd"
},
{
"name": "filter",
@@ -6364,180 +6184,169 @@
],
"output": {
"single": {
- "leftaccumbensarea": {
- "adni": {
- "data": {
- "std": 0.05225599155189677,
- "min": 0.201871,
- "max": 0.596434,
- "lower_confidence": 0.35838718011789694,
- "mean": 0.4106431716697937,
- "upper_confidence": 0.46289916322169045
- },
- "num_datapoints": 1066
- }
- },
- "rightgregyrusrectus": {
- "adni": {
- "data": {
- "std": 0.22763018230952806,
- "min": 0.993285,
- "max": 2.8819,
- "lower_confidence": 1.7990473927373747,
- "mean": 2.026677575046903,
- "upper_confidence": 2.2543077573564307
- },
- "num_datapoints": 1066
- }
- },
- "leftfrpfrontalpole": {
- "adni": {
- "data": {
- "std": 0.42395479822257864,
- "min": 2.29383,
- "max": 5.20058,
- "lower_confidence": 3.1044813743852995,
- "mean": 3.528436172607878,
- "upper_confidence": 3.9523909708304563
- },
- "num_datapoints": 1066
- }
- },
- "leftmcggmiddlecingulategyrus": {
- "adni": {
- "data": {
- "std": 0.5453117602863388,
- "min": 2.9757,
- "max": 9.56777,
- "lower_confidence": 4.107015434835609,
- "mean": 4.652327195121948,
- "upper_confidence": 5.197638955408286
- },
- "num_datapoints": 1066
- }
- },
- "leftioginferioroccipitalgyrus": {
- "adni": {
- "data": {
- "std": 0.7850966920124468,
- "min": 3.80891,
- "max": 8.99533,
- "lower_confidence": 5.3727570884753595,
- "mean": 6.157853780487806,
- "upper_confidence": 6.942950472500253
- },
- "num_datapoints": 1066
- }
- },
- "leftptplanumtemporale": {
- "adni": {
+ "agegroup": {
+ "ppmi": {
"data": {
- "std": 0.29583402080883164,
- "min": 1.16204,
- "max": 3.21332,
- "lower_confidence": 1.7135091123994255,
- "mean": 2.009343133208257,
- "upper_confidence": 2.305177154017089
- },
- "num_datapoints": 1066
- }
- },
- "lefttmptemporalpole": {
+ "70-79y": {
+ "count": 149,
+ "percentage": 20.87
+ },
+ "60-69y": {
+ "count": 281,
+ "percentage": 39.36
+ },
+ "+80y": {
+ "count": 19,
+ "percentage": 2.66
+ },
+ "50-59y": {
+ "count": 183,
+ "percentage": 25.63
+ },
+ "-50y": {
+ "count": 82,
+ "percentage": 11.48
+ }
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"data": {
- "std": 0.8724688018274906,
- "min": 4.48517,
- "max": 10.6873,
- "lower_confidence": 6.422093946765376,
- "mean": 7.294562748592866,
- "upper_confidence": 8.167031550420356
- },
- "num_datapoints": 1066
- }
- },
- "leftppplanumpolare": {
- "adni": {
+ "70-79y": {
+ "count": 544,
+ "percentage": 51.03
+ },
+ "60-69y": {
+ "count": 255,
+ "percentage": 23.92
+ },
+ "+80y": {
+ "count": 223,
+ "percentage": 20.92
+ },
+ "50-59y": {
+ "count": 44,
+ "percentage": 4.13
+ }
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
"data": {
- "std": 0.2435077065359157,
- "min": 1.59984,
- "max": 3.17503,
- "lower_confidence": 2.0296874060344354,
- "mean": 2.273195112570351,
- "upper_confidence": 2.516702819106267
- },
- "num_datapoints": 1066
+ "70-79y": {
+ "count": 170,
+ "percentage": 35.86
+ },
+ "60-69y": {
+ "count": 117,
+ "percentage": 24.68
+ },
+ "+80y": {
+ "count": 47,
+ "percentage": 9.92
+ },
+ "50-59y": {
+ "count": 22,
+ "percentage": 4.64
+ },
+ "-50y": {
+ "count": 118,
+ "percentage": 24.89
+ }
+ },
+ "num_datapoints": 474,
+ "num_nulls": 0,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "agegroup": {
+ "70-79y": {
+ "count": 149,
+ "percentage": 20.87
+ },
+ "60-69y": {
+ "count": 281,
+ "percentage": 39.36
+ },
+ "+80y": {
+ "count": 19,
+ "percentage": 2.66
+ },
+ "50-59y": {
+ "count": 183,
+ "percentage": 25.63
+ },
+ "-50y": {
+ "count": 82,
+ "percentage": 11.48
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"adni": {
"num_datapoints": 1066,
"data": {
- "leftaccumbensarea": {
- "std": 0.05225599155189677,
- "min": 0.201871,
- "max": 0.596434,
- "lower_confidence": 0.35838718011789694,
- "mean": 0.4106431716697937,
- "upper_confidence": 0.46289916322169045
- },
- "rightgregyrusrectus": {
- "std": 0.22763018230952806,
- "min": 0.993285,
- "max": 2.8819,
- "lower_confidence": 1.7990473927373747,
- "mean": 2.026677575046903,
- "upper_confidence": 2.2543077573564307
- },
- "leftfrpfrontalpole": {
- "std": 0.42395479822257864,
- "min": 2.29383,
- "max": 5.20058,
- "lower_confidence": 3.1044813743852995,
- "mean": 3.528436172607878,
- "upper_confidence": 3.9523909708304563
- },
- "leftmcggmiddlecingulategyrus": {
- "std": 0.5453117602863388,
- "min": 2.9757,
- "max": 9.56777,
- "lower_confidence": 4.107015434835609,
- "mean": 4.652327195121948,
- "upper_confidence": 5.197638955408286
- },
- "leftioginferioroccipitalgyrus": {
- "std": 0.7850966920124468,
- "min": 3.80891,
- "max": 8.99533,
- "lower_confidence": 5.3727570884753595,
- "mean": 6.157853780487806,
- "upper_confidence": 6.942950472500253
- },
- "leftptplanumtemporale": {
- "std": 0.29583402080883164,
- "min": 1.16204,
- "max": 3.21332,
- "lower_confidence": 1.7135091123994255,
- "mean": 2.009343133208257,
- "upper_confidence": 2.305177154017089
- },
- "lefttmptemporalpole": {
- "std": 0.8724688018274906,
- "min": 4.48517,
- "max": 10.6873,
- "lower_confidence": 6.422093946765376,
- "mean": 7.294562748592866,
- "upper_confidence": 8.167031550420356
- },
- "leftppplanumpolare": {
- "std": 0.2435077065359157,
- "min": 1.59984,
- "max": 3.17503,
- "lower_confidence": 2.0296874060344354,
- "mean": 2.273195112570351,
- "upper_confidence": 2.516702819106267
- }
- }
+ "agegroup": {
+ "70-79y": {
+ "count": 544,
+ "percentage": 51.03
+ },
+ "60-69y": {
+ "count": 255,
+ "percentage": 23.92
+ },
+ "+80y": {
+ "count": 223,
+ "percentage": 20.92
+ },
+ "50-59y": {
+ "count": 44,
+ "percentage": 4.13
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 474,
+ "data": {
+ "agegroup": {
+ "70-79y": {
+ "count": 170,
+ "percentage": 35.86
+ },
+ "60-69y": {
+ "count": 117,
+ "percentage": 24.68
+ },
+ "+80y": {
+ "count": 47,
+ "percentage": 9.92
+ },
+ "50-59y": {
+ "count": 22,
+ "percentage": 4.64
+ },
+ "-50y": {
+ "count": 118,
+ "percentage": 24.89
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 474
}
}
}
@@ -6546,11 +6355,11 @@
"input": [
{
"name": "y",
- "value": "rightptplanumtemporale,leftprgprecentralgyrus,rightpogpostcentralgyrus,rightmtgmiddletemporalgyrus"
+ "value": "rightppplanumpolare"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -6563,56 +6372,28 @@
],
"output": {
"single": {
- "rightpogpostcentralgyrus": {
- "ppmi": {
- "data": {
- "std": 1.1737788484093188,
- "min": 6.3771,
- "max": 14.52,
- "lower_confidence": 9.288665969517861,
- "mean": 10.46244481792718,
- "upper_confidence": 11.636223666336498
- },
- "num_datapoints": 714
- }
- },
- "leftprgprecentralgyrus": {
+ "Right planum polare": {
"ppmi": {
"data": {
- "std": 1.4891187338355427,
- "min": 6.6789,
- "max": 17.86,
- "lower_confidence": 11.418158717144843,
- "mean": 12.907277450980386,
- "upper_confidence": 14.396396184815929
- },
- "num_datapoints": 714
- }
- },
- "rightmtgmiddletemporalgyrus": {
- "ppmi": {
- "data": {
- "std": 1.57434356141805,
- "min": 8.6731,
- "max": 20.7703,
- "lower_confidence": 12.7788585394223,
- "mean": 14.35320210084035,
- "upper_confidence": 15.927545662258401
+ "std": 0.2237844630087201,
+ "max": 2.9748,
+ "min": 1.4105,
+ "mean": 2.08182787114846
},
- "num_datapoints": 714
- }
- },
- "rightptplanumtemporale": {
- "ppmi": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
"data": {
- "std": 0.26190136951224824,
- "min": 1.1837,
- "max": 2.8503,
- "lower_confidence": 1.67118000303677,
- "mean": 1.9330813725490184,
- "upper_confidence": 2.1949827420612666
+ "std": 0.22820030579953618,
+ "max": 2.9434,
+ "min": 1.236,
+ "mean": 2.0271517162471393
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -6620,39 +6401,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightpogpostcentralgyrus": {
- "std": 1.1737788484093188,
- "min": 6.3771,
- "max": 14.52,
- "lower_confidence": 9.288665969517861,
- "mean": 10.46244481792718,
- "upper_confidence": 11.636223666336498
- },
- "leftprgprecentralgyrus": {
- "std": 1.4891187338355427,
- "min": 6.6789,
- "max": 17.86,
- "lower_confidence": 11.418158717144843,
- "mean": 12.907277450980386,
- "upper_confidence": 14.396396184815929
- },
- "rightmtgmiddletemporalgyrus": {
- "std": 1.57434356141805,
- "min": 8.6731,
- "max": 20.7703,
- "lower_confidence": 12.7788585394223,
- "mean": 14.35320210084035,
- "upper_confidence": 15.927545662258401
- },
- "rightptplanumtemporale": {
- "std": 0.26190136951224824,
- "min": 1.1837,
- "max": 2.8503,
- "lower_confidence": 1.67118000303677,
- "mean": 1.9330813725490184,
- "upper_confidence": 2.1949827420612666
+ "Right planum polare": {
+ "std": 0.2237844630087201,
+ "max": 2.9748,
+ "min": 1.4105,
+ "mean": 2.08182787114846
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right planum polare": {
+ "std": 0.22820030579953618,
+ "max": 2.9434,
+ "min": 1.236,
+ "mean": 2.0271517162471393
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -6665,7 +6435,7 @@
},
{
"name": "dataset",
- "value": "ppmi,edsd"
+ "value": "adni,ppmi"
},
{
"name": "filter",
@@ -6678,28 +6448,28 @@
],
"output": {
"single": {
- "leftmfcmedialfrontalcortex": {
+ "Left medial frontal cortex": {
"ppmi": {
"data": {
"std": 0.24109440138149815,
- "min": 1.1814,
"max": 2.7813,
- "lower_confidence": 1.6160131616437128,
- "mean": 1.857107563025211,
- "upper_confidence": 2.098201964406709
+ "min": 1.1814,
+ "mean": 1.857107563025211
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
- "edsd": {
+ "adni": {
"data": {
- "std": 0.28562958927228876,
- "min": 0.03454,
- "max": 3.0114,
- "lower_confidence": 1.4337684885309154,
- "mean": 1.719398077803204,
- "upper_confidence": 2.0050276670754927
+ "std": 0.2307118944209133,
+ "max": 2.59496,
+ "min": 0.967331,
+ "mean": 1.771309588180111
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -6707,28 +6477,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftmfcmedialfrontalcortex": {
+ "Left medial frontal cortex": {
"std": 0.24109440138149815,
- "min": 1.1814,
"max": 2.7813,
- "lower_confidence": 1.6160131616437128,
- "mean": 1.857107563025211,
- "upper_confidence": 2.098201964406709
+ "min": 1.1814,
+ "mean": 1.857107563025211
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
- "edsd": {
- "num_datapoints": 437,
+ "adni": {
+ "num_datapoints": 1066,
"data": {
- "leftmfcmedialfrontalcortex": {
- "std": 0.28562958927228876,
- "min": 0.03454,
- "max": 3.0114,
- "lower_confidence": 1.4337684885309154,
- "mean": 1.719398077803204,
- "upper_confidence": 2.0050276670754927
+ "Left medial frontal cortex": {
+ "std": 0.2307118944209133,
+ "max": 2.59496,
+ "min": 0.967331,
+ "mean": 1.771309588180111
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -6737,11 +6507,11 @@
"input": [
{
"name": "y",
- "value": "alzheimerbroadcategory"
+ "value": "leftpinsposteriorinsula"
},
{
"name": "dataset",
- "value": "adni,edsd,ppmi"
+ "value": "adni,ppmi"
},
{
"name": "filter",
@@ -6754,28 +6524,28 @@
],
"output": {
"single": {
- "alzheimerbroadcategory": {
+ "Left posterior insula": {
"ppmi": {
"data": {
- "Other": 714
+ "std": 0.25046887396227535,
+ "max": 3.0882,
+ "min": 1.7073,
+ "mean": 2.3584025210084025
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "Other": 576,
- "CN": 268,
- "AD": 222
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "Other": 76,
- "CN": 151,
- "AD": 141
+ "std": 0.26834864241107276,
+ "max": 3.38977,
+ "min": 1.6439,
+ "mean": 2.324148536585367
},
- "num_datapoints": 368
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -6783,30 +6553,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "alzheimerbroadcategory": {
- "Other": 714
+ "Left posterior insula": {
+ "std": 0.25046887396227535,
+ "max": 3.0882,
+ "min": 1.7073,
+ "mean": 2.3584025210084025
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "alzheimerbroadcategory": {
- "Other": 576,
- "CN": 268,
- "AD": 222
- }
- }
- },
- "edsd": {
- "num_datapoints": 368,
- "data": {
- "alzheimerbroadcategory": {
- "Other": 76,
- "CN": 151,
- "AD": 141
+ "Left posterior insula": {
+ "std": 0.26834864241107276,
+ "max": 3.38977,
+ "min": 1.6439,
+ "mean": 2.324148536585367
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -6815,11 +6583,11 @@
"input": [
{
"name": "y",
- "value": "rightfofrontaloperculum,leftangangulargyrus"
+ "value": "leftttgtransversetemporalgyrus,rightppplanumpolare,leftmsfgsuperiorfrontalgyrusmedialsegment"
},
{
"name": "dataset",
- "value": "ppmi,edsd,adni"
+ "value": "adni"
},
{
"name": "filter",
@@ -6832,140 +6600,71 @@
],
"output": {
"single": {
- "rightfofrontaloperculum": {
- "ppmi": {
- "data": {
- "std": 0.2138867750467644,
- "min": 1.005,
- "max": 2.8656,
- "lower_confidence": 1.7745322725722847,
- "mean": 1.988419047619049,
- "upper_confidence": 2.2023058226658137
- },
- "num_datapoints": 714
- },
+ "Right planum polare": {
"adni": {
"data": {
- "std": 0.2096317737595471,
- "min": 1.27596,
- "max": 2.76407,
- "lower_confidence": 1.7212063875912982,
- "mean": 1.9308381613508454,
- "upper_confidence": 2.1404699351103926
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.2874427541462988,
- "min": 0.0,
- "max": 2.5755,
- "lower_confidence": 1.6023536302930592,
- "mean": 1.889796384439358,
- "upper_confidence": 2.177239138585657
+ "std": 0.23177901975736745,
+ "max": 3.29822,
+ "min": 1.38045,
+ "mean": 2.0824456003752325
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
},
- "leftangangulargyrus": {
- "ppmi": {
- "data": {
- "std": 1.069219793238794,
- "min": 6.1273,
- "max": 13.5823,
- "lower_confidence": 8.433433147937679,
- "mean": 9.502652941176473,
- "upper_confidence": 10.571872734415267
- },
- "num_datapoints": 714
- },
+ "Left superior frontal gyrus medial segment": {
"adni": {
"data": {
- "std": 1.0431046959561834,
- "min": 5.75806,
- "max": 12.5288,
- "lower_confidence": 7.926796354700475,
- "mean": 8.969901050656658,
- "upper_confidence": 10.01300574661284
+ "std": 0.8463603180884212,
+ "max": 10.0876,
+ "min": 4.36533,
+ "mean": 6.9917569512195135
},
- "num_datapoints": 1066
- },
- "edsd": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "Left transverse temporal gyrus": {
+ "adni": {
"data": {
- "std": 1.1124976258123522,
- "min": 2.2506,
- "max": 12.0496,
- "lower_confidence": 7.64796301491991,
- "mean": 8.760460640732262,
- "upper_confidence": 9.872958266544615
+ "std": 0.22961750904868097,
+ "max": 2.41946,
+ "min": 0.911232,
+ "mean": 1.6001348893058158
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "rightfofrontaloperculum": {
- "std": 0.2138867750467644,
- "min": 1.005,
- "max": 2.8656,
- "lower_confidence": 1.7745322725722847,
- "mean": 1.988419047619049,
- "upper_confidence": 2.2023058226658137
- },
- "leftangangulargyrus": {
- "std": 1.069219793238794,
- "min": 6.1273,
- "max": 13.5823,
- "lower_confidence": 8.433433147937679,
- "mean": 9.502652941176473,
- "upper_confidence": 10.571872734415267
- }
- }
- },
"adni": {
"num_datapoints": 1066,
"data": {
- "rightfofrontaloperculum": {
- "std": 0.2096317737595471,
- "min": 1.27596,
- "max": 2.76407,
- "lower_confidence": 1.7212063875912982,
- "mean": 1.9308381613508454,
- "upper_confidence": 2.1404699351103926
+ "Right planum polare": {
+ "std": 0.23177901975736745,
+ "max": 3.29822,
+ "min": 1.38045,
+ "mean": 2.0824456003752325
},
- "leftangangulargyrus": {
- "std": 1.0431046959561834,
- "min": 5.75806,
- "max": 12.5288,
- "lower_confidence": 7.926796354700475,
- "mean": 8.969901050656658,
- "upper_confidence": 10.01300574661284
- }
- }
- },
- "edsd": {
- "num_datapoints": 437,
- "data": {
- "rightfofrontaloperculum": {
- "std": 0.2874427541462988,
- "min": 0.0,
- "max": 2.5755,
- "lower_confidence": 1.6023536302930592,
- "mean": 1.889796384439358,
- "upper_confidence": 2.177239138585657
+ "Left superior frontal gyrus medial segment": {
+ "std": 0.8463603180884212,
+ "max": 10.0876,
+ "min": 4.36533,
+ "mean": 6.9917569512195135
},
- "leftangangulargyrus": {
- "std": 1.1124976258123522,
- "min": 2.2506,
- "max": 12.0496,
- "lower_confidence": 7.64796301491991,
- "mean": 8.760460640732262,
- "upper_confidence": 9.872958266544615
+ "Left transverse temporal gyrus": {
+ "std": 0.22961750904868097,
+ "max": 2.41946,
+ "min": 0.911232,
+ "mean": 1.6001348893058158
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -6974,11 +6673,11 @@
"input": [
{
"name": "y",
- "value": "leftventraldc"
+ "value": "leftbasalforebrain,rightinflatvent,leftocpoccipitalpole,ppmicategory"
},
{
"name": "dataset",
- "value": "adni,ppmi"
+ "value": "ppmi"
},
{
"name": "filter",
@@ -6991,57 +6690,114 @@
],
"output": {
"single": {
- "leftventraldc": {
+ "Left Basal Forebrain": {
"ppmi": {
"data": {
- "std": 0.46039819411151933,
- "min": 3.5549,
- "max": 6.5984,
- "lower_confidence": 4.353136679838065,
- "mean": 4.8135348739495845,
- "upper_confidence": 5.273933068061104
+ "std": 0.037101710243741017,
+ "max": 0.51791,
+ "min": 0.26997,
+ "mean": 0.3988864985994397
},
- "num_datapoints": 714
- },
- "adni": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ }
+ },
+ "Right inferior lateral ventricle": {
+ "ppmi": {
+ "data": {
+ "std": 0.24167034641982418,
+ "max": 2.3673,
+ "min": 0.30037,
+ "mean": 0.6217093277310922
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ }
+ },
+ "Left occipital pole": {
+ "ppmi": {
"data": {
- "std": 0.45770226699424704,
- "min": 3.49504,
- "max": 6.1975,
- "lower_confidence": 4.24150286433783,
- "mean": 4.699205131332078,
- "upper_confidence": 5.156907398326325
+ "std": 0.5468835680768638,
+ "max": 5.8216,
+ "min": 2.0227,
+ "mean": 3.547528151260507
},
- "num_datapoints": 1066
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ }
+ },
+ "PPMI category": {
+ "ppmi": {
+ "data": {
+ "PRODROMA": {
+ "count": 45,
+ "percentage": 6.3
+ },
+ "HC": {
+ "count": 183,
+ "percentage": 25.63
+ },
+ "PD": {
+ "count": 405,
+ "percentage": 56.72
+ },
+ "GENPD": {
+ "count": 81,
+ "percentage": 11.34
+ }
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "leftventraldc": {
- "std": 0.46039819411151933,
- "min": 3.5549,
- "max": 6.5984,
- "lower_confidence": 4.353136679838065,
- "mean": 4.8135348739495845,
- "upper_confidence": 5.273933068061104
- }
- }
- },
- "adni": {
- "num_datapoints": 1066,
+ "ppmi": {
+ "num_datapoints": 714,
"data": {
- "leftventraldc": {
- "std": 0.45770226699424704,
- "min": 3.49504,
- "max": 6.1975,
- "lower_confidence": 4.24150286433783,
- "mean": 4.699205131332078,
- "upper_confidence": 5.156907398326325
- }
- }
+ "Left Basal Forebrain": {
+ "std": 0.037101710243741017,
+ "max": 0.51791,
+ "min": 0.26997,
+ "mean": 0.3988864985994397
+ },
+ "Right inferior lateral ventricle": {
+ "std": 0.24167034641982418,
+ "max": 2.3673,
+ "min": 0.30037,
+ "mean": 0.6217093277310922
+ },
+ "Left occipital pole": {
+ "std": 0.5468835680768638,
+ "max": 5.8216,
+ "min": 2.0227,
+ "mean": 3.547528151260507
+ },
+ "PPMI category": {
+ "PRODROMA": {
+ "count": 45,
+ "percentage": 6.3
+ },
+ "HC": {
+ "count": 183,
+ "percentage": 25.63
+ },
+ "PD": {
+ "count": 405,
+ "percentage": 56.72
+ },
+ "GENPD": {
+ "count": 81,
+ "percentage": 11.34
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
}
}
}
@@ -7050,11 +6806,11 @@
"input": [
{
"name": "y",
- "value": "leftpcuprecuneus,alzheimerbroadcategory"
+ "value": "leftententorhinalarea"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "edsd,adni"
},
{
"name": "filter",
@@ -7067,48 +6823,57 @@
],
"output": {
"single": {
- "alzheimerbroadcategory": {
- "edsd": {
+ "Left entorhinal area": {
+ "adni": {
"data": {
- "Other": 76,
- "CN": 151,
- "AD": 141
+ "std": 0.22347261465097515,
+ "max": 2.17829,
+ "min": 0.835883,
+ "mean": 1.5315773855534702
},
- "num_datapoints": 368
- }
- },
- "leftpcuprecuneus": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
"data": {
- "std": 1.2396762970143003,
- "min": 3.5147,
- "max": 15.0284,
- "lower_confidence": 8.948853908935366,
- "mean": 10.188530205949666,
- "upper_confidence": 11.428206502963967
+ "std": 0.2295528271274821,
+ "max": 2.4015,
+ "min": 0.39954,
+ "mean": 1.533638215102974
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Left entorhinal area": {
+ "std": 0.22347261465097515,
+ "max": 2.17829,
+ "min": 0.835883,
+ "mean": 1.5315773855534702
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
- "num_datapoints": 368,
+ "num_datapoints": 437,
"data": {
- "alzheimerbroadcategory": {
- "Other": 76,
- "CN": 151,
- "AD": 141
- },
- "leftpcuprecuneus": {
- "std": 1.1478794830715466,
- "min": 7.4883,
- "max": 15.0284,
- "lower_confidence": 9.043220788667588,
- "mean": 10.191100271739135,
- "upper_confidence": 11.338979754810682
+ "Left entorhinal area": {
+ "std": 0.2295528271274821,
+ "max": 2.4015,
+ "min": 0.39954,
+ "mean": 1.533638215102974
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -7117,11 +6882,11 @@
"input": [
{
"name": "y",
- "value": "leftlorglateralorbitalgyrus"
+ "value": "leftsplsuperiorparietallobule,rightpcggposteriorcingulategyrus"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "ppmi,edsd,adni"
},
{
"name": "filter",
@@ -7134,33 +6899,134 @@
],
"output": {
"single": {
- "leftlorglateralorbitalgyrus": {
+ "Right posterior cingulate gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.460302624281719,
+ "max": 5.8708,
+ "min": 2.5717,
+ "mean": 4.132762044817929
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.4451107892951035,
+ "max": 5.84324,
+ "min": 2.66131,
+ "mean": 3.958388921200751
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
"data": {
- "std": 0.3441693368879193,
- "min": 0.02822,
- "max": 3.0911,
- "lower_confidence": 1.9453626997253544,
- "mean": 2.2895320366132736,
- "upper_confidence": 2.633701373501193
+ "std": 0.471558326382487,
+ "max": 6.1239,
+ "min": 1.3402,
+ "mean": 3.860833867276889
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left superior parietal lobule": {
+ "ppmi": {
+ "data": {
+ "std": 1.2294137364390925,
+ "max": 14.5093,
+ "min": 6.546,
+ "mean": 10.889357843137244
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 1.2111485843446428,
+ "max": 14.7354,
+ "min": 6.8012,
+ "mean": 10.480733011257035
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 1.4211503518565514,
+ "max": 15.6076,
+ "min": 0.43408,
+ "mean": 10.10316910755148
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Right posterior cingulate gyrus": {
+ "std": 0.460302624281719,
+ "max": 5.8708,
+ "min": 2.5717,
+ "mean": 4.132762044817929
+ },
+ "Left superior parietal lobule": {
+ "std": 1.2294137364390925,
+ "max": 14.5093,
+ "min": 6.546,
+ "mean": 10.889357843137244
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Right posterior cingulate gyrus": {
+ "std": 0.4451107892951035,
+ "max": 5.84324,
+ "min": 2.66131,
+ "mean": 3.958388921200751
+ },
+ "Left superior parietal lobule": {
+ "std": 1.2111485843446428,
+ "max": 14.7354,
+ "min": 6.8012,
+ "mean": 10.480733011257035
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
"num_datapoints": 437,
"data": {
- "leftlorglateralorbitalgyrus": {
- "std": 0.3441693368879193,
- "min": 0.02822,
- "max": 3.0911,
- "lower_confidence": 1.9453626997253544,
- "mean": 2.2895320366132736,
- "upper_confidence": 2.633701373501193
+ "Right posterior cingulate gyrus": {
+ "std": 0.471558326382487,
+ "max": 6.1239,
+ "min": 1.3402,
+ "mean": 3.860833867276889
+ },
+ "Left superior parietal lobule": {
+ "std": 1.4211503518565514,
+ "max": 15.6076,
+ "min": 0.43408,
+ "mean": 10.10316910755148
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -7169,11 +7035,11 @@
"input": [
{
"name": "y",
- "value": "dataset"
+ "value": "leftttgtransversetemporalgyrus"
},
{
"name": "dataset",
- "value": "ppmi,adni"
+ "value": "adni,edsd,ppmi"
},
{
"name": "filter",
@@ -7186,18 +7052,39 @@
],
"output": {
"single": {
- "dataset": {
+ "Left transverse temporal gyrus": {
"ppmi": {
"data": {
- "ppmi": 714
+ "std": 0.24012150864065662,
+ "max": 2.9459,
+ "min": 1.043,
+ "mean": 1.64604243697479
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "adni": 1066
+ "std": 0.22961750904868097,
+ "max": 2.41946,
+ "min": 0.911232,
+ "mean": 1.6001348893058158
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.23466754490915628,
+ "max": 2.5225,
+ "min": 0.31108,
+ "mean": 1.5512805034324932
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -7205,18 +7092,41 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "dataset": {
- "ppmi": 714
+ "Left transverse temporal gyrus": {
+ "std": 0.24012150864065662,
+ "max": 2.9459,
+ "min": 1.043,
+ "mean": 1.64604243697479
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "dataset": {
- "adni": 1066
+ "Left transverse temporal gyrus": {
+ "std": 0.22961750904868097,
+ "max": 2.41946,
+ "min": 0.911232,
+ "mean": 1.6001348893058158
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Left transverse temporal gyrus": {
+ "std": 0.23466754490915628,
+ "max": 2.5225,
+ "min": 0.31108,
+ "mean": 1.5512805034324932
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -7225,11 +7135,11 @@
"input": [
{
"name": "y",
- "value": "lefttmptemporalpole,rightcaudate,rightitginferiortemporalgyrus,leftententorhinalarea,leftangangulargyrus"
+ "value": "rightamygdala,rightacgganteriorcingulategyrus,rightphgparahippocampalgyrus"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "edsd,ppmi"
},
{
"name": "filter",
@@ -7242,117 +7152,129 @@
],
"output": {
"single": {
- "leftententorhinalarea": {
- "edsd": {
+ "Right parahippocampal gyrus": {
+ "ppmi": {
"data": {
- "std": 0.2295528271274821,
- "min": 0.39954,
- "max": 2.4015,
- "lower_confidence": 1.304085387975492,
- "mean": 1.533638215102974,
- "upper_confidence": 1.763191042230456
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
},
- "num_datapoints": 437
- }
- },
- "rightcaudate": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"edsd": {
"data": {
- "std": 0.49782855822249866,
- "min": 0.0,
- "max": 4.2284,
- "lower_confidence": 2.300460274729448,
- "mean": 2.7982888329519464,
- "upper_confidence": 3.296117391174445
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "lefttmptemporalpole": {
- "edsd": {
+ "Right Amygdala": {
+ "ppmi": {
"data": {
- "std": 0.9280320758133737,
- "min": 2.5612,
- "max": 10.4928,
- "lower_confidence": 6.30652032693262,
- "mean": 7.234552402745994,
- "upper_confidence": 8.162584478559367
+ "std": 0.08859064024108448,
+ "max": 1.195,
+ "min": 0.59627,
+ "mean": 0.8821396778711479
},
- "num_datapoints": 437
- }
- },
- "leftangangulargyrus": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"edsd": {
"data": {
- "std": 1.1124976258123522,
- "min": 2.2506,
- "max": 12.0496,
- "lower_confidence": 7.64796301491991,
- "mean": 8.760460640732262,
- "upper_confidence": 9.872958266544615
+ "std": 0.1180423580639335,
+ "max": 1.2526,
+ "min": 0.18236,
+ "mean": 0.7968362700228833
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rightitginferiortemporalgyrus": {
+ "Right anterior cingulate gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.5221361273368813,
+ "max": 6.1209,
+ "min": 2.4783,
+ "mean": 4.12053977591036
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
"edsd": {
"data": {
- "std": 1.3749522944774804,
- "min": 5.5287,
- "max": 15.13,
- "lower_confidence": 9.585554341678126,
- "mean": 10.960506636155607,
- "upper_confidence": 12.335458930633088
+ "std": 0.641067542864868,
+ "max": 6.2992,
+ "min": 6e-05,
+ "mean": 3.975364210526319
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Right parahippocampal gyrus": {
+ "std": 0.26399744494277355,
+ "max": 3.9314,
+ "min": 2.1372,
+ "mean": 3.007853221288517
+ },
+ "Right Amygdala": {
+ "std": 0.08859064024108448,
+ "max": 1.195,
+ "min": 0.59627,
+ "mean": 0.8821396778711479
+ },
+ "Right anterior cingulate gyrus": {
+ "std": 0.5221361273368813,
+ "max": 6.1209,
+ "min": 2.4783,
+ "mean": 4.12053977591036
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
"edsd": {
"num_datapoints": 437,
"data": {
- "leftententorhinalarea": {
- "std": 0.2295528271274821,
- "min": 0.39954,
- "max": 2.4015,
- "lower_confidence": 1.304085387975492,
- "mean": 1.533638215102974,
- "upper_confidence": 1.763191042230456
+ "Right parahippocampal gyrus": {
+ "std": 0.29460553969086045,
+ "max": 3.8217,
+ "min": 1.593,
+ "mean": 2.812648283752861
},
- "rightcaudate": {
- "std": 0.49782855822249866,
- "min": 0.0,
- "max": 4.2284,
- "lower_confidence": 2.300460274729448,
- "mean": 2.7982888329519464,
- "upper_confidence": 3.296117391174445
- },
- "lefttmptemporalpole": {
- "std": 0.9280320758133737,
- "min": 2.5612,
- "max": 10.4928,
- "lower_confidence": 6.30652032693262,
- "mean": 7.234552402745994,
- "upper_confidence": 8.162584478559367
- },
- "leftangangulargyrus": {
- "std": 1.1124976258123522,
- "min": 2.2506,
- "max": 12.0496,
- "lower_confidence": 7.64796301491991,
- "mean": 8.760460640732262,
- "upper_confidence": 9.872958266544615
+ "Right Amygdala": {
+ "std": 0.1180423580639335,
+ "max": 1.2526,
+ "min": 0.18236,
+ "mean": 0.7968362700228833
},
- "rightitginferiortemporalgyrus": {
- "std": 1.3749522944774804,
- "min": 5.5287,
- "max": 15.13,
- "lower_confidence": 9.585554341678126,
- "mean": 10.960506636155607,
- "upper_confidence": 12.335458930633088
+ "Right anterior cingulate gyrus": {
+ "std": 0.641067542864868,
+ "max": 6.2992,
+ "min": 6e-05,
+ "mean": 3.975364210526319
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -7361,11 +7283,11 @@
"input": [
{
"name": "y",
- "value": "leftttgtransversetemporalgyrus"
+ "value": "leftmtgmiddletemporalgyrus,rightpoparietaloperculum,leftamygdala,neurodegenerativescategories"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "ppmi,adni"
},
{
"name": "filter",
@@ -7378,33 +7300,173 @@
],
"output": {
"single": {
- "leftttgtransversetemporalgyrus": {
+ "Right parietal operculum": {
"ppmi": {
"data": {
- "std": 0.24012150864065662,
- "min": 1.043,
- "max": 2.9459,
- "lower_confidence": 1.4059209283341332,
- "mean": 1.64604243697479,
- "upper_confidence": 1.8861639456154466
+ "std": 0.3164410640785628,
+ "max": 3.4457,
+ "min": 1.3588,
+ "mean": 2.2435745098039233
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.302360127286798,
+ "max": 3.34823,
+ "min": 1.30568,
+ "mean": 2.1712405065666003
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "Left middle temporal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 1.551868554861766,
+ "max": 20.5341,
+ "min": 8.8172,
+ "mean": 14.007781232492997
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 1.5742329008623004,
+ "max": 18.0946,
+ "min": 7.80915,
+ "mean": 13.004238367729828
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "Left Amygdala": {
+ "ppmi": {
+ "data": {
+ "std": 0.08856156116773851,
+ "max": 1.2276,
+ "min": 0.58602,
+ "mean": 0.8865948879551825
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.11762830515182261,
+ "max": 1.14743,
+ "min": 0.43301,
+ "mean": 0.7946160412757973
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "Neurodegeneratives categories": {
+ "ppmi": {
+ "data": {
+ "PD": {
+ "count": 405,
+ "percentage": 100.0
+ }
+ },
+ "num_datapoints": 405,
+ "num_nulls": 309,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "AD": {
+ "count": 222,
+ "percentage": 27.82
+ },
+ "MCI": {
+ "count": 576,
+ "percentage": 72.18
+ }
},
- "num_datapoints": 714
+ "num_datapoints": 798,
+ "num_nulls": 268,
+ "num_total": 1066
}
}
},
"model": {
"ppmi": {
- "num_datapoints": 714,
+ "num_datapoints": 405,
"data": {
- "leftttgtransversetemporalgyrus": {
- "std": 0.24012150864065662,
- "min": 1.043,
- "max": 2.9459,
- "lower_confidence": 1.4059209283341332,
- "mean": 1.64604243697479,
- "upper_confidence": 1.8861639456154466
+ "Right parietal operculum": {
+ "std": 0.31926594581832796,
+ "max": 3.4457,
+ "min": 1.4579,
+ "mean": 2.276629382716047
+ },
+ "Left middle temporal gyrus": {
+ "std": 1.573486508860831,
+ "max": 20.5341,
+ "min": 8.8172,
+ "mean": 14.15884469135803
+ },
+ "Left Amygdala": {
+ "std": 0.0896245932429763,
+ "max": 1.2276,
+ "min": 0.58602,
+ "mean": 0.8928810617283959
+ },
+ "Neurodegeneratives categories": {
+ "PD": {
+ "count": 405,
+ "percentage": 100.0
+ }
}
- }
+ },
+ "num_nulls": 309,
+ "num_total": 714
+ },
+ "adni": {
+ "num_datapoints": 798,
+ "data": {
+ "Right parietal operculum": {
+ "std": 0.3034362736254142,
+ "max": 3.34823,
+ "min": 1.30568,
+ "mean": 2.176129373433582
+ },
+ "Left middle temporal gyrus": {
+ "std": 1.592787203921901,
+ "max": 17.7739,
+ "min": 7.80915,
+ "mean": 12.861440438596485
+ },
+ "Left Amygdala": {
+ "std": 0.11953379583520243,
+ "max": 1.14743,
+ "min": 0.43301,
+ "mean": 0.778305813283208
+ },
+ "Neurodegeneratives categories": {
+ "AD": {
+ "count": 222,
+ "percentage": 27.82
+ },
+ "MCI": {
+ "count": 576,
+ "percentage": 72.18
+ }
+ }
+ },
+ "num_nulls": 268,
+ "num_total": 1066
}
}
}
@@ -7413,11 +7475,11 @@
"input": [
{
"name": "y",
- "value": "rightventraldc"
+ "value": "leftsplsuperiorparietallobule"
},
{
"name": "dataset",
- "value": "ppmi,edsd"
+ "value": "edsd"
},
{
"name": "filter",
@@ -7430,57 +7492,33 @@
],
"output": {
"single": {
- "rightventraldc": {
- "ppmi": {
- "data": {
- "std": 0.4423498812702896,
- "min": 3.3513,
- "max": 6.134,
- "lower_confidence": 4.1617370935196245,
- "mean": 4.604086974789914,
- "upper_confidence": 5.046436856060204
- },
- "num_datapoints": 714
- },
+ "Left superior parietal lobule": {
"edsd": {
"data": {
- "std": 0.45913502114859417,
- "min": 1.1205,
- "max": 6.6725,
- "lower_confidence": 3.996494727135159,
- "mean": 4.455629748283753,
- "upper_confidence": 4.914764769432347
+ "std": 1.4211503518565514,
+ "max": 15.6076,
+ "min": 0.43408,
+ "mean": 10.10316910755148
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
- "model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "rightventraldc": {
- "std": 0.4423498812702896,
- "min": 3.3513,
- "max": 6.134,
- "lower_confidence": 4.1617370935196245,
- "mean": 4.604086974789914,
- "upper_confidence": 5.046436856060204
- }
- }
- },
+ "model": {
"edsd": {
"num_datapoints": 437,
"data": {
- "rightventraldc": {
- "std": 0.45913502114859417,
- "min": 1.1205,
- "max": 6.6725,
- "lower_confidence": 3.996494727135159,
- "mean": 4.455629748283753,
- "upper_confidence": 4.914764769432347
+ "Left superior parietal lobule": {
+ "std": 1.4211503518565514,
+ "max": 15.6076,
+ "min": 0.43408,
+ "mean": 10.10316910755148
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -7489,11 +7527,11 @@
"input": [
{
"name": "y",
- "value": "leftsfgsuperiorfrontalgyrus,rightacgganteriorcingulategyrus"
+ "value": "alzheimerbroadcategory"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "ppmi,adni"
},
{
"name": "filter",
@@ -7506,54 +7544,73 @@
],
"output": {
"single": {
- "leftsfgsuperiorfrontalgyrus": {
- "edsd": {
+ "Alzheimer Broad Category": {
+ "ppmi": {
"data": {
- "std": 2.0788136881676316,
- "min": 2e-05,
- "max": 19.4519,
- "lower_confidence": 11.780755259200784,
- "mean": 13.859568947368416,
- "upper_confidence": 15.938382635536048
+ "Other": {
+ "count": 714,
+ "percentage": 100.0
+ }
},
- "num_datapoints": 437
- }
- },
- "rightacgganteriorcingulategyrus": {
- "edsd": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
"data": {
- "std": 0.641067542864868,
- "min": 6e-05,
- "max": 6.2992,
- "lower_confidence": 3.3342966676614507,
- "mean": 3.975364210526319,
- "upper_confidence": 4.616431753391187
+ "Other": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
"model": {
- "edsd": {
- "num_datapoints": 437,
+ "ppmi": {
+ "num_datapoints": 714,
"data": {
- "leftsfgsuperiorfrontalgyrus": {
- "std": 2.0788136881676316,
- "min": 2e-05,
- "max": 19.4519,
- "lower_confidence": 11.780755259200784,
- "mean": 13.859568947368416,
- "upper_confidence": 15.938382635536048
- },
- "rightacgganteriorcingulategyrus": {
- "std": 0.641067542864868,
- "min": 6e-05,
- "max": 6.2992,
- "lower_confidence": 3.3342966676614507,
- "mean": 3.975364210526319,
- "upper_confidence": 4.616431753391187
+ "Alzheimer Broad Category": {
+ "Other": {
+ "count": 714,
+ "percentage": 100.0
+ }
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Alzheimer Broad Category": {
+ "Other": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -7562,11 +7619,11 @@
"input": [
{
"name": "y",
- "value": "rightmfcmedialfrontalcortex"
+ "value": "leftacgganteriorcingulategyrus,rightstgsuperiortemporalgyrus,leftlorglateralorbitalgyrus,leftputamen"
},
{
"name": "dataset",
- "value": "ppmi,edsd,adni"
+ "value": "edsd,ppmi,adni"
},
{
"name": "filter",
@@ -7579,39 +7636,144 @@
],
"output": {
"single": {
- "rightmfcmedialfrontalcortex": {
+ "Left anterior cingulate gyrus": {
"ppmi": {
"data": {
- "std": 0.23878874110994408,
- "min": 1.2622,
- "max": 2.6877,
- "lower_confidence": 1.5948880095903355,
- "mean": 1.8336767507002796,
- "upper_confidence": 2.072465491810224
+ "std": 0.570731649471063,
+ "max": 6.7107,
+ "min": 3.16,
+ "mean": 4.687571988795517
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.22947153462222578,
- "min": 0.996768,
- "max": 2.57231,
- "lower_confidence": 1.5338460338580713,
- "mean": 1.763317568480297,
- "upper_confidence": 1.9927891031025229
+ "std": 0.559072095313077,
+ "max": 6.63962,
+ "min": 2.71921,
+ "mean": 4.562232120075047
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.6968857633215452,
+ "max": 6.5349,
+ "min": 0.00124,
+ "mean": 4.454173935926776
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right superior temporal gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.8518315591084247,
+ "max": 10.461,
+ "min": 4.8641,
+ "mean": 7.487990196078428
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.80236618035162,
+ "max": 10.0422,
+ "min": 4.79311,
+ "mean": 7.094850253283294
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.8707286950098423,
+ "max": 9.9739,
+ "min": 3.4409,
+ "mean": 7.07892883295195
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left lateral orbital gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.27379386980711085,
+ "max": 3.4108,
+ "min": 1.2581,
+ "mean": 2.4407063025210087
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.2567218332350192,
+ "max": 3.26841,
+ "min": 1.36195,
+ "mean": 2.3316048311444675
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.3441693368879193,
+ "max": 3.0911,
+ "min": 0.02822,
+ "mean": 2.2895320366132736
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left Putamen": {
+ "ppmi": {
+ "data": {
+ "std": 0.47085426013502896,
+ "max": 5.8814,
+ "min": 2.756,
+ "mean": 4.302202100840334
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.4305910374718846,
+ "max": 5.43217,
+ "min": 2.4163,
+ "mean": 3.7684943058161315
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.28747663908342974,
- "min": 0.03295,
- "max": 3.0691,
- "lower_confidence": 1.4236267247609633,
- "mean": 1.711103363844393,
- "upper_confidence": 1.998580002927823
+ "std": 0.5229357147425436,
+ "max": 5.3069,
+ "min": 0.32999,
+ "mean": 3.518661029748283
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -7619,41 +7781,95 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightmfcmedialfrontalcortex": {
- "std": 0.23878874110994408,
- "min": 1.2622,
- "max": 2.6877,
- "lower_confidence": 1.5948880095903355,
- "mean": 1.8336767507002796,
- "upper_confidence": 2.072465491810224
+ "Left anterior cingulate gyrus": {
+ "std": 0.570731649471063,
+ "max": 6.7107,
+ "min": 3.16,
+ "mean": 4.687571988795517
+ },
+ "Right superior temporal gyrus": {
+ "std": 0.8518315591084247,
+ "max": 10.461,
+ "min": 4.8641,
+ "mean": 7.487990196078428
+ },
+ "Left lateral orbital gyrus": {
+ "std": 0.27379386980711085,
+ "max": 3.4108,
+ "min": 1.2581,
+ "mean": 2.4407063025210087
+ },
+ "Left Putamen": {
+ "std": 0.47085426013502896,
+ "max": 5.8814,
+ "min": 2.756,
+ "mean": 4.302202100840334
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightmfcmedialfrontalcortex": {
- "std": 0.22947153462222578,
- "min": 0.996768,
- "max": 2.57231,
- "lower_confidence": 1.5338460338580713,
- "mean": 1.763317568480297,
- "upper_confidence": 1.9927891031025229
+ "Left anterior cingulate gyrus": {
+ "std": 0.559072095313077,
+ "max": 6.63962,
+ "min": 2.71921,
+ "mean": 4.562232120075047
+ },
+ "Right superior temporal gyrus": {
+ "std": 0.80236618035162,
+ "max": 10.0422,
+ "min": 4.79311,
+ "mean": 7.094850253283294
+ },
+ "Left lateral orbital gyrus": {
+ "std": 0.2567218332350192,
+ "max": 3.26841,
+ "min": 1.36195,
+ "mean": 2.3316048311444675
+ },
+ "Left Putamen": {
+ "std": 0.4305910374718846,
+ "max": 5.43217,
+ "min": 2.4163,
+ "mean": 3.7684943058161315
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightmfcmedialfrontalcortex": {
- "std": 0.28747663908342974,
- "min": 0.03295,
- "max": 3.0691,
- "lower_confidence": 1.4236267247609633,
- "mean": 1.711103363844393,
- "upper_confidence": 1.998580002927823
+ "Left anterior cingulate gyrus": {
+ "std": 0.6968857633215452,
+ "max": 6.5349,
+ "min": 0.00124,
+ "mean": 4.454173935926776
+ },
+ "Right superior temporal gyrus": {
+ "std": 0.8707286950098423,
+ "max": 9.9739,
+ "min": 3.4409,
+ "mean": 7.07892883295195
+ },
+ "Left lateral orbital gyrus": {
+ "std": 0.3441693368879193,
+ "max": 3.0911,
+ "min": 0.02822,
+ "mean": 2.2895320366132736
+ },
+ "Left Putamen": {
+ "std": 0.5229357147425436,
+ "max": 5.3069,
+ "min": 0.32999,
+ "mean": 3.518661029748283
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -7662,11 +7878,11 @@
"input": [
{
"name": "y",
- "value": "leftttgtransversetemporalgyrus,rightpcuprecuneus"
+ "value": "rightcerebralwhitematter"
},
{
"name": "dataset",
- "value": "ppmi,edsd"
+ "value": "edsd,ppmi"
},
{
"name": "filter",
@@ -7679,52 +7895,28 @@
],
"output": {
"single": {
- "rightpcuprecuneus": {
- "ppmi": {
- "data": {
- "std": 1.2126428460396093,
- "min": 7.213,
- "max": 16.2714,
- "lower_confidence": 9.785217237994008,
- "mean": 10.997860084033617,
- "upper_confidence": 12.210502930073226
- },
- "num_datapoints": 714
- },
- "edsd": {
- "data": {
- "std": 1.261096457884922,
- "min": 2.9491,
- "max": 14.9955,
- "lower_confidence": 8.949212466600217,
- "mean": 10.210308924485139,
- "upper_confidence": 11.47140538237006
- },
- "num_datapoints": 437
- }
- },
- "leftttgtransversetemporalgyrus": {
+ "Right Cerebral White Matter": {
"ppmi": {
"data": {
- "std": 0.24012150864065662,
- "min": 1.043,
- "max": 2.9459,
- "lower_confidence": 1.4059209283341332,
- "mean": 1.64604243697479,
- "upper_confidence": 1.8861639456154466
+ "std": 28.180269215245094,
+ "max": 339.0075,
+ "min": 165.1467,
+ "mean": 233.83928417366934
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"data": {
- "std": 0.23466754490915628,
- "min": 0.31108,
- "max": 2.5225,
- "lower_confidence": 1.316612958523337,
- "mean": 1.5512805034324932,
- "upper_confidence": 1.7859480483416494
+ "std": 31.759412531119775,
+ "max": 334.9526,
+ "min": 61.8725,
+ "mean": 214.37923592677333
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -7732,44 +7924,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightpcuprecuneus": {
- "std": 1.2126428460396093,
- "min": 7.213,
- "max": 16.2714,
- "lower_confidence": 9.785217237994008,
- "mean": 10.997860084033617,
- "upper_confidence": 12.210502930073226
- },
- "leftttgtransversetemporalgyrus": {
- "std": 0.24012150864065662,
- "min": 1.043,
- "max": 2.9459,
- "lower_confidence": 1.4059209283341332,
- "mean": 1.64604243697479,
- "upper_confidence": 1.8861639456154466
+ "Right Cerebral White Matter": {
+ "std": 28.180269215245094,
+ "max": 339.0075,
+ "min": 165.1467,
+ "mean": 233.83928417366934
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightpcuprecuneus": {
- "std": 1.261096457884922,
- "min": 2.9491,
- "max": 14.9955,
- "lower_confidence": 8.949212466600217,
- "mean": 10.210308924485139,
- "upper_confidence": 11.47140538237006
- },
- "leftttgtransversetemporalgyrus": {
- "std": 0.23466754490915628,
- "min": 0.31108,
- "max": 2.5225,
- "lower_confidence": 1.316612958523337,
- "mean": 1.5512805034324932,
- "upper_confidence": 1.7859480483416494
+ "Right Cerebral White Matter": {
+ "std": 31.759412531119775,
+ "max": 334.9526,
+ "min": 61.8725,
+ "mean": 214.37923592677333
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -7778,11 +7954,11 @@
"input": [
{
"name": "y",
- "value": "leftmsfgsuperiorfrontalgyrusmedialsegment,rightsplsuperiorparietallobule,leftocpoccipitalpole,leftitginferiortemporalgyrus,leftfugfusiformgyrus"
+ "value": "rightsogsuperioroccipitalgyrus"
},
{
"name": "dataset",
- "value": "adni,ppmi,edsd"
+ "value": "adni,edsd"
},
{
"name": "filter",
@@ -7795,317 +7971,199 @@
],
"output": {
"single": {
- "leftfugfusiformgyrus": {
- "ppmi": {
- "data": {
- "std": 0.6975626709639572,
- "min": 5.3667,
- "max": 9.9427,
- "lower_confidence": 6.773388029316155,
- "mean": 7.470950700280111,
- "upper_confidence": 8.16851337124407
- },
- "num_datapoints": 714
- },
+ "Right superior occipital gyrus": {
"adni": {
"data": {
- "std": 0.7354961379719027,
- "min": 4.85218,
- "max": 9.46734,
- "lower_confidence": 6.157211516812334,
- "mean": 6.892707654784236,
- "upper_confidence": 7.628203792756139
+ "std": 0.5218479602254812,
+ "max": 6.34525,
+ "min": 2.72391,
+ "mean": 4.21774289868668
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.803725589864498,
- "min": 3.9341,
- "max": 9.7987,
- "lower_confidence": 6.118949467343739,
- "mean": 6.922675057208236,
- "upper_confidence": 7.726400647072734
+ "std": 0.5215490971366722,
+ "max": 5.9885,
+ "min": 2.7508,
+ "mean": 4.092889931350114
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
- },
- "leftocpoccipitalpole": {
- "ppmi": {
- "data": {
- "std": 0.5468835680768638,
- "min": 2.0227,
- "max": 5.8216,
- "lower_confidence": 3.000644583183643,
- "mean": 3.547528151260507,
- "upper_confidence": 4.094411719337371
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.519101746316934,
- "min": 1.98618,
- "max": 5.5306,
- "lower_confidence": 2.8746552518068897,
- "mean": 3.393756998123824,
- "upper_confidence": 3.912858744440758
- },
- "num_datapoints": 1066
+ }
+ },
+ "model": {
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Right superior occipital gyrus": {
+ "std": 0.5218479602254812,
+ "max": 6.34525,
+ "min": 2.72391,
+ "mean": 4.21774289868668
+ }
},
- "edsd": {
- "data": {
- "std": 0.5465866341121534,
- "min": 1.2586,
- "max": 5.7639,
- "lower_confidence": 2.7662554711510032,
- "mean": 3.3128421052631567,
- "upper_confidence": 3.85942873937531
- },
- "num_datapoints": 437
- }
+ "num_nulls": 0,
+ "num_total": 1066
},
- "leftitginferiortemporalgyrus": {
- "ppmi": {
- "data": {
- "std": 1.2048783713787288,
- "min": 7.6335,
- "max": 15.0815,
- "lower_confidence": 10.175883813495222,
- "mean": 11.380762184873952,
- "upper_confidence": 12.585640556252681
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 1.247032782648002,
- "min": 6.60284,
- "max": 15.0442,
- "lower_confidence": 9.292439459378274,
- "mean": 10.539472242026276,
- "upper_confidence": 11.786505024674279
- },
- "num_datapoints": 1066
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right superior occipital gyrus": {
+ "std": 0.5215490971366722,
+ "max": 5.9885,
+ "min": 2.7508,
+ "mean": 4.092889931350114
+ }
},
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ }
+ }
+ },
+ {
+ "input": [
+ {
+ "name": "y",
+ "value": "righthippocampus,rightventraldc"
+ },
+ {
+ "name": "dataset",
+ "value": "edsd"
+ },
+ {
+ "name": "filter",
+ "value": ""
+ },
+ {
+ "name": "pathology",
+ "value": "dementia"
+ }
+ ],
+ "output": {
+ "single": {
+ "Right Hippocampus": {
"edsd": {
"data": {
- "std": 1.327469497055511,
- "min": 5.4301,
- "max": 14.593,
- "lower_confidence": 9.320070319878125,
- "mean": 10.647539816933635,
- "upper_confidence": 11.975009313989146
+ "std": 0.3755222858982453,
+ "max": 4.58,
+ "min": 1.1821,
+ "mean": 3.1844766590389035
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rightsplsuperiorparietallobule": {
- "ppmi": {
+ "Right Ventral DC": {
+ "edsd": {
"data": {
- "std": 1.1958387996701134,
- "min": 6.013,
- "max": 14.7662,
- "lower_confidence": 9.500160780161822,
- "mean": 10.695999579831936,
- "upper_confidence": 11.89183837950205
+ "std": 0.45913502114859417,
+ "max": 6.6725,
+ "min": 1.1205,
+ "mean": 4.455629748283753
},
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 1.185359793874018,
- "min": 7.16417,
- "max": 15.5338,
- "lower_confidence": 9.124502213630656,
- "mean": 10.309862007504673,
- "upper_confidence": 11.49522180137869
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ }
+ },
+ "model": {
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right Hippocampus": {
+ "std": 0.3755222858982453,
+ "max": 4.58,
+ "min": 1.1821,
+ "mean": 3.1844766590389035
},
- "num_datapoints": 1066
+ "Right Ventral DC": {
+ "std": 0.45913502114859417,
+ "max": 6.6725,
+ "min": 1.1205,
+ "mean": 4.455629748283753
+ }
},
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ }
+ }
+ },
+ {
+ "input": [
+ {
+ "name": "y",
+ "value": "rightinflatvent,cerebellarvermallobulesviiix"
+ },
+ {
+ "name": "dataset",
+ "value": "edsd"
+ },
+ {
+ "name": "filter",
+ "value": ""
+ },
+ {
+ "name": "pathology",
+ "value": "dementia"
+ }
+ ],
+ "output": {
+ "single": {
+ "Right inferior lateral ventricle": {
"edsd": {
"data": {
- "std": 1.4399070931190756,
- "min": 0.04308,
- "max": 15.7637,
- "lower_confidence": 8.477835309626936,
- "mean": 9.917742402746011,
- "upper_confidence": 11.357649495865086
+ "std": 0.5244373732937321,
+ "max": 4.1536,
+ "min": 0.32887,
+ "mean": 0.8827508924485121
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "leftmsfgsuperiorfrontalgyrusmedialsegment": {
- "ppmi": {
- "data": {
- "std": 0.8324350508412898,
- "min": 4.7405,
- "max": 10.2854,
- "lower_confidence": 6.264641839915011,
- "mean": 7.0970768907563,
- "upper_confidence": 7.92951194159759
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.8463603180884212,
- "min": 4.36533,
- "max": 10.0876,
- "lower_confidence": 6.145396633131092,
- "mean": 6.9917569512195135,
- "upper_confidence": 7.838117269307935
- },
- "num_datapoints": 1066
- },
+ "Cerebellar Vermal Lobules VIII-X": {
"edsd": {
"data": {
- "std": 1.0307225806270783,
- "min": 0.00018,
- "max": 9.8321,
- "lower_confidence": 5.649807785505644,
- "mean": 6.6805303661327216,
- "upper_confidence": 7.711252946759799
+ "std": 0.39524268294336257,
+ "max": 3.567,
+ "min": 0.0,
+ "mean": 2.498178970251716
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "leftfugfusiformgyrus": {
- "std": 0.6975626709639572,
- "min": 5.3667,
- "max": 9.9427,
- "lower_confidence": 6.773388029316155,
- "mean": 7.470950700280111,
- "upper_confidence": 8.16851337124407
- },
- "leftocpoccipitalpole": {
- "std": 0.5468835680768638,
- "min": 2.0227,
- "max": 5.8216,
- "lower_confidence": 3.000644583183643,
- "mean": 3.547528151260507,
- "upper_confidence": 4.094411719337371
- },
- "leftitginferiortemporalgyrus": {
- "std": 1.2048783713787288,
- "min": 7.6335,
- "max": 15.0815,
- "lower_confidence": 10.175883813495222,
- "mean": 11.380762184873952,
- "upper_confidence": 12.585640556252681
- },
- "rightsplsuperiorparietallobule": {
- "std": 1.1958387996701134,
- "min": 6.013,
- "max": 14.7662,
- "lower_confidence": 9.500160780161822,
- "mean": 10.695999579831936,
- "upper_confidence": 11.89183837950205
- },
- "leftmsfgsuperiorfrontalgyrusmedialsegment": {
- "std": 0.8324350508412898,
- "min": 4.7405,
- "max": 10.2854,
- "lower_confidence": 6.264641839915011,
- "mean": 7.0970768907563,
- "upper_confidence": 7.92951194159759
- }
- }
- },
- "adni": {
- "num_datapoints": 1066,
- "data": {
- "leftfugfusiformgyrus": {
- "std": 0.7354961379719027,
- "min": 4.85218,
- "max": 9.46734,
- "lower_confidence": 6.157211516812334,
- "mean": 6.892707654784236,
- "upper_confidence": 7.628203792756139
- },
- "leftocpoccipitalpole": {
- "std": 0.519101746316934,
- "min": 1.98618,
- "max": 5.5306,
- "lower_confidence": 2.8746552518068897,
- "mean": 3.393756998123824,
- "upper_confidence": 3.912858744440758
- },
- "leftitginferiortemporalgyrus": {
- "std": 1.247032782648002,
- "min": 6.60284,
- "max": 15.0442,
- "lower_confidence": 9.292439459378274,
- "mean": 10.539472242026276,
- "upper_confidence": 11.786505024674279
- },
- "rightsplsuperiorparietallobule": {
- "std": 1.185359793874018,
- "min": 7.16417,
- "max": 15.5338,
- "lower_confidence": 9.124502213630656,
- "mean": 10.309862007504673,
- "upper_confidence": 11.49522180137869
- },
- "leftmsfgsuperiorfrontalgyrusmedialsegment": {
- "std": 0.8463603180884212,
- "min": 4.36533,
- "max": 10.0876,
- "lower_confidence": 6.145396633131092,
- "mean": 6.9917569512195135,
- "upper_confidence": 7.838117269307935
- }
- }
- },
"edsd": {
"num_datapoints": 437,
"data": {
- "leftfugfusiformgyrus": {
- "std": 0.803725589864498,
- "min": 3.9341,
- "max": 9.7987,
- "lower_confidence": 6.118949467343739,
- "mean": 6.922675057208236,
- "upper_confidence": 7.726400647072734
- },
- "leftocpoccipitalpole": {
- "std": 0.5465866341121534,
- "min": 1.2586,
- "max": 5.7639,
- "lower_confidence": 2.7662554711510032,
- "mean": 3.3128421052631567,
- "upper_confidence": 3.85942873937531
- },
- "leftitginferiortemporalgyrus": {
- "std": 1.327469497055511,
- "min": 5.4301,
- "max": 14.593,
- "lower_confidence": 9.320070319878125,
- "mean": 10.647539816933635,
- "upper_confidence": 11.975009313989146
- },
- "rightsplsuperiorparietallobule": {
- "std": 1.4399070931190756,
- "min": 0.04308,
- "max": 15.7637,
- "lower_confidence": 8.477835309626936,
- "mean": 9.917742402746011,
- "upper_confidence": 11.357649495865086
+ "Right inferior lateral ventricle": {
+ "std": 0.5244373732937321,
+ "max": 4.1536,
+ "min": 0.32887,
+ "mean": 0.8827508924485121
},
- "leftmsfgsuperiorfrontalgyrusmedialsegment": {
- "std": 1.0307225806270783,
- "min": 0.00018,
- "max": 9.8321,
- "lower_confidence": 5.649807785505644,
- "mean": 6.6805303661327216,
- "upper_confidence": 7.711252946759799
+ "Cerebellar Vermal Lobules VIII-X": {
+ "std": 0.39524268294336257,
+ "max": 3.567,
+ "min": 0.0,
+ "mean": 2.498178970251716
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -8114,11 +8172,11 @@
"input": [
{
"name": "y",
- "value": "lefthippocampus"
+ "value": "rs190982_g"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "adni"
},
{
"name": "filter",
@@ -8131,33 +8189,49 @@
],
"output": {
"single": {
- "lefthippocampus": {
- "ppmi": {
+ "rs190982_G": {
+ "adni": {
"data": {
- "std": 0.2918412933538043,
- "min": 2.37,
- "max": 4.1781,
- "lower_confidence": 2.9186008635089418,
- "mean": 3.210442156862746,
- "upper_confidence": 3.50228345021655
+ "1": {
+ "count": 247,
+ "percentage": 46.08
+ },
+ "0": {
+ "count": 218,
+ "percentage": 40.67
+ },
+ "2": {
+ "count": 71,
+ "percentage": 13.25
+ }
},
- "num_datapoints": 714
+ "num_datapoints": 536,
+ "num_nulls": 530,
+ "num_total": 1066
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "adni": {
+ "num_datapoints": 536,
"data": {
- "lefthippocampus": {
- "std": 0.2918412933538043,
- "min": 2.37,
- "max": 4.1781,
- "lower_confidence": 2.9186008635089418,
- "mean": 3.210442156862746,
- "upper_confidence": 3.50228345021655
+ "rs190982_G": {
+ "1": {
+ "count": 247,
+ "percentage": 46.08
+ },
+ "0": {
+ "count": 218,
+ "percentage": 40.67
+ },
+ "2": {
+ "count": 71,
+ "percentage": 13.25
+ }
}
- }
+ },
+ "num_nulls": 530,
+ "num_total": 1066
}
}
}
@@ -8166,11 +8240,11 @@
"input": [
{
"name": "y",
- "value": "leftttgtransversetemporalgyrus"
+ "value": "leftocpoccipitalpole,leftamygdala,lefthippocampus"
},
{
"name": "dataset",
- "value": "edsd,ppmi"
+ "value": "ppmi,edsd,adni"
},
{
"name": "filter",
@@ -8183,28 +8257,109 @@
],
"output": {
"single": {
- "leftttgtransversetemporalgyrus": {
+ "Left Hippocampus": {
"ppmi": {
"data": {
- "std": 0.24012150864065662,
- "min": 1.043,
- "max": 2.9459,
- "lower_confidence": 1.4059209283341332,
- "mean": 1.64604243697479,
- "upper_confidence": 1.8861639456154466
+ "std": 0.2918412933538043,
+ "max": 4.1781,
+ "min": 2.37,
+ "mean": 3.210442156862746
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.3525825591468455,
+ "max": 3.97126,
+ "min": 1.82293,
+ "mean": 2.9310415666041294
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.23466754490915628,
- "min": 0.31108,
- "max": 2.5225,
- "lower_confidence": 1.316612958523337,
- "mean": 1.5512805034324932,
- "upper_confidence": 1.7859480483416494
+ "std": 0.3638672581047783,
+ "max": 4.4519,
+ "min": 1.3047,
+ "mean": 2.988286727688786
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left Amygdala": {
+ "ppmi": {
+ "data": {
+ "std": 0.08856156116773851,
+ "max": 1.2276,
+ "min": 0.58602,
+ "mean": 0.8865948879551825
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.11762830515182261,
+ "max": 1.14743,
+ "min": 0.43301,
+ "mean": 0.7946160412757973
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.12155421194350144,
+ "max": 1.3139,
+ "min": 0.18576,
+ "mean": 0.7934707322654461
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left occipital pole": {
+ "ppmi": {
+ "data": {
+ "std": 0.5468835680768638,
+ "max": 5.8216,
+ "min": 2.0227,
+ "mean": 3.547528151260507
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.519101746316934,
+ "max": 5.5306,
+ "min": 1.98618,
+ "mean": 3.393756998123824
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.5465866341121534,
+ "max": 5.7639,
+ "min": 1.2586,
+ "mean": 3.3128421052631567
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -8212,28 +8367,77 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "leftttgtransversetemporalgyrus": {
- "std": 0.24012150864065662,
- "min": 1.043,
- "max": 2.9459,
- "lower_confidence": 1.4059209283341332,
- "mean": 1.64604243697479,
- "upper_confidence": 1.8861639456154466
+ "Left Hippocampus": {
+ "std": 0.2918412933538043,
+ "max": 4.1781,
+ "min": 2.37,
+ "mean": 3.210442156862746
+ },
+ "Left Amygdala": {
+ "std": 0.08856156116773851,
+ "max": 1.2276,
+ "min": 0.58602,
+ "mean": 0.8865948879551825
+ },
+ "Left occipital pole": {
+ "std": 0.5468835680768638,
+ "max": 5.8216,
+ "min": 2.0227,
+ "mean": 3.547528151260507
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Left Hippocampus": {
+ "std": 0.3525825591468455,
+ "max": 3.97126,
+ "min": 1.82293,
+ "mean": 2.9310415666041294
+ },
+ "Left Amygdala": {
+ "std": 0.11762830515182261,
+ "max": 1.14743,
+ "min": 0.43301,
+ "mean": 0.7946160412757973
+ },
+ "Left occipital pole": {
+ "std": 0.519101746316934,
+ "max": 5.5306,
+ "min": 1.98618,
+ "mean": 3.393756998123824
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "leftttgtransversetemporalgyrus": {
- "std": 0.23466754490915628,
- "min": 0.31108,
- "max": 2.5225,
- "lower_confidence": 1.316612958523337,
- "mean": 1.5512805034324932,
- "upper_confidence": 1.7859480483416494
+ "Left Hippocampus": {
+ "std": 0.3638672581047783,
+ "max": 4.4519,
+ "min": 1.3047,
+ "mean": 2.988286727688786
+ },
+ "Left Amygdala": {
+ "std": 0.12155421194350144,
+ "max": 1.3139,
+ "min": 0.18576,
+ "mean": 0.7934707322654461
+ },
+ "Left occipital pole": {
+ "std": 0.5465866341121534,
+ "max": 5.7639,
+ "min": 1.2586,
+ "mean": 3.3128421052631567
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -8242,11 +8446,11 @@
"input": [
{
"name": "y",
- "value": "rightofugoccipitalfusiformgyrus"
+ "value": "rightfugfusiformgyrus"
},
{
"name": "dataset",
- "value": "ppmi,adni,edsd"
+ "value": "ppmi,edsd,adni"
},
{
"name": "filter",
@@ -8259,39 +8463,39 @@
],
"output": {
"single": {
- "rightofugoccipitalfusiformgyrus": {
- "ppmi": {
- "data": {
- "std": 0.4647318609205073,
- "min": 2.9714,
- "max": 6.6355,
- "lower_confidence": 3.955155253925429,
- "mean": 4.419887114845936,
- "upper_confidence": 4.884618975766443
+ "Right fusiform gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.7289503970808117,
+ "max": 10.3175,
+ "min": 5.4376,
+ "mean": 7.6663631652661115
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.46145362727304845,
- "min": 2.70356,
- "max": 5.85866,
- "lower_confidence": 3.6407967104380203,
- "mean": 4.102250337711069,
- "upper_confidence": 4.563703964984117
+ "std": 0.7853017578190323,
+ "max": 9.38824,
+ "min": 4.33262,
+ "mean": 7.087820375234526
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"data": {
- "std": 0.5215862428900659,
- "min": 1.0875,
- "max": 5.5638,
- "lower_confidence": 3.5656679905195428,
- "mean": 4.087254233409609,
- "upper_confidence": 4.608840476299674
+ "std": 0.8350911331339516,
+ "max": 9.4739,
+ "min": 3.8349,
+ "mean": 7.07725881006865
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -8299,41 +8503,41 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightofugoccipitalfusiformgyrus": {
- "std": 0.4647318609205073,
- "min": 2.9714,
- "max": 6.6355,
- "lower_confidence": 3.955155253925429,
- "mean": 4.419887114845936,
- "upper_confidence": 4.884618975766443
+ "Right fusiform gyrus": {
+ "std": 0.7289503970808117,
+ "max": 10.3175,
+ "min": 5.4376,
+ "mean": 7.6663631652661115
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightofugoccipitalfusiformgyrus": {
- "std": 0.46145362727304845,
- "min": 2.70356,
- "max": 5.85866,
- "lower_confidence": 3.6407967104380203,
- "mean": 4.102250337711069,
- "upper_confidence": 4.563703964984117
+ "Right fusiform gyrus": {
+ "std": 0.7853017578190323,
+ "max": 9.38824,
+ "min": 4.33262,
+ "mean": 7.087820375234526
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightofugoccipitalfusiformgyrus": {
- "std": 0.5215862428900659,
- "min": 1.0875,
- "max": 5.5638,
- "lower_confidence": 3.5656679905195428,
- "mean": 4.087254233409609,
- "upper_confidence": 4.608840476299674
+ "Right fusiform gyrus": {
+ "std": 0.8350911331339516,
+ "max": 9.4739,
+ "min": 3.8349,
+ "mean": 7.07725881006865
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -8342,11 +8546,11 @@
"input": [
{
"name": "y",
- "value": "agegroup"
+ "value": "rightgregyrusrectus"
},
{
"name": "dataset",
- "value": "ppmi,adni"
+ "value": "ppmi,adni,edsd"
},
{
"name": "filter",
@@ -8359,25 +8563,39 @@
],
"output": {
"single": {
- "agegroup": {
+ "Right gyrus rectus": {
"ppmi": {
"data": {
- "70-79y": 149,
- "60-69y": 281,
- "+80y": 19,
- "50-59y": 183,
- "-50y": 82
+ "std": 0.24748903866315008,
+ "max": 3.1352,
+ "min": 1.5184,
+ "mean": 2.131113165266107
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "70-79y": 544,
- "60-69y": 255,
- "+80y": 223,
- "50-59y": 44
+ "std": 0.22763018230952806,
+ "max": 2.8819,
+ "min": 0.993285,
+ "mean": 2.026677575046903
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.2878900981346353,
+ "max": 3.6083,
+ "min": 0.23156,
+ "mean": 1.9766640503432484
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -8385,25 +8603,41 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "agegroup": {
- "70-79y": 149,
- "60-69y": 281,
- "+80y": 19,
- "50-59y": 183,
- "-50y": 82
+ "Right gyrus rectus": {
+ "std": 0.24748903866315008,
+ "max": 3.1352,
+ "min": 1.5184,
+ "mean": 2.131113165266107
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "agegroup": {
- "70-79y": 544,
- "60-69y": 255,
- "+80y": 223,
- "50-59y": 44
+ "Right gyrus rectus": {
+ "std": 0.22763018230952806,
+ "max": 2.8819,
+ "min": 0.993285,
+ "mean": 2.026677575046903
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Right gyrus rectus": {
+ "std": 0.2878900981346353,
+ "max": 3.6083,
+ "min": 0.23156,
+ "mean": 1.9766640503432484
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -8412,7 +8646,7 @@
"input": [
{
"name": "y",
- "value": "leftpogpostcentralgyrus,leftmcggmiddlecingulategyrus,edsdcategory,agegroup"
+ "value": "leftopifgopercularpartoftheinferiorfrontalgyrus"
},
{
"name": "dataset",
@@ -8429,88 +8663,33 @@
],
"output": {
"single": {
- "leftpogpostcentralgyrus": {
- "edsd": {
- "data": {
- "std": 1.5992934941144763,
- "min": 0.0,
- "max": 15.2824,
- "lower_confidence": 9.46901263860864,
- "mean": 11.068306132723118,
- "upper_confidence": 12.667599626837594
- },
- "num_datapoints": 437
- }
- },
- "leftmcggmiddlecingulategyrus": {
+ "Left opercular part of the inferior frontal gyrus": {
"edsd": {
"data": {
- "std": 0.6877850942907141,
+ "std": 0.4885484103637412,
+ "max": 4.7752,
"min": 0.0,
- "max": 7.4817,
- "lower_confidence": 3.8923886356863995,
- "mean": 4.580173729977114,
- "upper_confidence": 5.2679588242678275
- },
- "num_datapoints": 437
- }
- },
- "agegroup": {
- "edsd": {
- "data": {
- "70-79y": 170,
- "60-69y": 117,
- "+80y": 47,
- "50-59y": 22,
- "-50y": 118
- },
- "num_datapoints": 474
- }
- },
- "edsdcategory": {
- "edsd": {
- "data": {
- "CN": 151,
- "MCI": 76,
- "AD": 141
+ "mean": 3.224807734553775
},
- "num_datapoints": 368
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
"edsd": {
- "num_datapoints": 368,
+ "num_datapoints": 437,
"data": {
- "leftpogpostcentralgyrus": {
- "std": 1.1940968474729903,
- "min": 8.4065,
- "max": 15.2824,
- "lower_confidence": 10.00529798948353,
- "mean": 11.19939483695652,
- "upper_confidence": 12.39349168442951
- },
- "leftmcggmiddlecingulategyrus": {
- "std": 0.5364439838345187,
- "min": 3.452,
- "max": 7.4817,
- "lower_confidence": 4.083005200948089,
- "mean": 4.619449184782608,
- "upper_confidence": 5.155893168617127
- },
- "agegroup": {
- "70-79y": 170,
- "60-69y": 117,
- "+80y": 47,
- "50-59y": 22,
- "-50y": 12
- },
- "edsdcategory": {
- "CN": 151,
- "MCI": 76,
- "AD": 141
+ "Left opercular part of the inferior frontal gyrus": {
+ "std": 0.4885484103637412,
+ "max": 4.7752,
+ "min": 0.0,
+ "mean": 3.224807734553775
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -8519,11 +8698,11 @@
"input": [
{
"name": "y",
- "value": "rs610932_a"
+ "value": "leftphgparahippocampalgyrus"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -8536,27 +8715,57 @@
],
"output": {
"single": {
- "rs610932_a": {
- "adni": {
+ "Left parahippocampal gyrus": {
+ "ppmi": {
"data": {
- "1": 459,
- "0": 285,
- "2": 145
+ "std": 0.2764222816120589,
+ "max": 4.1332,
+ "min": 2.3659,
+ "mean": 3.252158683473389
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "data": {
+ "std": 0.31241110382125886,
+ "max": 4.1027,
+ "min": 2.0225,
+ "mean": 3.037619908466817
},
- "num_datapoints": 889
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 889,
+ "ppmi": {
+ "num_datapoints": 714,
"data": {
- "rs610932_a": {
- "1": 459,
- "0": 285,
- "2": 145
+ "Left parahippocampal gyrus": {
+ "std": 0.2764222816120589,
+ "max": 4.1332,
+ "min": 2.3659,
+ "mean": 3.252158683473389
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Left parahippocampal gyrus": {
+ "std": 0.31241110382125886,
+ "max": 4.1027,
+ "min": 2.0225,
+ "mean": 3.037619908466817
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -8565,11 +8774,11 @@
"input": [
{
"name": "y",
- "value": "rs3851179_a,apoe4"
+ "value": "rightputamen,neurodegenerativescategories"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "ppmi,edsd"
},
{
"name": "filter",
@@ -8582,42 +8791,101 @@
],
"output": {
"single": {
- "apoe4": {
- "adni": {
+ "Neurodegeneratives categories": {
+ "ppmi": {
+ "data": {
+ "PD": {
+ "count": 405,
+ "percentage": 100.0
+ }
+ },
+ "num_datapoints": 405,
+ "num_nulls": 309,
+ "num_total": 714
+ },
+ "edsd": {
"data": {
- "1": 395,
- "0": 542,
- "2": 124
+ "AD": {
+ "count": 141,
+ "percentage": 64.98
+ },
+ "MCI": {
+ "count": 76,
+ "percentage": 35.02
+ }
},
- "num_datapoints": 1061
+ "num_datapoints": 217,
+ "num_nulls": 257,
+ "num_total": 474
}
},
- "rs3851179_a": {
- "adni": {
+ "Right Putamen": {
+ "ppmi": {
+ "data": {
+ "std": 0.4450538319782846,
+ "max": 5.5729,
+ "min": 2.6452,
+ "mean": 4.2039826330532195
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "edsd": {
"data": {
- "1": 393,
- "0": 391,
- "2": 108
+ "std": 0.5091629190935196,
+ "max": 4.8434,
+ "min": 0.23437,
+ "mean": 3.454221784897027
},
- "num_datapoints": 892
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 892,
+ "ppmi": {
+ "num_datapoints": 405,
"data": {
- "apoe4": {
- "1": 330,
- "0": 470,
- "2": 92
+ "Neurodegeneratives categories": {
+ "PD": {
+ "count": 405,
+ "percentage": 100.0
+ }
},
- "rs3851179_a": {
- "1": 393,
- "0": 391,
- "2": 108
+ "Right Putamen": {
+ "std": 0.4384943113938894,
+ "max": 5.5096,
+ "min": 3.0124,
+ "mean": 4.2410780246913555
}
- }
+ },
+ "num_nulls": 309,
+ "num_total": 714
+ },
+ "edsd": {
+ "num_datapoints": 217,
+ "data": {
+ "Neurodegeneratives categories": {
+ "AD": {
+ "count": 141,
+ "percentage": 64.98
+ },
+ "MCI": {
+ "count": 76,
+ "percentage": 35.02
+ }
+ },
+ "Right Putamen": {
+ "std": 0.44142411652884167,
+ "max": 4.8227,
+ "min": 2.1346,
+ "mean": 3.400547465437789
+ }
+ },
+ "num_nulls": 257,
+ "num_total": 474
}
}
}
@@ -8626,11 +8894,11 @@
"input": [
{
"name": "y",
- "value": "leftphgparahippocampalgyrus,rightmcggmiddlecingulategyrus"
+ "value": "leftsogsuperioroccipitalgyrus"
},
{
"name": "dataset",
- "value": "adni,edsd"
+ "value": "edsd"
},
{
"name": "filter",
@@ -8643,97 +8911,33 @@
],
"output": {
"single": {
- "leftphgparahippocampalgyrus": {
- "adni": {
- "data": {
- "std": 0.32137573174034656,
- "min": 2.10045,
- "max": 4.05192,
- "lower_confidence": 2.710869643494174,
- "mean": 3.032245375234521,
- "upper_confidence": 3.3536211069748676
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.31241110382125886,
- "min": 2.0225,
- "max": 4.1027,
- "lower_confidence": 2.7252088046455585,
- "mean": 3.037619908466817,
- "upper_confidence": 3.350031012288076
- },
- "num_datapoints": 437
- }
- },
- "rightmcggmiddlecingulategyrus": {
- "adni": {
- "data": {
- "std": 0.5527900622143483,
- "min": 2.93644,
- "max": 9.84033,
- "lower_confidence": 3.996453174183407,
- "mean": 4.549243236397755,
- "upper_confidence": 5.1020332986121035
- },
- "num_datapoints": 1066
- },
+ "Left superior occipital gyrus": {
"edsd": {
"data": {
- "std": 0.6823909372576454,
- "min": 0.0,
- "max": 8.5193,
- "lower_confidence": 3.779219154275535,
- "mean": 4.4616100915331804,
- "upper_confidence": 5.144001028790826
+ "std": 0.46053122634459503,
+ "max": 4.9429,
+ "min": 2.0489,
+ "mean": 3.4159597254004597
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 1066,
- "data": {
- "leftphgparahippocampalgyrus": {
- "std": 0.32137573174034656,
- "min": 2.10045,
- "max": 4.05192,
- "lower_confidence": 2.710869643494174,
- "mean": 3.032245375234521,
- "upper_confidence": 3.3536211069748676
- },
- "rightmcggmiddlecingulategyrus": {
- "std": 0.5527900622143483,
- "min": 2.93644,
- "max": 9.84033,
- "lower_confidence": 3.996453174183407,
- "mean": 4.549243236397755,
- "upper_confidence": 5.1020332986121035
- }
- }
- },
"edsd": {
"num_datapoints": 437,
"data": {
- "leftphgparahippocampalgyrus": {
- "std": 0.31241110382125886,
- "min": 2.0225,
- "max": 4.1027,
- "lower_confidence": 2.7252088046455585,
- "mean": 3.037619908466817,
- "upper_confidence": 3.350031012288076
- },
- "rightmcggmiddlecingulategyrus": {
- "std": 0.6823909372576454,
- "min": 0.0,
- "max": 8.5193,
- "lower_confidence": 3.779219154275535,
- "mean": 4.4616100915331804,
- "upper_confidence": 5.144001028790826
+ "Left superior occipital gyrus": {
+ "std": 0.46053122634459503,
+ "max": 4.9429,
+ "min": 2.0489,
+ "mean": 3.4159597254004597
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -8742,11 +8946,11 @@
"input": [
{
"name": "y",
- "value": "leftphgparahippocampalgyrus,rightmpogpostcentralgyrusmedialsegment"
+ "value": "subjectageyears"
},
{
"name": "dataset",
- "value": "adni,ppmi"
+ "value": "adni"
},
{
"name": "filter",
@@ -8759,97 +8963,33 @@
],
"output": {
"single": {
- "rightmpogpostcentralgyrusmedialsegment": {
- "ppmi": {
- "data": {
- "std": 0.15216133131407455,
- "min": 0.72321,
- "max": 1.804,
- "lower_confidence": 0.953653416585085,
- "mean": 1.1058147478991596,
- "upper_confidence": 1.2579760792132342
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.15251070421228516,
- "min": 0.694227,
- "max": 1.64085,
- "lower_confidence": 0.9247235002905282,
- "mean": 1.0772342045028134,
- "upper_confidence": 1.2297449087150985
- },
- "num_datapoints": 1066
- }
- },
- "leftphgparahippocampalgyrus": {
- "ppmi": {
- "data": {
- "std": 0.2764222816120589,
- "min": 2.3659,
- "max": 4.1332,
- "lower_confidence": 2.9757364018613304,
- "mean": 3.252158683473389,
- "upper_confidence": 3.528580965085448
- },
- "num_datapoints": 714
- },
+ "Age Years": {
"adni": {
"data": {
- "std": 0.32137573174034656,
- "min": 2.10045,
- "max": 4.05192,
- "lower_confidence": 2.710869643494174,
- "mean": 3.032245375234521,
- "upper_confidence": 3.3536211069748676
+ "std": 7.361969330968985,
+ "max": 90,
+ "min": 55,
+ "mean": 73.26078799249531
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "rightmpogpostcentralgyrusmedialsegment": {
- "std": 0.15216133131407455,
- "min": 0.72321,
- "max": 1.804,
- "lower_confidence": 0.953653416585085,
- "mean": 1.1058147478991596,
- "upper_confidence": 1.2579760792132342
- },
- "leftphgparahippocampalgyrus": {
- "std": 0.2764222816120589,
- "min": 2.3659,
- "max": 4.1332,
- "lower_confidence": 2.9757364018613304,
- "mean": 3.252158683473389,
- "upper_confidence": 3.528580965085448
- }
- }
- },
"adni": {
"num_datapoints": 1066,
"data": {
- "rightmpogpostcentralgyrusmedialsegment": {
- "std": 0.15251070421228516,
- "min": 0.694227,
- "max": 1.64085,
- "lower_confidence": 0.9247235002905282,
- "mean": 1.0772342045028134,
- "upper_confidence": 1.2297449087150985
- },
- "leftphgparahippocampalgyrus": {
- "std": 0.32137573174034656,
- "min": 2.10045,
- "max": 4.05192,
- "lower_confidence": 2.710869643494174,
- "mean": 3.032245375234521,
- "upper_confidence": 3.3536211069748676
+ "Age Years": {
+ "std": 7.361969330968985,
+ "max": 90,
+ "min": 55,
+ "mean": 73.26078799249531
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -8858,11 +8998,11 @@
"input": [
{
"name": "y",
- "value": "rightaccumbensarea"
+ "value": "rightscasubcallosalarea"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "edsd,adni"
},
{
"name": "filter",
@@ -8875,33 +9015,57 @@
],
"output": {
"single": {
- "rightaccumbensarea": {
- "ppmi": {
+ "Right subcallosal area": {
+ "adni": {
+ "data": {
+ "std": 0.1411262001585514,
+ "max": 1.7185,
+ "min": 0.750461,
+ "mean": 1.1692831913696071
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
"data": {
- "std": 0.049555791415867224,
- "min": 0.19576,
- "max": 0.55442,
- "lower_confidence": 0.36195707973259156,
- "mean": 0.4115128711484588,
- "upper_confidence": 0.46106866256432605
+ "std": 0.14895662653876302,
+ "max": 1.6682,
+ "min": 0.43488,
+ "mean": 1.1617486956521745
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Right subcallosal area": {
+ "std": 0.1411262001585514,
+ "max": 1.7185,
+ "min": 0.750461,
+ "mean": 1.1692831913696071
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
"data": {
- "rightaccumbensarea": {
- "std": 0.049555791415867224,
- "min": 0.19576,
- "max": 0.55442,
- "lower_confidence": 0.36195707973259156,
- "mean": 0.4115128711484588,
- "upper_confidence": 0.46106866256432605
+ "Right subcallosal area": {
+ "std": 0.14895662653876302,
+ "max": 1.6682,
+ "min": 0.43488,
+ "mean": 1.1617486956521745
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -8910,11 +9074,11 @@
"input": [
{
"name": "y",
- "value": "alzheimerbroadcategory"
+ "value": "adnicategory,agegroup"
},
{
"name": "dataset",
- "value": "adni,ppmi"
+ "value": "adni"
},
{
"name": "filter",
@@ -8927,41 +9091,92 @@
],
"output": {
"single": {
- "alzheimerbroadcategory": {
- "ppmi": {
+ "ADNI category": {
+ "adni": {
"data": {
- "Other": 714
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "MCI": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
},
- "num_datapoints": 714
- },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "agegroup": {
"adni": {
"data": {
- "Other": 576,
- "CN": 268,
- "AD": 222
- },
- "num_datapoints": 1066
+ "70-79y": {
+ "count": 544,
+ "percentage": 51.03
+ },
+ "60-69y": {
+ "count": 255,
+ "percentage": 23.92
+ },
+ "+80y": {
+ "count": 223,
+ "percentage": 20.92
+ },
+ "50-59y": {
+ "count": 44,
+ "percentage": 4.13
+ }
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "alzheimerbroadcategory": {
- "Other": 714
- }
- }
- },
"adni": {
"num_datapoints": 1066,
"data": {
- "alzheimerbroadcategory": {
- "Other": 576,
- "CN": 268,
- "AD": 222
- }
- }
+ "ADNI category": {
+ "CN": {
+ "count": 268,
+ "percentage": 25.14
+ },
+ "MCI": {
+ "count": 576,
+ "percentage": 54.03
+ },
+ "AD": {
+ "count": 222,
+ "percentage": 20.83
+ }
+ },
+ "agegroup": {
+ "70-79y": {
+ "count": 544,
+ "percentage": 51.03
+ },
+ "60-69y": {
+ "count": 255,
+ "percentage": 23.92
+ },
+ "+80y": {
+ "count": 223,
+ "percentage": 20.92
+ },
+ "50-59y": {
+ "count": 44,
+ "percentage": 4.13
+ }
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -8970,11 +9185,11 @@
"input": [
{
"name": "y",
- "value": "rightporgposteriororbitalgyrus,leftthalamusproper,leftmfcmedialfrontalcortex,leftitginferiortemporalgyrus,rightaccumbensarea"
+ "value": "leftofugoccipitalfusiformgyrus,leftttgtransversetemporalgyrus,leftpcggposteriorcingulategyrus"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "edsd"
},
{
"name": "filter",
@@ -8987,117 +9202,71 @@
],
"output": {
"single": {
- "leftmfcmedialfrontalcortex": {
- "ppmi": {
- "data": {
- "std": 0.24109440138149815,
- "min": 1.1814,
- "max": 2.7813,
- "lower_confidence": 1.6160131616437128,
- "mean": 1.857107563025211,
- "upper_confidence": 2.098201964406709
- },
- "num_datapoints": 714
- }
- },
- "rightporgposteriororbitalgyrus": {
- "ppmi": {
- "data": {
- "std": 0.24164282210287388,
- "min": 1.369,
- "max": 3.2702,
- "lower_confidence": 2.1231592787374636,
- "mean": 2.3648021008403375,
- "upper_confidence": 2.6064449229432114
- },
- "num_datapoints": 714
- }
- },
- "leftitginferiortemporalgyrus": {
- "ppmi": {
+ "Left occipital fusiform gyrus": {
+ "edsd": {
"data": {
- "std": 1.2048783713787288,
- "min": 7.6335,
- "max": 15.0815,
- "lower_confidence": 10.175883813495222,
- "mean": 11.380762184873952,
- "upper_confidence": 12.585640556252681
+ "std": 0.5335674387349483,
+ "max": 5.784,
+ "min": 0.40331,
+ "mean": 4.100505743707095
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rightaccumbensarea": {
- "ppmi": {
+ "Left posterior cingulate gyrus": {
+ "edsd": {
"data": {
- "std": 0.049555791415867224,
- "min": 0.19576,
- "max": 0.55442,
- "lower_confidence": 0.36195707973259156,
- "mean": 0.4115128711484588,
- "upper_confidence": 0.46106866256432605
+ "std": 0.5213972473956632,
+ "max": 6.5954,
+ "min": 1.534,
+ "mean": 4.21953729977117
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "leftthalamusproper": {
- "ppmi": {
+ "Left transverse temporal gyrus": {
+ "edsd": {
"data": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
+ "std": 0.23466754490915628,
+ "max": 2.5225,
+ "min": 0.31108,
+ "mean": 1.5512805034324932
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "edsd": {
+ "num_datapoints": 437,
"data": {
- "leftmfcmedialfrontalcortex": {
- "std": 0.24109440138149815,
- "min": 1.1814,
- "max": 2.7813,
- "lower_confidence": 1.6160131616437128,
- "mean": 1.857107563025211,
- "upper_confidence": 2.098201964406709
- },
- "rightporgposteriororbitalgyrus": {
- "std": 0.24164282210287388,
- "min": 1.369,
- "max": 3.2702,
- "lower_confidence": 2.1231592787374636,
- "mean": 2.3648021008403375,
- "upper_confidence": 2.6064449229432114
- },
- "leftitginferiortemporalgyrus": {
- "std": 1.2048783713787288,
- "min": 7.6335,
- "max": 15.0815,
- "lower_confidence": 10.175883813495222,
- "mean": 11.380762184873952,
- "upper_confidence": 12.585640556252681
+ "Left occipital fusiform gyrus": {
+ "std": 0.5335674387349483,
+ "max": 5.784,
+ "min": 0.40331,
+ "mean": 4.100505743707095
},
- "rightaccumbensarea": {
- "std": 0.049555791415867224,
- "min": 0.19576,
- "max": 0.55442,
- "lower_confidence": 0.36195707973259156,
- "mean": 0.4115128711484588,
- "upper_confidence": 0.46106866256432605
+ "Left posterior cingulate gyrus": {
+ "std": 0.5213972473956632,
+ "max": 6.5954,
+ "min": 1.534,
+ "mean": 4.21953729977117
},
- "leftthalamusproper": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
+ "Left transverse temporal gyrus": {
+ "std": 0.23466754490915628,
+ "max": 2.5225,
+ "min": 0.31108,
+ "mean": 1.5512805034324932
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -9106,11 +9275,11 @@
"input": [
{
"name": "y",
- "value": "rightsmcsupplementarymotorcortex,rightgregyrusrectus,rightbasalforebrain,leftacgganteriorcingulategyrus,rightaorganteriororbitalgyrus,leftpoparietaloperculum,leftporgposteriororbitalgyrus,rightocpoccipitalpole,leftmfgmiddlefrontalgyrus"
+ "value": "rightppplanumpolare,leftfofrontaloperculum"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "adni,ppmi,edsd"
},
{
"name": "filter",
@@ -9123,201 +9292,134 @@
],
"output": {
"single": {
- "rightgregyrusrectus": {
- "edsd": {
+ "Right planum polare": {
+ "ppmi": {
"data": {
- "std": 0.2878900981346353,
- "min": 0.23156,
- "max": 3.6083,
- "lower_confidence": 1.6887739522086131,
- "mean": 1.9766640503432484,
- "upper_confidence": 2.2645541484778837
+ "std": 0.2237844630087201,
+ "max": 2.9748,
+ "min": 1.4105,
+ "mean": 2.08182787114846
},
- "num_datapoints": 437
- }
- },
- "leftmfgmiddlefrontalgyrus": {
- "edsd": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
"data": {
- "std": 2.694403625595296,
- "min": 0.0,
- "max": 25.1051,
- "lower_confidence": 15.230307816052292,
- "mean": 17.924711441647588,
- "upper_confidence": 20.619115067242884
+ "std": 0.23177901975736745,
+ "max": 3.29822,
+ "min": 1.38045,
+ "mean": 2.0824456003752325
},
- "num_datapoints": 437
- }
- },
- "rightsmcsupplementarymotorcortex": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
"data": {
- "std": 0.7735918652996528,
- "min": 0.0,
- "max": 8.6997,
- "lower_confidence": 4.36763765415115,
- "mean": 5.141229519450803,
- "upper_confidence": 5.914821384750456
+ "std": 0.22820030579953618,
+ "max": 2.9434,
+ "min": 1.236,
+ "mean": 2.0271517162471393
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rightocpoccipitalpole": {
- "edsd": {
+ "Left frontal operculum": {
+ "ppmi": {
"data": {
- "std": 0.4823000107686516,
- "min": 1.5521,
- "max": 5.4531,
- "lower_confidence": 2.3823471288194478,
- "mean": 2.8646471395880995,
- "upper_confidence": 3.346947150356751
+ "std": 0.22111566635733293,
+ "max": 2.9576,
+ "min": 1.0498,
+ "mean": 2.0069130252100833
},
- "num_datapoints": 437
- }
- },
- "leftacgganteriorcingulategyrus": {
- "edsd": {
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
"data": {
- "std": 0.6968857633215452,
- "min": 0.00124,
- "max": 6.5349,
- "lower_confidence": 3.757288172605231,
- "mean": 4.454173935926776,
- "upper_confidence": 5.1510596992483215
+ "std": 0.21028668217266916,
+ "max": 2.73465,
+ "min": 1.31745,
+ "mean": 1.9391248874296443
},
- "num_datapoints": 437
- }
- },
- "rightaorganteriororbitalgyrus": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
"edsd": {
"data": {
- "std": 0.27829646493901633,
- "min": 0.0,
- "max": 2.7957,
- "lower_confidence": 1.4183420476467954,
- "mean": 1.6966385125858117,
- "upper_confidence": 1.974934977524828
+ "std": 0.279815619705402,
+ "max": 2.6485,
+ "min": 1e-05,
+ "mean": 1.8939826773455364
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
- },
- "leftporgposteriororbitalgyrus": {
- "edsd": {
- "data": {
- "std": 0.29568506180046333,
- "min": 0.90385,
- "max": 3.2494,
- "lower_confidence": 2.1159880503276827,
- "mean": 2.411673112128146,
- "upper_confidence": 2.707358173928609
+ }
+ },
+ "model": {
+ "ppmi": {
+ "num_datapoints": 714,
+ "data": {
+ "Right planum polare": {
+ "std": 0.2237844630087201,
+ "max": 2.9748,
+ "min": 1.4105,
+ "mean": 2.08182787114846
},
- "num_datapoints": 437
- }
+ "Left frontal operculum": {
+ "std": 0.22111566635733293,
+ "max": 2.9576,
+ "min": 1.0498,
+ "mean": 2.0069130252100833
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
- "leftpoparietaloperculum": {
- "edsd": {
- "data": {
- "std": 0.362051053063454,
- "min": 0.02077,
- "max": 3.2184,
- "lower_confidence": 1.944144438927393,
- "mean": 2.306195491990847,
- "upper_confidence": 2.668246545054301
+ "adni": {
+ "num_datapoints": 1066,
+ "data": {
+ "Right planum polare": {
+ "std": 0.23177901975736745,
+ "max": 3.29822,
+ "min": 1.38045,
+ "mean": 2.0824456003752325
},
- "num_datapoints": 437
- }
+ "Left frontal operculum": {
+ "std": 0.21028668217266916,
+ "max": 2.73465,
+ "min": 1.31745,
+ "mean": 1.9391248874296443
+ }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
},
- "rightbasalforebrain": {
- "edsd": {
- "data": {
- "std": 0.04123069309725813,
- "min": 0.13082,
- "max": 0.57889,
- "lower_confidence": 0.33022324282951543,
- "mean": 0.37145393592677356,
- "upper_confidence": 0.4126846290240317
- },
- "num_datapoints": 437
- }
- }
- },
- "model": {
"edsd": {
"num_datapoints": 437,
"data": {
- "rightgregyrusrectus": {
- "std": 0.2878900981346353,
- "min": 0.23156,
- "max": 3.6083,
- "lower_confidence": 1.6887739522086131,
- "mean": 1.9766640503432484,
- "upper_confidence": 2.2645541484778837
+ "Right planum polare": {
+ "std": 0.22820030579953618,
+ "max": 2.9434,
+ "min": 1.236,
+ "mean": 2.0271517162471393
},
- "leftmfgmiddlefrontalgyrus": {
- "std": 2.694403625595296,
- "min": 0.0,
- "max": 25.1051,
- "lower_confidence": 15.230307816052292,
- "mean": 17.924711441647588,
- "upper_confidence": 20.619115067242884
- },
- "rightsmcsupplementarymotorcortex": {
- "std": 0.7735918652996528,
- "min": 0.0,
- "max": 8.6997,
- "lower_confidence": 4.36763765415115,
- "mean": 5.141229519450803,
- "upper_confidence": 5.914821384750456
- },
- "rightocpoccipitalpole": {
- "std": 0.4823000107686516,
- "min": 1.5521,
- "max": 5.4531,
- "lower_confidence": 2.3823471288194478,
- "mean": 2.8646471395880995,
- "upper_confidence": 3.346947150356751
- },
- "leftacgganteriorcingulategyrus": {
- "std": 0.6968857633215452,
- "min": 0.00124,
- "max": 6.5349,
- "lower_confidence": 3.757288172605231,
- "mean": 4.454173935926776,
- "upper_confidence": 5.1510596992483215
- },
- "rightaorganteriororbitalgyrus": {
- "std": 0.27829646493901633,
- "min": 0.0,
- "max": 2.7957,
- "lower_confidence": 1.4183420476467954,
- "mean": 1.6966385125858117,
- "upper_confidence": 1.974934977524828
- },
- "leftporgposteriororbitalgyrus": {
- "std": 0.29568506180046333,
- "min": 0.90385,
- "max": 3.2494,
- "lower_confidence": 2.1159880503276827,
- "mean": 2.411673112128146,
- "upper_confidence": 2.707358173928609
- },
- "leftpoparietaloperculum": {
- "std": 0.362051053063454,
- "min": 0.02077,
- "max": 3.2184,
- "lower_confidence": 1.944144438927393,
- "mean": 2.306195491990847,
- "upper_confidence": 2.668246545054301
- },
- "rightbasalforebrain": {
- "std": 0.04123069309725813,
- "min": 0.13082,
- "max": 0.57889,
- "lower_confidence": 0.33022324282951543,
- "mean": 0.37145393592677356,
- "upper_confidence": 0.4126846290240317
+ "Left frontal operculum": {
+ "std": 0.279815619705402,
+ "max": 2.6485,
+ "min": 1e-05,
+ "mean": 1.8939826773455364
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -9326,11 +9428,11 @@
"input": [
{
"name": "y",
- "value": "rightaorganteriororbitalgyrus,leftainsanteriorinsula"
+ "value": "leftstgsuperiortemporalgyrus,leftsogsuperioroccipitalgyrus,rs3865444_t"
},
{
"name": "dataset",
- "value": "edsd"
+ "value": "adni"
},
{
"name": "filter",
@@ -9343,54 +9445,87 @@
],
"output": {
"single": {
- "rightaorganteriororbitalgyrus": {
- "edsd": {
+ "Left superior occipital gyrus": {
+ "adni": {
"data": {
- "std": 0.27829646493901633,
- "min": 0.0,
- "max": 2.7957,
- "lower_confidence": 1.4183420476467954,
- "mean": 1.6966385125858117,
- "upper_confidence": 1.974934977524828
+ "std": 0.47754406772643376,
+ "max": 5.28127,
+ "min": 2.29083,
+ "mean": 3.5294413508442775
},
- "num_datapoints": 437
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
},
- "leftainsanteriorinsula": {
- "edsd": {
+ "Left superior temporal gyrus": {
+ "adni": {
"data": {
- "std": 0.5454672158163502,
- "min": 0.46849,
- "max": 5.7224,
- "lower_confidence": 3.548252532467404,
- "mean": 4.093719748283754,
- "upper_confidence": 4.639186964100104
+ "std": 0.8093229506914276,
+ "max": 9.35151,
+ "min": 4.01336,
+ "mean": 6.959202467166968
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "rs3865444_T": {
+ "adni": {
+ "data": {
+ "1": {
+ "count": 372,
+ "percentage": 41.7
+ },
+ "0": {
+ "count": 448,
+ "percentage": 50.22
+ },
+ "2": {
+ "count": 72,
+ "percentage": 8.07
+ }
},
- "num_datapoints": 437
+ "num_datapoints": 892,
+ "num_nulls": 174,
+ "num_total": 1066
}
}
},
"model": {
- "edsd": {
- "num_datapoints": 437,
+ "adni": {
+ "num_datapoints": 892,
"data": {
- "rightaorganteriororbitalgyrus": {
- "std": 0.27829646493901633,
- "min": 0.0,
- "max": 2.7957,
- "lower_confidence": 1.4183420476467954,
- "mean": 1.6966385125858117,
- "upper_confidence": 1.974934977524828
+ "Left superior occipital gyrus": {
+ "std": 0.47679410285120777,
+ "max": 5.09206,
+ "min": 2.29083,
+ "mean": 3.524215067264571
},
- "leftainsanteriorinsula": {
- "std": 0.5454672158163502,
- "min": 0.46849,
- "max": 5.7224,
- "lower_confidence": 3.548252532467404,
- "mean": 4.093719748283754,
- "upper_confidence": 4.639186964100104
+ "Left superior temporal gyrus": {
+ "std": 0.8015456759844897,
+ "max": 9.35151,
+ "min": 4.01336,
+ "mean": 6.98352683856501
+ },
+ "rs3865444_T": {
+ "1": {
+ "count": 372,
+ "percentage": 41.7
+ },
+ "0": {
+ "count": 448,
+ "percentage": 50.22
+ },
+ "2": {
+ "count": 72,
+ "percentage": 8.07
+ }
}
- }
+ },
+ "num_nulls": 174,
+ "num_total": 1066
}
}
}
@@ -9399,11 +9534,11 @@
"input": [
{
"name": "y",
- "value": "rightbasalforebrain"
+ "value": "leftmogmiddleoccipitalgyrus,rightententorhinalarea"
},
{
"name": "dataset",
- "value": "ppmi"
+ "value": "edsd"
},
{
"name": "filter",
@@ -9416,33 +9551,52 @@
],
"output": {
"single": {
- "rightbasalforebrain": {
- "ppmi": {
+ "Left middle occipital gyrus": {
+ "edsd": {
+ "data": {
+ "std": 0.7409533489358604,
+ "max": 8.9713,
+ "min": 3.9079,
+ "mean": 5.864272540045763
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right entorhinal area": {
+ "edsd": {
"data": {
- "std": 0.037729080398861324,
- "min": 0.26482,
- "max": 0.55154,
- "lower_confidence": 0.3658445050353123,
- "mean": 0.4035735854341736,
- "upper_confidence": 0.4413026658330349
+ "std": 0.23294603841839354,
+ "max": 2.4117,
+ "min": 0.34445,
+ "mean": 1.5623321052631578
},
- "num_datapoints": 714
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
+ "edsd": {
+ "num_datapoints": 437,
"data": {
- "rightbasalforebrain": {
- "std": 0.037729080398861324,
- "min": 0.26482,
- "max": 0.55154,
- "lower_confidence": 0.3658445050353123,
- "mean": 0.4035735854341736,
- "upper_confidence": 0.4413026658330349
+ "Left middle occipital gyrus": {
+ "std": 0.7409533489358604,
+ "max": 8.9713,
+ "min": 3.9079,
+ "mean": 5.864272540045763
+ },
+ "Right entorhinal area": {
+ "std": 0.23294603841839354,
+ "max": 2.4117,
+ "min": 0.34445,
+ "mean": 1.5623321052631578
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -9451,11 +9605,11 @@
"input": [
{
"name": "y",
- "value": "leftthalamusproper,subjectageyears,rightainsanteriorinsula,rightcocentraloperculum,leftventraldc,leftgregyrusrectus,leftsmcsupplementarymotorcortex"
+ "value": "neurodegenerativescategories"
},
{
"name": "dataset",
- "value": "ppmi,edsd"
+ "value": "adni"
},
{
"name": "filter",
@@ -9468,297 +9622,41 @@
],
"output": {
"single": {
- "leftgregyrusrectus": {
- "ppmi": {
- "data": {
- "std": 0.25428780455519984,
- "min": 1.4595,
- "max": 3.2094,
- "lower_confidence": 1.886464856509225,
- "mean": 2.140752661064425,
- "upper_confidence": 2.395040465619625
- },
- "num_datapoints": 714
- },
- "edsd": {
- "data": {
- "std": 0.2911948776855869,
- "min": 0.52539,
- "max": 3.5482,
- "lower_confidence": 1.7067376165935884,
- "mean": 1.9979324942791752,
- "upper_confidence": 2.2891273719647622
- },
- "num_datapoints": 437
- }
- },
- "leftthalamusproper": {
- "ppmi": {
- "data": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
- },
- "num_datapoints": 714
- },
- "edsd": {
- "data": {
- "std": 0.8046144468144254,
- "min": 2.2488,
- "max": 9.7296,
- "lower_confidence": 6.006959695062009,
- "mean": 6.811574141876434,
- "upper_confidence": 7.61618858869086
- },
- "num_datapoints": 437
- }
- },
- "rightcocentraloperculum": {
- "ppmi": {
- "data": {
- "std": 0.45734674949851273,
- "min": 2.4939,
- "max": 5.8724,
- "lower_confidence": 3.5053227182886033,
- "mean": 3.962669467787116,
- "upper_confidence": 4.420016217285629
- },
- "num_datapoints": 714
- },
- "edsd": {
- "data": {
- "std": 0.5694463618454609,
- "min": 2e-05,
- "max": 5.3782,
- "lower_confidence": 3.253553706804423,
- "mean": 3.823000068649884,
- "upper_confidence": 4.392446430495345
- },
- "num_datapoints": 437
- }
- },
- "leftsmcsupplementarymotorcortex": {
- "ppmi": {
- "data": {
- "std": 0.6299572278067757,
- "min": 3.5573,
- "max": 8.6787,
- "lower_confidence": 4.792898514490142,
- "mean": 5.4228557422969175,
- "upper_confidence": 6.052812970103693
- },
- "num_datapoints": 714
- },
- "edsd": {
- "data": {
- "std": 0.7872097027664064,
- "min": 0.0,
- "max": 8.4787,
- "lower_confidence": 4.361366498606592,
- "mean": 5.1485762013729985,
- "upper_confidence": 5.935785904139405
- },
- "num_datapoints": 437
- }
- },
- "leftventraldc": {
- "ppmi": {
- "data": {
- "std": 0.46039819411151933,
- "min": 3.5549,
- "max": 6.5984,
- "lower_confidence": 4.353136679838065,
- "mean": 4.8135348739495845,
- "upper_confidence": 5.273933068061104
- },
- "num_datapoints": 714
- },
- "edsd": {
- "data": {
- "std": 0.4843626086454141,
- "min": 1.0756,
- "max": 6.8376,
- "lower_confidence": 4.196653180828271,
- "mean": 4.681015789473685,
- "upper_confidence": 5.165378398119099
- },
- "num_datapoints": 437
- }
- },
- "rightainsanteriorinsula": {
- "ppmi": {
- "data": {
- "std": 0.41353978965982746,
- "min": 2.8196,
- "max": 5.4263,
- "lower_confidence": 3.722177297174907,
- "mean": 4.135717086834735,
- "upper_confidence": 4.549256876494562
- },
- "num_datapoints": 714
- },
- "edsd": {
- "data": {
- "std": 0.5376034585613356,
- "min": 0.12458,
- "max": 5.378,
- "lower_confidence": 3.3749365643219598,
- "mean": 3.912540022883295,
- "upper_confidence": 4.450143481444631
- },
- "num_datapoints": 437
- }
- },
- "subjectageyears": {
- "ppmi": {
- "data": {
- "std": 10.18857943537052,
- "min": 31.0,
- "max": 85.0,
- "lower_confidence": 51.741392553424994,
- "mean": 61.929971988795515,
- "upper_confidence": 72.11855142416604
- },
- "num_datapoints": 714
- },
- "edsd": {
+ "Neurodegeneratives categories": {
+ "adni": {
"data": {
- "std": 8.995528315589839,
- "min": 36.0,
- "max": 87.0,
- "lower_confidence": 61.04251516267104,
- "mean": 70.03804347826087,
- "upper_confidence": 79.03357179385071
+ "AD": {
+ "count": 222,
+ "percentage": 27.82
+ },
+ "MCI": {
+ "count": 576,
+ "percentage": 72.18
+ }
},
- "num_datapoints": 368
+ "num_datapoints": 798,
+ "num_nulls": 268,
+ "num_total": 1066
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "leftgregyrusrectus": {
- "std": 0.25428780455519984,
- "min": 1.4595,
- "max": 3.2094,
- "lower_confidence": 1.886464856509225,
- "mean": 2.140752661064425,
- "upper_confidence": 2.395040465619625
- },
- "leftthalamusproper": {
- "std": 0.7759651406478834,
- "min": 5.8644,
- "max": 11.2182,
- "lower_confidence": 7.577947044226063,
- "mean": 8.353912184873947,
- "upper_confidence": 9.12987732552183
- },
- "rightcocentraloperculum": {
- "std": 0.45734674949851273,
- "min": 2.4939,
- "max": 5.8724,
- "lower_confidence": 3.5053227182886033,
- "mean": 3.962669467787116,
- "upper_confidence": 4.420016217285629
- },
- "leftsmcsupplementarymotorcortex": {
- "std": 0.6299572278067757,
- "min": 3.5573,
- "max": 8.6787,
- "lower_confidence": 4.792898514490142,
- "mean": 5.4228557422969175,
- "upper_confidence": 6.052812970103693
- },
- "leftventraldc": {
- "std": 0.46039819411151933,
- "min": 3.5549,
- "max": 6.5984,
- "lower_confidence": 4.353136679838065,
- "mean": 4.8135348739495845,
- "upper_confidence": 5.273933068061104
- },
- "rightainsanteriorinsula": {
- "std": 0.41353978965982746,
- "min": 2.8196,
- "max": 5.4263,
- "lower_confidence": 3.722177297174907,
- "mean": 4.135717086834735,
- "upper_confidence": 4.549256876494562
- },
- "subjectageyears": {
- "std": 10.18857943537052,
- "min": 31.0,
- "max": 85.0,
- "lower_confidence": 51.741392553424994,
- "mean": 61.929971988795515,
- "upper_confidence": 72.11855142416604
- }
- }
- },
- "edsd": {
- "num_datapoints": 368,
+ "adni": {
+ "num_datapoints": 798,
"data": {
- "leftgregyrusrectus": {
- "std": 0.2623818673053926,
- "min": 1.0331,
- "max": 3.5482,
- "lower_confidence": 1.7682719370424331,
- "mean": 2.0306538043478257,
- "upper_confidence": 2.293035671653218
- },
- "leftthalamusproper": {
- "std": 0.734520533675939,
- "min": 5.1752,
- "max": 9.7296,
- "lower_confidence": 6.100863977193634,
- "mean": 6.835384510869573,
- "upper_confidence": 7.569905044545512
- },
- "rightcocentraloperculum": {
- "std": 0.44492828764474773,
- "min": 2.7604,
- "max": 5.3782,
- "lower_confidence": 3.4190613862682944,
- "mean": 3.863989673913042,
- "upper_confidence": 4.30891796155779
- },
- "leftsmcsupplementarymotorcortex": {
- "std": 0.6140010508079318,
- "min": 3.6356,
- "max": 8.4787,
- "lower_confidence": 4.584837807887719,
- "mean": 5.198838858695651,
- "upper_confidence": 5.812839909503583
- },
- "leftventraldc": {
- "std": 0.4531934011829009,
- "min": 3.6547,
- "max": 6.8376,
- "lower_confidence": 4.22671855533884,
- "mean": 4.679911956521741,
- "upper_confidence": 5.1331053577046415
- },
- "rightainsanteriorinsula": {
- "std": 0.441123030126671,
- "min": 2.9729,
- "max": 5.378,
- "lower_confidence": 3.5049603937863734,
- "mean": 3.9460834239130445,
- "upper_confidence": 4.387206454039715
- },
- "subjectageyears": {
- "std": 8.995528315589839,
- "min": 36.0,
- "max": 87.0,
- "lower_confidence": 61.04251516267104,
- "mean": 70.03804347826087,
- "upper_confidence": 79.03357179385071
+ "Neurodegeneratives categories": {
+ "AD": {
+ "count": 222,
+ "percentage": 27.82
+ },
+ "MCI": {
+ "count": 576,
+ "percentage": 72.18
+ }
}
- }
+ },
+ "num_nulls": 268,
+ "num_total": 1066
}
}
}
@@ -9767,11 +9665,11 @@
"input": [
{
"name": "y",
- "value": "leftopifgopercularpartoftheinferiorfrontalgyrus,rightaorganteriororbitalgyrus"
+ "value": "rightpogpostcentralgyrus"
},
{
"name": "dataset",
- "value": "ppmi,adni,edsd"
+ "value": "edsd"
},
{
"name": "filter",
@@ -9784,140 +9682,33 @@
],
"output": {
"single": {
- "rightaorganteriororbitalgyrus": {
- "ppmi": {
- "data": {
- "std": 0.2296497643316561,
- "min": 0.7806,
- "max": 2.5816,
- "lower_confidence": 1.5628790872089604,
- "mean": 1.7925288515406166,
- "upper_confidence": 2.0221786158722725
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.20988788679102507,
- "min": 0.886175,
- "max": 2.49793,
- "lower_confidence": 1.4992574687436848,
- "mean": 1.7091453555347098,
- "upper_confidence": 1.9190332423257348
- },
- "num_datapoints": 1066
- },
- "edsd": {
- "data": {
- "std": 0.27829646493901633,
- "min": 0.0,
- "max": 2.7957,
- "lower_confidence": 1.4183420476467954,
- "mean": 1.6966385125858117,
- "upper_confidence": 1.974934977524828
- },
- "num_datapoints": 437
- }
- },
- "leftopifgopercularpartoftheinferiorfrontalgyrus": {
- "ppmi": {
- "data": {
- "std": 0.3864260143812992,
- "min": 1.7325,
- "max": 4.6716,
- "lower_confidence": 2.9689067587279414,
- "mean": 3.355332773109241,
- "upper_confidence": 3.7417587874905403
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.36218735504597815,
- "min": 2.21069,
- "max": 4.43655,
- "lower_confidence": 2.9043363597757876,
- "mean": 3.2665237148217656,
- "upper_confidence": 3.6287110698677436
- },
- "num_datapoints": 1066
- },
+ "Right postcentral gyrus": {
"edsd": {
"data": {
- "std": 0.4885484103637412,
+ "std": 1.4670356360056158,
+ "max": 13.6552,
"min": 0.0,
- "max": 4.7752,
- "lower_confidence": 2.7362593241900335,
- "mean": 3.224807734553775,
- "upper_confidence": 3.7133561449175163
+ "mean": 9.810248169336385
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "rightaorganteriororbitalgyrus": {
- "std": 0.2296497643316561,
- "min": 0.7806,
- "max": 2.5816,
- "lower_confidence": 1.5628790872089604,
- "mean": 1.7925288515406166,
- "upper_confidence": 2.0221786158722725
- },
- "leftopifgopercularpartoftheinferiorfrontalgyrus": {
- "std": 0.3864260143812992,
- "min": 1.7325,
- "max": 4.6716,
- "lower_confidence": 2.9689067587279414,
- "mean": 3.355332773109241,
- "upper_confidence": 3.7417587874905403
- }
- }
- },
- "adni": {
- "num_datapoints": 1066,
- "data": {
- "rightaorganteriororbitalgyrus": {
- "std": 0.20988788679102507,
- "min": 0.886175,
- "max": 2.49793,
- "lower_confidence": 1.4992574687436848,
- "mean": 1.7091453555347098,
- "upper_confidence": 1.9190332423257348
- },
- "leftopifgopercularpartoftheinferiorfrontalgyrus": {
- "std": 0.36218735504597815,
- "min": 2.21069,
- "max": 4.43655,
- "lower_confidence": 2.9043363597757876,
- "mean": 3.2665237148217656,
- "upper_confidence": 3.6287110698677436
- }
- }
- },
"edsd": {
"num_datapoints": 437,
"data": {
- "rightaorganteriororbitalgyrus": {
- "std": 0.27829646493901633,
- "min": 0.0,
- "max": 2.7957,
- "lower_confidence": 1.4183420476467954,
- "mean": 1.6966385125858117,
- "upper_confidence": 1.974934977524828
- },
- "leftopifgopercularpartoftheinferiorfrontalgyrus": {
- "std": 0.4885484103637412,
+ "Right postcentral gyrus": {
+ "std": 1.4670356360056158,
+ "max": 13.6552,
"min": 0.0,
- "max": 4.7752,
- "lower_confidence": 2.7362593241900335,
- "mean": 3.224807734553775,
- "upper_confidence": 3.7133561449175163
+ "mean": 9.810248169336385
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -9926,11 +9717,11 @@
"input": [
{
"name": "y",
- "value": "leftainsanteriorinsula,rs3764650_g"
+ "value": "rightcerebellumwhitematter"
},
{
"name": "dataset",
- "value": "adni"
+ "value": "edsd"
},
{
"name": "filter",
@@ -9943,48 +9734,33 @@
],
"output": {
"single": {
- "rs3764650_g": {
- "adni": {
- "data": {
- "1": 153,
- "0": 717,
- "2": 22
- },
- "num_datapoints": 892
- }
- },
- "leftainsanteriorinsula": {
- "adni": {
+ "Right Cerebellum White Matter": {
+ "edsd": {
"data": {
- "std": 0.45203139126981035,
- "min": 2.97578,
- "max": 5.81951,
- "lower_confidence": 3.7936331115444464,
- "mean": 4.245664502814257,
- "upper_confidence": 4.697695894084067
+ "std": 2.12946942934124,
+ "max": 21.5412,
+ "min": 0.71528,
+ "mean": 14.129004988558346
},
- "num_datapoints": 1066
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "adni": {
- "num_datapoints": 892,
+ "edsd": {
+ "num_datapoints": 437,
"data": {
- "rs3764650_g": {
- "1": 153,
- "0": 717,
- "2": 22
- },
- "leftainsanteriorinsula": {
- "std": 0.4448162153469043,
- "min": 3.10499,
- "max": 5.81951,
- "lower_confidence": 3.804162943845924,
- "mean": 4.248979159192828,
- "upper_confidence": 4.693795374539732
+ "Right Cerebellum White Matter": {
+ "std": 2.12946942934124,
+ "max": 21.5412,
+ "min": 0.71528,
+ "mean": 14.129004988558346
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -9993,11 +9769,11 @@
"input": [
{
"name": "y",
- "value": "subjectageyears"
+ "value": "leftstgsuperiortemporalgyrus,leftpallidum"
},
{
"name": "dataset",
- "value": "adni,ppmi,edsd"
+ "value": "adni"
},
{
"name": "filter",
@@ -10010,81 +9786,52 @@
],
"output": {
"single": {
- "subjectageyears": {
- "ppmi": {
- "data": {
- "std": 10.18857943537052,
- "min": 31.0,
- "max": 85.0,
- "lower_confidence": 51.741392553424994,
- "mean": 61.929971988795515,
- "upper_confidence": 72.11855142416604
- },
- "num_datapoints": 714
- },
+ "Left Pallidum": {
"adni": {
"data": {
- "std": 7.361969330968985,
- "min": 55.0,
- "max": 90.0,
- "lower_confidence": 65.89881866152632,
- "mean": 73.26078799249531,
- "upper_confidence": 80.6227573234643
+ "std": 0.17587826722127436,
+ "max": 2.12979,
+ "min": 1.08448,
+ "mean": 1.5087024296435267
},
- "num_datapoints": 1066
- },
- "edsd": {
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ }
+ },
+ "Left superior temporal gyrus": {
+ "adni": {
"data": {
- "std": 8.995528315589839,
- "min": 36.0,
- "max": 87.0,
- "lower_confidence": 61.04251516267104,
- "mean": 70.03804347826087,
- "upper_confidence": 79.03357179385071
+ "std": 0.8093229506914276,
+ "max": 9.35151,
+ "min": 4.01336,
+ "mean": 6.959202467166968
},
- "num_datapoints": 368
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "subjectageyears": {
- "std": 10.18857943537052,
- "min": 31.0,
- "max": 85.0,
- "lower_confidence": 51.741392553424994,
- "mean": 61.929971988795515,
- "upper_confidence": 72.11855142416604
- }
- }
- },
"adni": {
"num_datapoints": 1066,
"data": {
- "subjectageyears": {
- "std": 7.361969330968985,
- "min": 55.0,
- "max": 90.0,
- "lower_confidence": 65.89881866152632,
- "mean": 73.26078799249531,
- "upper_confidence": 80.6227573234643
- }
- }
- },
- "edsd": {
- "num_datapoints": 368,
- "data": {
- "subjectageyears": {
- "std": 8.995528315589839,
- "min": 36.0,
- "max": 87.0,
- "lower_confidence": 61.04251516267104,
- "mean": 70.03804347826087,
- "upper_confidence": 79.03357179385071
+ "Left Pallidum": {
+ "std": 0.17587826722127436,
+ "max": 2.12979,
+ "min": 1.08448,
+ "mean": 1.5087024296435267
+ },
+ "Left superior temporal gyrus": {
+ "std": 0.8093229506914276,
+ "max": 9.35151,
+ "min": 4.01336,
+ "mean": 6.959202467166968
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
@@ -10093,7 +9840,7 @@
"input": [
{
"name": "y",
- "value": "righttmptemporalpole,rightsplsuperiorparietallobule,leftmogmiddleoccipitalgyrus"
+ "value": "leftainsanteriorinsula,rightsmgsupramarginalgyrus,leftpcggposteriorcingulategyrus,leftsfgsuperiorfrontalgyrus,cerebellarvermallobulesvivii,rightlorglateralorbitalgyrus,leftententorhinalarea"
},
{
"name": "dataset",
@@ -10110,43 +9857,95 @@
],
"output": {
"single": {
- "leftmogmiddleoccipitalgyrus": {
+ "Right supramarginal gyrus": {
+ "edsd": {
+ "data": {
+ "std": 1.1163042783023602,
+ "max": 10.7194,
+ "min": 0.01333,
+ "mean": 7.616723455377567
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left superior frontal gyrus": {
+ "edsd": {
+ "data": {
+ "std": 2.0788136881676316,
+ "max": 19.4519,
+ "min": 2e-05,
+ "mean": 13.859568947368416
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left posterior cingulate gyrus": {
"edsd": {
"data": {
- "std": 0.7409533489358604,
- "min": 3.9079,
- "max": 8.9713,
- "lower_confidence": 5.123319191109903,
- "mean": 5.864272540045763,
- "upper_confidence": 6.605225888981623
+ "std": 0.5213972473956632,
+ "max": 6.5954,
+ "min": 1.534,
+ "mean": 4.21953729977117
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "righttmptemporalpole": {
+ "Left entorhinal area": {
"edsd": {
"data": {
- "std": 0.9197418435398647,
- "min": 2.8712,
- "max": 10.7681,
- "lower_confidence": 6.518156325796522,
- "mean": 7.437898169336386,
- "upper_confidence": 8.357640012876251
+ "std": 0.2295528271274821,
+ "max": 2.4015,
+ "min": 0.39954,
+ "mean": 1.533638215102974
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
},
- "rightsplsuperiorparietallobule": {
+ "Left anterior insula": {
"edsd": {
"data": {
- "std": 1.4399070931190756,
- "min": 0.04308,
- "max": 15.7637,
- "lower_confidence": 8.477835309626936,
- "mean": 9.917742402746011,
- "upper_confidence": 11.357649495865086
+ "std": 0.5454672158163502,
+ "max": 5.7224,
+ "min": 0.46849,
+ "mean": 4.093719748283754
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right lateral orbital gyrus": {
+ "edsd": {
+ "data": {
+ "std": 0.3303894483159015,
+ "max": 3.0055,
+ "min": 0.00098,
+ "mean": 2.1666399771167026
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Cerebellar Vermal Lobules VI-VII": {
+ "edsd": {
+ "data": {
+ "std": 0.26680349936799524,
+ "max": 3.3807,
+ "min": 0.01071,
+ "mean": 2.1565691762013715
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -10154,31 +9953,51 @@
"edsd": {
"num_datapoints": 437,
"data": {
- "leftmogmiddleoccipitalgyrus": {
- "std": 0.7409533489358604,
- "min": 3.9079,
- "max": 8.9713,
- "lower_confidence": 5.123319191109903,
- "mean": 5.864272540045763,
- "upper_confidence": 6.605225888981623
- },
- "righttmptemporalpole": {
- "std": 0.9197418435398647,
- "min": 2.8712,
- "max": 10.7681,
- "lower_confidence": 6.518156325796522,
- "mean": 7.437898169336386,
- "upper_confidence": 8.357640012876251
- },
- "rightsplsuperiorparietallobule": {
- "std": 1.4399070931190756,
- "min": 0.04308,
- "max": 15.7637,
- "lower_confidence": 8.477835309626936,
- "mean": 9.917742402746011,
- "upper_confidence": 11.357649495865086
+ "Right supramarginal gyrus": {
+ "std": 1.1163042783023602,
+ "max": 10.7194,
+ "min": 0.01333,
+ "mean": 7.616723455377567
+ },
+ "Left superior frontal gyrus": {
+ "std": 2.0788136881676316,
+ "max": 19.4519,
+ "min": 2e-05,
+ "mean": 13.859568947368416
+ },
+ "Left posterior cingulate gyrus": {
+ "std": 0.5213972473956632,
+ "max": 6.5954,
+ "min": 1.534,
+ "mean": 4.21953729977117
+ },
+ "Left entorhinal area": {
+ "std": 0.2295528271274821,
+ "max": 2.4015,
+ "min": 0.39954,
+ "mean": 1.533638215102974
+ },
+ "Left anterior insula": {
+ "std": 0.5454672158163502,
+ "max": 5.7224,
+ "min": 0.46849,
+ "mean": 4.093719748283754
+ },
+ "Right lateral orbital gyrus": {
+ "std": 0.3303894483159015,
+ "max": 3.0055,
+ "min": 0.00098,
+ "mean": 2.1666399771167026
+ },
+ "Cerebellar Vermal Lobules VI-VII": {
+ "std": 0.26680349936799524,
+ "max": 3.3807,
+ "min": 0.01071,
+ "mean": 2.1565691762013715
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -10187,11 +10006,11 @@
"input": [
{
"name": "y",
- "value": "rightioginferioroccipitalgyrus"
+ "value": "rightfugfusiformgyrus,leftpcuprecuneus,rightcuncuneus,leftangangulargyrus"
},
{
"name": "dataset",
- "value": "adni,ppmi"
+ "value": "edsd,ppmi,adni"
},
{
"name": "filter",
@@ -10204,28 +10023,144 @@
],
"output": {
"single": {
- "rightioginferioroccipitalgyrus": {
+ "Left angular gyrus": {
"ppmi": {
"data": {
- "std": 0.8077573619690581,
- "min": 4.4197,
- "max": 9.2806,
- "lower_confidence": 6.069284374725623,
- "mean": 6.8770417366946806,
- "upper_confidence": 7.6847990986637384
+ "std": 1.069219793238794,
+ "max": 13.5823,
+ "min": 6.1273,
+ "mean": 9.502652941176473
},
- "num_datapoints": 714
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"data": {
- "std": 0.798416485346769,
- "min": 4.04371,
- "max": 9.78156,
- "lower_confidence": 5.637280297017211,
- "mean": 6.43569678236398,
- "upper_confidence": 7.2341132677107485
+ "std": 1.0431046959561834,
+ "max": 12.5288,
+ "min": 5.75806,
+ "mean": 8.969901050656658
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 1.1124976258123522,
+ "max": 12.0496,
+ "min": 2.2506,
+ "mean": 8.760460640732262
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right cuneus": {
+ "ppmi": {
+ "data": {
+ "std": 0.6272243189691642,
+ "max": 8.0425,
+ "min": 3.2533,
+ "mean": 4.958402240896357
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.6008260681366892,
+ "max": 6.85326,
+ "min": 2.82536,
+ "mean": 4.7243440619136985
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.6096579784653384,
+ "max": 6.5936,
+ "min": 2.8214,
+ "mean": 4.5200755148741445
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Right fusiform gyrus": {
+ "ppmi": {
+ "data": {
+ "std": 0.7289503970808117,
+ "max": 10.3175,
+ "min": 5.4376,
+ "mean": 7.6663631652661115
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 0.7853017578190323,
+ "max": 9.38824,
+ "min": 4.33262,
+ "mean": 7.087820375234526
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 0.8350911331339516,
+ "max": 9.4739,
+ "min": 3.8349,
+ "mean": 7.07725881006865
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
+ }
+ },
+ "Left precuneus": {
+ "ppmi": {
+ "data": {
+ "std": 1.1918746372164504,
+ "max": 15.3204,
+ "min": 7.1042,
+ "mean": 10.96245476190477
+ },
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
+ },
+ "adni": {
+ "data": {
+ "std": 1.1833543220617853,
+ "max": 14.5636,
+ "min": 7.35483,
+ "mean": 10.635359634146331
+ },
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "data": {
+ "std": 1.2396762970143003,
+ "max": 15.0284,
+ "min": 3.5147,
+ "mean": 10.188530205949666
+ },
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -10233,28 +10168,95 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightioginferioroccipitalgyrus": {
- "std": 0.8077573619690581,
- "min": 4.4197,
- "max": 9.2806,
- "lower_confidence": 6.069284374725623,
- "mean": 6.8770417366946806,
- "upper_confidence": 7.6847990986637384
+ "Left angular gyrus": {
+ "std": 1.069219793238794,
+ "max": 13.5823,
+ "min": 6.1273,
+ "mean": 9.502652941176473
+ },
+ "Right cuneus": {
+ "std": 0.6272243189691642,
+ "max": 8.0425,
+ "min": 3.2533,
+ "mean": 4.958402240896357
+ },
+ "Right fusiform gyrus": {
+ "std": 0.7289503970808117,
+ "max": 10.3175,
+ "min": 5.4376,
+ "mean": 7.6663631652661115
+ },
+ "Left precuneus": {
+ "std": 1.1918746372164504,
+ "max": 15.3204,
+ "min": 7.1042,
+ "mean": 10.96245476190477
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"adni": {
"num_datapoints": 1066,
"data": {
- "rightioginferioroccipitalgyrus": {
- "std": 0.798416485346769,
- "min": 4.04371,
- "max": 9.78156,
- "lower_confidence": 5.637280297017211,
- "mean": 6.43569678236398,
- "upper_confidence": 7.2341132677107485
+ "Left angular gyrus": {
+ "std": 1.0431046959561834,
+ "max": 12.5288,
+ "min": 5.75806,
+ "mean": 8.969901050656658
+ },
+ "Right cuneus": {
+ "std": 0.6008260681366892,
+ "max": 6.85326,
+ "min": 2.82536,
+ "mean": 4.7243440619136985
+ },
+ "Right fusiform gyrus": {
+ "std": 0.7853017578190323,
+ "max": 9.38824,
+ "min": 4.33262,
+ "mean": 7.087820375234526
+ },
+ "Left precuneus": {
+ "std": 1.1833543220617853,
+ "max": 14.5636,
+ "min": 7.35483,
+ "mean": 10.635359634146331
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
+ },
+ "edsd": {
+ "num_datapoints": 437,
+ "data": {
+ "Left angular gyrus": {
+ "std": 1.1124976258123522,
+ "max": 12.0496,
+ "min": 2.2506,
+ "mean": 8.760460640732262
+ },
+ "Right cuneus": {
+ "std": 0.6096579784653384,
+ "max": 6.5936,
+ "min": 2.8214,
+ "mean": 4.5200755148741445
+ },
+ "Right fusiform gyrus": {
+ "std": 0.8350911331339516,
+ "max": 9.4739,
+ "min": 3.8349,
+ "mean": 7.07725881006865
+ },
+ "Left precuneus": {
+ "std": 1.2396762970143003,
+ "max": 15.0284,
+ "min": 3.5147,
+ "mean": 10.188530205949666
+ }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -10263,11 +10265,11 @@
"input": [
{
"name": "y",
- "value": "rightsogsuperioroccipitalgyrus"
+ "value": "rightsmcsupplementarymotorcortex"
},
{
"name": "dataset",
- "value": "adni,edsd,ppmi"
+ "value": "edsd"
},
{
"name": "filter",
@@ -10280,81 +10282,33 @@
],
"output": {
"single": {
- "rightsogsuperioroccipitalgyrus": {
- "ppmi": {
- "data": {
- "std": 0.550834436796872,
- "min": 2.9723,
- "max": 6.3012,
- "lower_confidence": 3.8576564595616687,
- "mean": 4.408490896358541,
- "upper_confidence": 4.959325333155412
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 0.5218479602254812,
- "min": 2.72391,
- "max": 6.34525,
- "lower_confidence": 3.695894938461199,
- "mean": 4.21774289868668,
- "upper_confidence": 4.739590858912162
- },
- "num_datapoints": 1066
- },
+ "Right supplementary motor cortex": {
"edsd": {
"data": {
- "std": 0.5215490971366722,
- "min": 2.7508,
- "max": 5.9885,
- "lower_confidence": 3.5713408342134416,
- "mean": 4.092889931350114,
- "upper_confidence": 4.614439028486786
+ "std": 0.7735918652996528,
+ "max": 8.6997,
+ "min": 0.0,
+ "mean": 5.141229519450803
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
"model": {
- "ppmi": {
- "num_datapoints": 714,
- "data": {
- "rightsogsuperioroccipitalgyrus": {
- "std": 0.550834436796872,
- "min": 2.9723,
- "max": 6.3012,
- "lower_confidence": 3.8576564595616687,
- "mean": 4.408490896358541,
- "upper_confidence": 4.959325333155412
- }
- }
- },
- "adni": {
- "num_datapoints": 1066,
- "data": {
- "rightsogsuperioroccipitalgyrus": {
- "std": 0.5218479602254812,
- "min": 2.72391,
- "max": 6.34525,
- "lower_confidence": 3.695894938461199,
- "mean": 4.21774289868668,
- "upper_confidence": 4.739590858912162
- }
- }
- },
"edsd": {
"num_datapoints": 437,
"data": {
- "rightsogsuperioroccipitalgyrus": {
- "std": 0.5215490971366722,
- "min": 2.7508,
- "max": 5.9885,
- "lower_confidence": 3.5713408342134416,
- "mean": 4.092889931350114,
- "upper_confidence": 4.614439028486786
+ "Right supplementary motor cortex": {
+ "std": 0.7735918652996528,
+ "max": 8.6997,
+ "min": 0.0,
+ "mean": 5.141229519450803
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -10363,11 +10317,11 @@
"input": [
{
"name": "y",
- "value": "rightmtgmiddletemporalgyrus"
+ "value": "leftpcggposteriorcingulategyrus"
},
{
"name": "dataset",
- "value": "edsd,ppmi,adni"
+ "value": "edsd,ppmi"
},
{
"name": "filter",
@@ -10380,39 +10334,28 @@
],
"output": {
"single": {
- "rightmtgmiddletemporalgyrus": {
+ "Left posterior cingulate gyrus": {
"ppmi": {
"data": {
- "std": 1.57434356141805,
- "min": 8.6731,
- "max": 20.7703,
- "lower_confidence": 12.7788585394223,
- "mean": 14.35320210084035,
- "upper_confidence": 15.927545662258401
- },
- "num_datapoints": 714
- },
- "adni": {
- "data": {
- "std": 1.6184209549120432,
- "min": 8.46116,
- "max": 18.2963,
- "lower_confidence": 11.791027234581383,
- "mean": 13.409448189493427,
- "upper_confidence": 15.02786914440547
+ "std": 0.5169756000220191,
+ "max": 6.5672,
+ "min": 2.7571,
+ "mean": 4.520736554621849
},
- "num_datapoints": 1066
+ "num_datapoints": 714,
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"data": {
- "std": 1.7437247508648561,
- "min": 7.0908,
- "max": 19.0242,
- "lower_confidence": 11.842108887579068,
- "mean": 13.585833638443924,
- "upper_confidence": 15.329558389308781
+ "std": 0.5213972473956632,
+ "max": 6.5954,
+ "min": 1.534,
+ "mean": 4.21953729977117
},
- "num_datapoints": 437
+ "num_datapoints": 437,
+ "num_nulls": 37,
+ "num_total": 474
}
}
},
@@ -10420,41 +10363,28 @@
"ppmi": {
"num_datapoints": 714,
"data": {
- "rightmtgmiddletemporalgyrus": {
- "std": 1.57434356141805,
- "min": 8.6731,
- "max": 20.7703,
- "lower_confidence": 12.7788585394223,
- "mean": 14.35320210084035,
- "upper_confidence": 15.927545662258401
- }
- }
- },
- "adni": {
- "num_datapoints": 1066,
- "data": {
- "rightmtgmiddletemporalgyrus": {
- "std": 1.6184209549120432,
- "min": 8.46116,
- "max": 18.2963,
- "lower_confidence": 11.791027234581383,
- "mean": 13.409448189493427,
- "upper_confidence": 15.02786914440547
+ "Left posterior cingulate gyrus": {
+ "std": 0.5169756000220191,
+ "max": 6.5672,
+ "min": 2.7571,
+ "mean": 4.520736554621849
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 714
},
"edsd": {
"num_datapoints": 437,
"data": {
- "rightmtgmiddletemporalgyrus": {
- "std": 1.7437247508648561,
- "min": 7.0908,
- "max": 19.0242,
- "lower_confidence": 11.842108887579068,
- "mean": 13.585833638443924,
- "upper_confidence": 15.329558389308781
+ "Left posterior cingulate gyrus": {
+ "std": 0.5213972473956632,
+ "max": 6.5954,
+ "min": 1.534,
+ "mean": 4.21953729977117
}
- }
+ },
+ "num_nulls": 37,
+ "num_total": 474
}
}
}
@@ -10463,7 +10393,7 @@
"input": [
{
"name": "y",
- "value": "leftfofrontaloperculum,leftphgparahippocampalgyrus,dataset"
+ "value": "leftainsanteriorinsula,leftacgganteriorcingulategyrus"
},
{
"name": "dataset",
@@ -10480,38 +10410,30 @@
],
"output": {
"single": {
- "leftfofrontaloperculum": {
+ "Left anterior cingulate gyrus": {
"adni": {
"data": {
- "std": 0.21028668217266916,
- "min": 1.31745,
- "max": 2.73465,
- "lower_confidence": 1.728838205256975,
- "mean": 1.9391248874296443,
- "upper_confidence": 2.1494115696023135
- },
- "num_datapoints": 1066
- }
- },
- "leftphgparahippocampalgyrus": {
- "adni": {
- "data": {
- "std": 0.32137573174034656,
- "min": 2.10045,
- "max": 4.05192,
- "lower_confidence": 2.710869643494174,
- "mean": 3.032245375234521,
- "upper_confidence": 3.3536211069748676
+ "std": 0.559072095313077,
+ "max": 6.63962,
+ "min": 2.71921,
+ "mean": 4.562232120075047
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
},
- "dataset": {
+ "Left anterior insula": {
"adni": {
"data": {
- "adni": 1066
+ "std": 0.45203139126981035,
+ "max": 5.81951,
+ "min": 2.97578,
+ "mean": 4.245664502814257
},
- "num_datapoints": 1066
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "num_total": 1066
}
}
},
@@ -10519,26 +10441,21 @@
"adni": {
"num_datapoints": 1066,
"data": {
- "leftfofrontaloperculum": {
- "std": 0.21028668217266916,
- "min": 1.31745,
- "max": 2.73465,
- "lower_confidence": 1.728838205256975,
- "mean": 1.9391248874296443,
- "upper_confidence": 2.1494115696023135
- },
- "leftphgparahippocampalgyrus": {
- "std": 0.32137573174034656,
- "min": 2.10045,
- "max": 4.05192,
- "lower_confidence": 2.710869643494174,
- "mean": 3.032245375234521,
- "upper_confidence": 3.3536211069748676
+ "Left anterior cingulate gyrus": {
+ "std": 0.559072095313077,
+ "max": 6.63962,
+ "min": 2.71921,
+ "mean": 4.562232120075047
},
- "dataset": {
- "adni": 1066
+ "Left anterior insula": {
+ "std": 0.45203139126981035,
+ "max": 5.81951,
+ "min": 2.97578,
+ "mean": 4.245664502814257
}
- }
+ },
+ "num_nulls": 0,
+ "num_total": 1066
}
}
}
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_descriptive_statistics.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_descriptive_statistics.py
index ce15bbec3..1921df641 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_descriptive_statistics.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_descriptive_statistics.py
@@ -1,11 +1,21 @@
from numbers import Number
+from collections import Counter
+import DESCRIPTIVE_STATS
import numpy as np
import pytest
-from DESCRIPTIVE_STATS import DescriptiveStats
-from mipframework.testutils import get_test_params, get_algorithm_result
+import json
from pathlib import Path
+from mipframework.testutils import get_test_params, get_algorithm_result
+from mipframework import create_runner
+from DESCRIPTIVE_STATS import DescriptiveStats
+from DESCRIPTIVE_STATS.descriptive_stats import (
+ MonoidMapping,
+ get_counts_and_percentages,
+)
+
+
expected_file = Path(__file__).parent / "expected" / "descriptive_stats_expected.json"
@@ -30,13 +40,12 @@ def test_descriptive_stats_algorithm_federated(test_input, expected):
def recursive_isclose(first, second):
assert_same_type(first, second)
if isinstance(first, dict):
- assert sorted(first.keys()) == sorted(second.keys())
- for key in first.keys():
+ for key in second.keys():
recursive_isclose(first[key], second[key])
elif isinstance(first, list):
assert np.isclose(first, second, rtol=1e-6).all()
elif isinstance(first, Number):
- assert np.isclose(first, second, rtol=1e-6)
+ assert np.isclose(first, round(second, 2), rtol=1e-6)
elif isinstance(first, basestring):
assert first == second
@@ -47,3 +56,239 @@ def assert_same_type(first, second):
or (isinstance(first, list) and isinstance(second, list))
or (isinstance(first, Number) and isinstance(second, Number))
)
+
+
+def test_monoid_mapping():
+ m1 = MonoidMapping(a=1, b=2)
+ m2 = MonoidMapping(a=10, b=20)
+ result = m1 + m2
+ assert result == MonoidMapping({"a": 11, "b": 22})
+ assert isinstance(result, MonoidMapping)
+
+
+def test_monoid_mapping_missing_values():
+ m1 = MonoidMapping(a=1, b=2)
+ m2 = MonoidMapping(b=20, c=30)
+ result = m1 + m2
+ assert result == MonoidMapping({"a": 1, "b": 22, "c": 30})
+ assert isinstance(result, MonoidMapping)
+
+
+def test_get_counts_and_percentages():
+ lst = ["a", "a", "b", "c", "c", "c"]
+ counter = Counter(lst)
+ result = get_counts_and_percentages(counter)
+ expected = {
+ "a": {"count": 2, "percentage": 33.33},
+ "b": {"count": 1, "percentage": 16.67},
+ "c": {"count": 3, "percentage": 50.00},
+ }
+ assert result == expected
+
+
+def test_result_format(capsys):
+ args = [
+ "-y",
+ "leftaccumbensarea, apoe4",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "adni",
+ "-filter",
+ "",
+ ]
+ runner = create_runner(
+ DescriptiveStats,
+ algorithm_args=args,
+ num_workers=1,
+ )
+ runner.run()
+ captured = capsys.readouterr()
+ result = json.loads(captured.out)
+ result_single = result["result"][0]["data"]["single"]
+ result_model = result["result"][0]["data"]["model"]
+ expected_single = {
+ "ApoE4": {
+ "adni": {
+ "num_total": 1066,
+ "num_datapoints": 1061,
+ "num_nulls": 5,
+ "data": {
+ "0": {"count": 542, "percentage": 51.08},
+ "1": {"count": 395, "percentage": 37.23},
+ "2": {"count": 124, "percentage": 11.69},
+ },
+ }
+ },
+ "Left Accumbens Area": {
+ "adni": {
+ "num_total": 1066,
+ "num_datapoints": 1066,
+ "num_nulls": 0,
+ "data": {
+ "max": 0.60,
+ "mean": 0.41,
+ "min": 0.20,
+ "std": 0.05,
+ },
+ }
+ },
+ }
+ assert result_single == expected_single
+
+ expected_model = {
+ "adni": {
+ "num_total": 1066,
+ "num_datapoints": 1061,
+ "num_nulls": 5,
+ "data": {
+ "ApoE4": {
+ "0": {"count": 542, "percentage": 51.08},
+ "1": {"count": 395, "percentage": 37.23},
+ "2": {"count": 124, "percentage": 11.69},
+ },
+ "Left Accumbens Area": {
+ "max": 0.60,
+ "mean": 0.41,
+ "min": 0.20,
+ "std": 0.05,
+ },
+ },
+ }
+ }
+ assert result_model == expected_model
+
+
+ntot_consistency_test_data = [
+ # Categorical vars, no overlap
+ [
+ "-y",
+ "gender, car_doors",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "car, adni",
+ "-filter",
+ "",
+ ],
+ # Mixed vars, no overlap
+ [
+ "-y",
+ "gender, lefthippocampus",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "adni, car",
+ "-filter",
+ "",
+ ],
+ # Mixed vars, one dataset
+ [
+ "-y",
+ "gender, lefthippocampus",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "adni",
+ "-filter",
+ "",
+ ],
+ # Categorical vars, one datasets, one var has missing values
+ [
+ "-y",
+ "gender, apoe4",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "adni",
+ "-filter",
+ "",
+ ],
+ # Dataset in variables
+ [
+ "-y",
+ "dataset, apoe4",
+ "-pathology",
+ "dementia",
+ "-dataset",
+ "adni, ppmi",
+ "-filter",
+ "",
+ ],
+]
+
+DATASET2NROWS = {
+ "ANOVA_Balanced_with_inter_V1V2": 180,
+ "ANOVA_UnBalanced_with_inter_V1V2": 200,
+ "ANOVA_dataset1": 225,
+ "ANOVA_dataset2": 201,
+ "ANOVA_dataset3": 292,
+ "Iris": 150,
+ "adni": 1066,
+ "adni_9rows": 9,
+ "car": 1728,
+ "cb_data": 1000,
+ "cb_test_data": 1851,
+ "concrete_data": 1030,
+ "concrete_data_testing": 309,
+ "concrete_data_training": 721,
+ "contact-lenses": 24,
+ "data_logisticRegression": 490,
+ "data_pr1": 718,
+ "desd-synthdata": 1000,
+ "diabetes": 768,
+ "diabetes_testing": 231,
+ "diabetes_training": 537,
+ "edsd": 474,
+ "ppmi": 714,
+}
+
+
+@pytest.mark.parametrize("num_workers", [1, 10])
+@pytest.mark.parametrize("algorithm_args", ntot_consistency_test_data)
+def test_descriptive_stats_consistent_counts_single(
+ algorithm_args,
+ num_workers,
+ capsys,
+ monkeypatch,
+):
+ monkeypatch.setattr(DESCRIPTIVE_STATS.descriptive_stats, "PRIVACY_THRESHOLD", 0)
+ runner = create_runner(
+ DescriptiveStats,
+ algorithm_args=algorithm_args,
+ num_workers=num_workers,
+ )
+ runner.run()
+ captured = capsys.readouterr()
+ result = json.loads(captured.out)
+ result_partial = result["result"][0]["data"]["single"]
+
+ for var in result_partial.keys():
+ for dataset, data in result_partial[var].items():
+ n_tot = data["num_datapoints"] + data["num_nulls"]
+ expected_ntot = DATASET2NROWS[dataset]
+ assert n_tot == expected_ntot
+
+
+@pytest.mark.parametrize("num_workers", [1, 10])
+@pytest.mark.parametrize("algorithm_args", ntot_consistency_test_data)
+def test_descriptive_stats_consistent_counts_model(
+ algorithm_args,
+ num_workers,
+ capsys,
+ monkeypatch,
+):
+ monkeypatch.setattr(DESCRIPTIVE_STATS.descriptive_stats, "PRIVACY_THRESHOLD", 0)
+ runner = create_runner(
+ DescriptiveStats,
+ algorithm_args=algorithm_args,
+ num_workers=num_workers,
+ )
+ runner.run()
+ captured = capsys.readouterr()
+ result = json.loads(captured.out)
+ result_partial = result["result"][0]["data"]["model"]
+ for dataset, data in result_partial.items():
+ n_tot = data["num_datapoints"] + data["num_nulls"]
+ expected_ntot = DATASET2NROWS[dataset]
+ assert n_tot == expected_ntot
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_descriptive_stats_with_formula.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_descriptive_stats_with_formula.py
new file mode 100644
index 000000000..4a9e5339c
--- /dev/null
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_descriptive_stats_with_formula.py
@@ -0,0 +1,344 @@
+import json
+
+import numpy as np # type: ignore XXX needed for patsy to know how to take logs and exps
+
+from mipframework.testutils import get_algorithm_result
+from DESCRIPTIVE_STATS.descriptive_stats import DescriptiveStats
+
+
+def test_descriptive_stats_formula_nop_no_interaction():
+ test_input = [
+ {"name": "y", "value": "lefthippocampus,righthippocampus"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ ]
+ result = get_algorithm_result(DescriptiveStats, test_input, num_workers=1)
+
+ single_results = result["single"]
+ assert "Left Hippocampus" in single_results
+ assert "Right Hippocampus" in single_results
+
+ model_results = result["model"]
+ assert "Left Hippocampus" in model_results["ppmi"]["data"].keys()
+ assert "Right Hippocampus" in model_results["ppmi"]["data"].keys()
+ assert "Left Hippocampus" in model_results["edsd"]["data"].keys()
+ assert "Right Hippocampus" in model_results["edsd"]["data"].keys()
+
+
+def test_descriptive_stats_formula_with_categorical_not_in_formula():
+ test_input = [
+ {"name": "y", "value": "lefthippocampus,alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "log",
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ ]
+ result = get_algorithm_result(DescriptiveStats, test_input, num_workers=1)
+
+ single_results = result["single"]
+ assert "Left Hippocampus" in single_results
+ assert "Alzheimer Broad Category" in single_results
+
+ model_results = result["model"]
+ assert "log(lefthippocampus)" in model_results["ppmi"]["data"].keys()
+ assert len(model_results["ppmi"]["data"]) == 1
+
+
+def test_descriptive_stats_formula_no_interaction_center_standardize_should_be_excluded():
+ test_input = [
+ {"name": "y", "value": "lefthippocampus,righthippocampus"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "center",
+ },
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "standardize",
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ ]
+ result = get_algorithm_result(DescriptiveStats, test_input, num_workers=1)
+
+ single_results = result["single"]
+ assert "Left Hippocampus" in single_results
+ assert "Right Hippocampus" in single_results
+
+ model_results = result["model"]
+ assert "center(lefthippocampus)" in model_results["ppmi"]["data"].keys()
+ assert "standardize(righthippocampus)" in model_results["ppmi"]["data"].keys()
+ assert "center(lefthippocampus)" in model_results["edsd"]["data"].keys()
+ assert "standardize(righthippocampus)" in model_results["edsd"]["data"].keys()
+
+
+def test_descriptive_stats_formula_no_interaction_log_exp():
+ test_input = [
+ {"name": "y", "value": "lefthippocampus,righthippocampus"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "log",
+ },
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "exp",
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ ]
+ result = get_algorithm_result(DescriptiveStats, test_input, num_workers=1)
+
+ single_results = result["single"]
+ assert "Left Hippocampus" in single_results
+ assert "Right Hippocampus" in single_results
+
+ model_results = result["model"]
+ assert "log(lefthippocampus)" in model_results["ppmi"]["data"].keys()
+ assert "exp(righthippocampus)" in model_results["ppmi"]["data"].keys()
+ assert "log(lefthippocampus)" in model_results["edsd"]["data"].keys()
+ assert "exp(righthippocampus)" in model_results["edsd"]["data"].keys()
+
+
+def test_descriptive_stats_formula_no_interaction_arithmetic():
+ test_input = [
+ {"name": "y", "value": "lefthippocampus,righthippocampus"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "lefthippocampus",
+ "binary_operation": "div",
+ "operand": 10,
+ },
+ {
+ "var_name": "righthippocampus",
+ "binary_operation": "mul",
+ "operand": 10,
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ ]
+ result = get_algorithm_result(DescriptiveStats, test_input, num_workers=1)
+
+ single_results = result["single"]
+ assert "Left Hippocampus" in single_results
+ assert "Right Hippocampus" in single_results
+
+ model_results_ppmi = result["model"]["ppmi"]["data"]
+ assert "(lefthippocampus / 10)" in model_results_ppmi
+ assert "(righthippocampus * 10)" in model_results_ppmi
+ model_results_edsd = result["model"]["edsd"]["data"]
+ assert "(lefthippocampus / 10)" in model_results_edsd
+ assert "(righthippocampus * 10)" in model_results_edsd
+
+
+def test_descriptive_stats_formula_with_interaction():
+ test_input = [
+ {"name": "y", "value": "lefthippocampus,righthippocampus"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ ],
+ "interactions": [
+ {
+ "var1": "lefthippocampus",
+ "var2": "righthippocampus",
+ }
+ ],
+ }
+ ),
+ },
+ ]
+ result = get_algorithm_result(DescriptiveStats, test_input, num_workers=1)
+
+ assert "Left Hippocampus" in result["single"].keys()
+ assert "Right Hippocampus" in result["single"].keys()
+
+ assert "Left Hippocampus" in result["model"]["ppmi"]["data"].keys()
+ assert "Right Hippocampus" in result["model"]["ppmi"]["data"].keys()
+ assert "lefthippocampus:righthippocampus" in result["model"]["ppmi"]["data"].keys()
+
+
+def test_descriptive_stats_formula_all_features():
+ test_input = [
+ {
+ "name": "y",
+ "value": ",".join(
+ [
+ "_3rdventricle",
+ "_4thventricle",
+ "righthippocampus",
+ "lefthippocampus",
+ "leftputamen",
+ "leftcuncuneus",
+ "leftpallidum",
+ ]
+ ),
+ },
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "ppmi,edsd"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "_3rdventricle",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "_4thventricle",
+ "unary_operation": "log",
+ },
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "exp",
+ },
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "center",
+ },
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "standardize",
+ },
+ {
+ "var_name": "leftputamen",
+ "binary_operation": "mul",
+ "operand": 10,
+ },
+ {
+ "var_name": "leftcuncuneus",
+ "binary_operation": "div",
+ "operand": 10,
+ },
+ ],
+ "interactions": [
+ {
+ "var1": "_3rdventricle",
+ "var2": "_4thventricle",
+ },
+ {
+ "var1": "leftputamen",
+ "var2": "leftcuncuneus",
+ "var3": "lefthippocampus",
+ },
+ ],
+ }
+ ),
+ },
+ ]
+ result = get_algorithm_result(DescriptiveStats, test_input, num_workers=1)
+ single_results = result["single"]
+ for varname in [
+ u"3rd Ventricle",
+ u"Left Hippocampus",
+ u"Left Pallidum",
+ u"Left cuneus",
+ u"4th Ventricle",
+ u"Right Hippocampus",
+ u"Left Putamen",
+ ]:
+ assert varname in single_results
+
+ model_results_ppmi = result["model"]["ppmi"]["data"]
+ for varname in [
+ u"3rd Ventricle",
+ u"log(_4thventricle)",
+ u"leftputamen:lefthippocampus:leftcuncuneus",
+ u"(leftcuncuneus / 10)",
+ u"(leftputamen * 10)",
+ u"exp(righthippocampus)",
+ u"center(lefthippocampus)",
+ u"standardize(lefthippocampus)",
+ u"_3rdventricle:_4thventricle",
+ ]:
+ assert varname in model_results_ppmi
+ model_results_edsd = result["model"]["edsd"]["data"]
+ for varname in [
+ u"3rd Ventricle",
+ u"log(_4thventricle)",
+ u"leftputamen:lefthippocampus:leftcuncuneus",
+ u"(leftcuncuneus / 10)",
+ u"(leftputamen * 10)",
+ u"exp(righthippocampus)",
+ u"center(lefthippocampus)",
+ u"standardize(lefthippocampus)",
+ u"_3rdventricle:_4thventricle",
+ ]:
+ assert varname in model_results_edsd
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_logistic_regression_with_formula.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_logistic_regression_with_formula.py
new file mode 100644
index 000000000..0d7443d44
--- /dev/null
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests/test_logistic_regression_with_formula.py
@@ -0,0 +1,526 @@
+import json
+
+import pytest
+
+from mipframework.testutils import get_algorithm_result
+from LOGISTIC_REGRESSION import LogisticRegression
+
+
+def test_logistic_regression_formula_no_interaction():
+ test_input = [
+ {"name": "x", "value": "rightgregyrusrectus,leftventraldc"},
+ {"name": "y", "value": "rs17125944_c"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": '{ "single": [ {"var_name": "rightgregyrusrectus", "unary_operation": "nop"}, {"var_name": "leftventraldc", "unary_operation": "nop"}], "interactions": []}',
+ },
+ {"name": "positive_level", "value": "2"},
+ {"name": "negative_level", "value": "1"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "rightgregyrusrectus",
+ "leftventraldc",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+def test_logistic_regression_formula_2interaction():
+ test_input = [
+ {"name": "x", "value": "rightgregyrusrectus,leftventraldc"},
+ {"name": "y", "value": "rs17125944_c"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": '{ "single": [ {"var_name": "rightgregyrusrectus", "unary_operation": "nop"}, {"var_name": "leftventraldc", "unary_operation": "nop"}], "interactions": [ {"var1": "rightgregyrusrectus", "var2": "leftventraldc"}]}',
+ },
+ {"name": "positive_level", "value": "2"},
+ {"name": "negative_level", "value": "1"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "rightgregyrusrectus",
+ "leftventraldc",
+ "rightgregyrusrectus:leftventraldc",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+def test_logistic_regression_formula_3interaction():
+ test_input = [
+ {
+ "name": "x",
+ "value": "leftlorglateralorbitalgyrus,leftsplsuperiorparietallobule,rightprgprecentralgyrus,leftaorganteriororbitalgyrus,minimentalstate,leftaccumbensarea,leftmorgmedialorbitalgyrus,leftmfgmiddlefrontalgyrus,leftsogsuperioroccipitalgyrus",
+ },
+ {"name": "y", "value": "rs610932_a"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "ppmi,edsd,adni"},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "leftlorglateralorbitalgyrus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "leftsplsuperiorparietallobule",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "rightprgprecentralgyrus",
+ "unary_operation": "nop",
+ },
+ ],
+ "interactions": [
+ {
+ "var1": "leftlorglateralorbitalgyrus",
+ "var2": "leftsplsuperiorparietallobule",
+ "var3": "rightprgprecentralgyrus",
+ }
+ ],
+ }
+ ),
+ },
+ {"name": "filter", "value": ""},
+ {"name": "positive_level", "value": "2"},
+ {"name": "negative_level", "value": "1"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "leftlorglateralorbitalgyrus",
+ "leftsplsuperiorparietallobule",
+ "rightprgprecentralgyrus",
+ "leftlorglateralorbitalgyrus:rightprgprecentralgyrus:leftsplsuperiorparietallobule",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+def test_logistic_regression_formula_log():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,lefthippocampus"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "log",
+ },
+ ],
+ "interactions": [
+ {
+ "var1": "righthippocampus",
+ "var2": "lefthippocampus",
+ }
+ ],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "righthippocampus",
+ "log(lefthippocampus)",
+ "righthippocampus:lefthippocampus",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+def test_logistic_regression_formula_exp():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,lefthippocampus"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "exp",
+ },
+ ],
+ "interactions": [
+ {
+ "var1": "righthippocampus",
+ "var2": "lefthippocampus",
+ }
+ ],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "righthippocampus",
+ "exp(lefthippocampus)",
+ "righthippocampus:lefthippocampus",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+def test_logistic_regression_formula_center():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,lefthippocampus"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "center",
+ },
+ ],
+ "interactions": [
+ {
+ "var1": "righthippocampus",
+ "var2": "lefthippocampus",
+ }
+ ],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "righthippocampus",
+ "center(lefthippocampus)",
+ "righthippocampus:lefthippocampus",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+def test_logistic_regression_formula_standardize():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,lefthippocampus"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "lefthippocampus",
+ "unary_operation": "standardize",
+ },
+ ],
+ "interactions": [
+ {
+ "var1": "righthippocampus",
+ "var2": "lefthippocampus",
+ }
+ ],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "righthippocampus",
+ "standardize(lefthippocampus)",
+ "righthippocampus:lefthippocampus",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+@pytest.mark.xfail(reason="Formula doesn't work with categorical vars")
+def test_logistic_regression_formula_categorical_covariate():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,gender"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "gender",
+ "unary_operation": "dummy",
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "C(gender, Treatment)[T.M]",
+ "righthippocampus",
+ "C(gender, Treatment)[T.F]",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+@pytest.mark.xfail(reason="Formula doesn't work with categorical vars")
+def test_logistic_regression_formula_categorical_covariate_with_interaction():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,gender"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "gender",
+ "unary_operation": "dummy",
+ },
+ ],
+ "interactions": [
+ {
+ "var1": "righthippocampus",
+ "var2": "gender",
+ }
+ ],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "C(gender, Treatment)[T.M]",
+ "righthippocampus",
+ "righthippocampus:gender[T.M]",
+ "C(gender, Treatment)[T.F]",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+@pytest.mark.xfail(reason="Formula doesn't work with categorical vars")
+def test_logistic_regression_formula_categorical_covariate_diff():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,gender"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "gender",
+ "unary_operation": "diff",
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "C(gender, Diff)[D.F]",
+ "righthippocampus",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+@pytest.mark.xfail(reason="Formula doesn't work with categorical vars")
+def test_logistic_regression_formula_categorical_covariate_poly():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,gender"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "gender",
+ "unary_operation": "poly",
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "C(gender, Poly).Linear",
+ "righthippocampus",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+@pytest.mark.xfail(reason="Formula doesn't work with categorical vars")
+def test_logistic_regression_formula_categorical_covariate_sum():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,gender"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "gender",
+ "unary_operation": "sum",
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "C(gender, Sum)[S.F]",
+ "righthippocampus",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
+
+
+@pytest.mark.xfail(reason="Formula doesn't work with categorical vars")
+def test_logistic_regression_formula_categorical_covariate_helmert():
+ test_input = [
+ {"name": "x", "value": "righthippocampus,gender"},
+ {"name": "y", "value": "alzheimerbroadcategory"},
+ {"name": "pathology", "value": "dementia"},
+ {"name": "dataset", "value": "adni,edsd,ppmi"},
+ {"name": "filter", "value": ""},
+ {
+ "name": "formula",
+ "value": json.dumps(
+ {
+ "single": [
+ {
+ "var_name": "righthippocampus",
+ "unary_operation": "nop",
+ },
+ {
+ "var_name": "gender",
+ "unary_operation": "Helmert",
+ },
+ ],
+ "interactions": [],
+ }
+ ),
+ },
+ {"name": "positive_level", "value": "AD"},
+ {"name": "negative_level", "value": "CN"},
+ ]
+ result = get_algorithm_result(LogisticRegression, test_input, num_workers=1)
+
+ assert result["Names"] == [
+ "Intercept",
+ "C(gender, Helmert)[H.M]",
+ "righthippocampus",
+ ]
+ assert len(result["Names"]) == len(result["z score"]) == len(result["Coefficients"])
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ANOVA.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ANOVA.py
index d6cf005ff..456d33185 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ANOVA.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ANOVA.py
@@ -10,11 +10,8 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
-
-endpointUrl = vm_url + "ANOVA"
+from tests import anova_url as endpointUrl
folderPath = "R_scripts"
file = "ANOVA.Rmd"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_Cart.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_Cart.py
index fe68ef56a..0e790c1a7 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_Cart.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_Cart.py
@@ -21,9 +21,8 @@
from os import path
sys.path.append(path.abspath(__file__))
+from tests import cart_url as endpointUrl_CartTraining
-from tests import vm_url
-endpointUrl_CartTraining= vm_url + 'CART'
#endpointUrl_CartPredict= vm_url + 'CART_PREDICT'
path = '../data/dementia/'
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_Histograms.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_Histograms.py
index aa96f53a3..cd8b6ec05 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_Histograms.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_Histograms.py
@@ -10,11 +10,9 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
+from tests import histograms_url as endpointUrl
-endpointUrl = vm_url + "HISTOGRAMS"
folderPath = "R_scripts"
file = "Histograms.Rmd"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ID3.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ID3.py
index ff5400181..c3d6ac0ae 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ID3.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ID3.py
@@ -5,11 +5,8 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
-
-endpointUrl = vm_url + "ID3"
+from tests import id3_url as endpointUrl
def test_ID3_1():
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_KMEANS.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_KMEANS.py
index b72440dbc..8eefd850d 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_KMEANS.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_KMEANS.py
@@ -10,11 +10,9 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
+from tests import kmeans_url as endpointUrl
-endpointUrl = vm_url + "KMEANS"
folderPath = "R_scripts"
file = "kMeans.Rmd"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_LinearRegression.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_LinearRegression.py
index 5d2ac66e2..4d4534ab5 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_LinearRegression.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_LinearRegression.py
@@ -11,11 +11,9 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
+from tests import linear_regression_url as endpointUrl
-endpointUrl = vm_url + "LINEAR_REGRESSION"
folderPath = "R_scripts"
file = "LinearRegression.Rmd"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_MultipleHistograms.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_MultipleHistograms.py
index 572f581b0..af4d58ab2 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_MultipleHistograms.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_MultipleHistograms.py
@@ -10,11 +10,9 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
+from tests import multiple_histograms_url as endpointUrl
-endpointUrl = vm_url + "MULTIPLE_HISTOGRAMS"
folderPath = "R_scripts"
file = "MultipleHistograms.Rmd"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_NaiveBayes.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_NaiveBayes.py
index 4c42080ff..e502f258b 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_NaiveBayes.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_NaiveBayes.py
@@ -6,13 +6,10 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
-
-url1 = vm_url + "CROSS_VALIDATION_K_FOLD"
-url2 = vm_url + "NAIVE_BAYES_TRAINING"
-url3 = vm_url + "NAIVE_BAYES_TESTING"
+from tests import cross_validation_url as url1
+from tests import naive_bayes_training_url as url2
+from tests import naive_bayes_testing_url as url3
def test_NAIVEBAYES_1():
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_NaiveBayes_Training_Standalone.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_NaiveBayes_Training_Standalone.py
index d85c855fe..61137714c 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_NaiveBayes_Training_Standalone.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_NaiveBayes_Training_Standalone.py
@@ -11,11 +11,9 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
+from tests import naive_bayes_training_standalone_url as endpointUrl
-endpointUrl = vm_url + "NAIVE_BAYES_TRAINING_STANDALONE"
folderPath = "R_scripts"
file = "NaiveBayes_Training_Standalone.Rmd"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_independent.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_independent.py
index 9347317fb..e422fe832 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_independent.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_independent.py
@@ -10,11 +10,9 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
+from tests import ttest_independent_url as endpointUrl
-endpointUrl = vm_url + "TTEST_INDEPENDENT"
folderPath = "R_scripts"
file = "ttest_independent.Rmd"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_onesample.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_onesample.py
index 46753e3e5..b6bbe74f7 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_onesample.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_onesample.py
@@ -8,14 +8,11 @@
import rpy2.robjects as robjects
-
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
+from tests import ttest_onesample_url as endpointUrl
-endpointUrl = vm_url + "TTEST_ONESAMPLE"
folderPath = "R_scripts"
file = "ttest_onesample.Rmd"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_paired.py b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_paired.py
index 49c3450c8..54c5b7bbc 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_paired.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/algorithm_tests_with_privacy/test_ttest_paired.py
@@ -10,11 +10,9 @@
import sys
from os import path
-
sys.path.append(path.abspath(__file__))
-from tests import vm_url
+from tests import ttest_paired_url as endpointUrl
-endpointUrl = vm_url + "TTEST_PAIRED"
folderPath = "R_scripts"
file = "ttest_paired.Rmd"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_missingDataset.py b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_missingDataset.py
index 25ac28bca..cc9ec5a21 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_missingDataset.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_missingDataset.py
@@ -5,9 +5,7 @@
import sys
sys.path.insert(0, "../")
-from tests import vm_url
-
-endpointUrl = vm_url + "LINEAR_REGRESSION"
+from tests import linear_regression_url as endpointUrl
def test_LINEAR_REGRESSION():
diff --git a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_missingPathology.py b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_missingPathology.py
index 5c75907b4..327768c0b 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_missingPathology.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_missingPathology.py
@@ -5,9 +5,7 @@
import sys
sys.path.insert(0, "../")
-from tests import vm_url
-
-endpointUrl = vm_url + "LINEAR_REGRESSION"
+from tests import linear_regression_url
def test_LINEAR_REGRESSION():
@@ -22,7 +20,7 @@ def test_LINEAR_REGRESSION():
{"name": "filter", "value": ""},
]
headers = {"Content-type": "application/json", "Accept": "text/plain"}
- r = requests.post(endpointUrl, data=json.dumps(data), headers=headers)
+ r = requests.post(linear_regression_url, data=json.dumps(data), headers=headers)
result = json.loads(r.text)
check_result(r.text)
diff --git a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_parameters.py b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_parameters.py
index fbd534d60..a5c9bbcef 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_parameters.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_parameters.py
@@ -5,14 +5,13 @@
import sys
sys.path.insert(0, "../")
-from tests import vm_url
-
+from tests import ttest_paired_url
+from tests import linear_regression_url
+from tests import anova_url
def test_parameter_modulo2():
- endpointUrl1 = vm_url + "TTEST_PAIRED"
-
logging.info("---------- TEST : t-test input parameters throwing error.")
data = [
{"name": "y", "value": "lefthippocampus-righthippocampus,leftententorhinalarea"},
@@ -22,7 +21,7 @@ def test_parameter_modulo2():
{"name": "filter", "value": ""},
]
headers = {"Content-type": "application/json", "Accept": "text/plain"}
- r = requests.post(endpointUrl1, data=json.dumps(data), headers=headers)
+ r = requests.post(ttest_paired_url, data=json.dumps(data), headers=headers)
result = json.loads(r.text)
assert(result["result"][0]["data"]==" The input should be in the form of y1-y2,y3-y4,.. Therefore the number of variables should be modulo 2 ")
assert(result["result"][0]["type"]=="text/plain+user_error")
@@ -31,8 +30,6 @@ def test_parameter_modulo2():
def test_valueEnumerationsParameter():
- endpointUrl1 = vm_url + "LINEAR_REGRESSION"
-
logging.info("---------- TEST : valueEnumerations throwing error.")
data = [
{"name": "x", "value": "alzheimerbroadcategory*gender*brainstem*opticchiasm"},
@@ -44,7 +41,7 @@ def test_valueEnumerationsParameter():
{"name": "filter", "value": ""},
]
headers = {"Content-type": "application/json", "Accept": "text/plain"}
- r = requests.post(endpointUrl1, data=json.dumps(data), headers=headers)
+ r = requests.post(linear_regression_url, data=json.dumps(data), headers=headers)
result = json.loads(r.text)
assert (
r.text
@@ -54,8 +51,6 @@ def test_valueEnumerationsParameter():
def test_parameter_max_value():
- endpointUrl = vm_url + "ANOVA"
-
logging.info("---------- TEST : Algorithms for User Error")
data = [
{"name": "iterations_max_number", "value": "20"},
@@ -68,7 +63,7 @@ def test_parameter_max_value():
{"name": "outputformat", "value": "pfa"},
]
headers = {"Content-type": "application/json", "Accept": "text/plain"}
- r = requests.post(endpointUrl, data=json.dumps(data), headers=headers)
+ r = requests.post(anova_url, data=json.dumps(data), headers=headers)
result = json.loads(r.text)
assert (
diff --git a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_privacy.py b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_privacy.py
index 1872d3547..d67cc65fb 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_privacy.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_privacy.py
@@ -4,30 +4,19 @@
import unittest
import requests
-from tests.algorithm_tests_with_privacy.test_ANOVA import endpointUrl as url_anova
+from tests import anova_url as url_anova
+from tests import histograms_url as url_hist
+from tests import id3_url as url_id3
+from tests import kmeans_url as url_kmeans
+from tests import linear_regression_url as url_linreg
+from tests import multiple_histograms_url as url_multi_hist
+from tests import cross_validation_url as url1
+from tests import naive_bayes_training_standalone_url as url_naive_bayes_standalone
+from tests import ttest_independent_url as url_ttest_indep
+from tests import ttest_onesample_url as url_ttest_onesample
+from tests import ttest_paired_url as url_ttest_paired
+
from tests import vm_url
-from tests.algorithm_tests_with_privacy.test_Histograms import endpointUrl as url_hist
-from tests.algorithm_tests_with_privacy.test_ID3 import endpointUrl as url_id3
-from tests.algorithm_tests_with_privacy.test_KMEANS import endpointUrl as url_kmeans
-from tests.algorithm_tests_with_privacy.test_LinearRegression import (
- endpointUrl as url_linreg,
-)
-from tests.algorithm_tests_with_privacy.test_MultipleHistograms import (
- endpointUrl as url_multi_hist,
-)
-from tests.algorithm_tests_with_privacy.test_NaiveBayes import url1
-from tests.algorithm_tests_with_privacy.test_NaiveBayes_Training_Standalone import (
- endpointUrl as url_naive_bayes_standalone,
-)
-from tests.algorithm_tests_with_privacy.test_ttest_independent import (
- endpointUrl as url_ttest_indep,
-)
-from tests.algorithm_tests_with_privacy.test_ttest_onesample import (
- endpointUrl as url_ttest_onesample,
-)
-from tests.algorithm_tests_with_privacy.test_ttest_paired import (
- endpointUrl as url_ttest_paired,
-)
url_calibration = vm_url + "CALIBRATION_BELT"
url_pearson = vm_url + "PEARSON_CORRELATION"
diff --git a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_wrongDataset.py b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_wrongDataset.py
index ece5dbfe1..bfde57d81 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_wrongDataset.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_wrongDataset.py
@@ -5,9 +5,7 @@
import sys
sys.path.insert(0, "../")
-from tests import vm_url
-
-endpointUrl = vm_url + "LINEAR_REGRESSION"
+from tests import linear_regression_url as endpointUrl
def test_LINEAR_REGRESSION():
diff --git a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_wrongPathology.py b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_wrongPathology.py
index 9b7892334..614b1c71c 100644
--- a/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_wrongPathology.py
+++ b/Exareme-Docker/src/mip-algorithms/tests/exareme_tests/test_wrongPathology.py
@@ -5,9 +5,7 @@
import sys
sys.path.insert(0, "../")
-from tests import vm_url
-
-endpointUrl = vm_url + "LINEAR_REGRESSION"
+from tests import linear_regression_url as endpointUrl
def test_LINEAR_REGRESSION():