-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreproc_svm.py
51 lines (42 loc) · 1.32 KB
/
preproc_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# USAGE
# python preproc_svm.py --data data_file.csv
import argparse
import pandas as pd
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--data", required=True,
help="path to formatted data frame/ear/eye_state")
args = vars(ap.parse_args())
dati=pd.read_csv(args["data"], sep=",", index_col="frame")
'''
dati.tag = dati.tag.where(mask, 1)
mask = dati.tag != "half"
dati.tag = dati.tag.where(mask, 0)
'''
listear=list(dati.ear)
col=['F1',"F2","F3","F4","F5",'F6',"F7","F8","F9","F10",'F11',"F12","F13"]
df_fin=pd.DataFrame(columns=col)
for i in range(6, len(listear)-7):
tmp_ear=listear[i-6:i+7]
'''
tmp_dict=dict()
for j in range(0,6):
tmp_dict[col[j]]=tmp_ear[j]
'''
tmp_ear.append(tmp_tag)
#df_tmp=pd.DataFrame(data=[tmp_ear], columns=col)
df_fin.loc[i]=tmp_ear
df_fin.index.name="frame"
df_fin = df_fin[df_fin.F1!=0]
df_fin = df_fin[df_fin.F2!=0]
df_fin = df_fin[df_fin.F3!=0]
df_fin = df_fin[df_fin.F4!=0]
df_fin = df_fin[df_fin.F5!=0]
df_fin = df_fin[df_fin.F6!=0]
df_fin = df_fin[df_fin.F7!=0]
df_fin = df_fin[df_fin.F8!=0]
df_fin = df_fin[df_fin.F9!=0]
df_fin = df_fin[df_fin.F10!=0]
df_fin = df_fin[df_fin.F11!=0]
df_fin = df_fin[df_fin.F12!=0]
df_fin = df_fin[df_fin.F13!=0]
df_fin.to_csv("preprocessed_noNorm/preproc_{}".format(args["data"][11:]), index=True, header=True)