-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathis_fid_pytorch.py
475 lines (397 loc) · 19.3 KB
/
is_fid_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
"""
@Brief: IS, FID Implementation
Now support using
1) NCHW Tensor
2) Pytorch Dataset
@Modified from:
https://github.com/sbarratt/inception-score-pytorch/blob/master/inception_score.py
https://github.com/mseitzer/pytorch-fid
@Author: Tzu-Heng Lin (https://lzhbrian.me)
@Date: 2019.4.7
@Usage:
# CMD
# calc IS score on CIFAR10
python is_fid_pytorch.py
# calc IS score on custom images in a foldername
python is_fid_pytorch.py --path foldername/
# calc IS, FID score on custom images, compared to CIFAR10 (given precalculated stats)
python is_fid_pytorch.py --path foldername/ --fid res/stats_pytorch/fid_stats_cifar10_train.npz
# calc FID on two custom images foldername/
python is_fid_pytorch.py --path foldername/ --fid foldername/
# calc FID on two precalculated stats
python is_fid_pytorch.py --path res/stats_pytorch/fid_stats_cifar10_train.npz --fid res/stats_pytorch/fid_stats_cifar10_train.npz
# precalculate stats store as npz for CIFAR 10
python is_fid_pytorch.py --save-stats-path res/stats_pytorch/fid_stats_cifar10_train.npz
# precalculate stats store as npz for foldername/
python is_fid_pytorch.py --path foldername/ --save-stats-path res/stats_pytorch/fid_stats_folder.npz
# use it in code:
* `mode=1`: image tensor passed in is already normalized by `mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]`
* `mode=2`: image tensor passed in is already normalized by `mean=[0.500, 0.500, 0.500], std=[0.500, 0.500, 0.500]`
```
from metrics import is_fid_pytorch
# using precalculated stats (.npz) for FID calculation
is_fid_model = is_fid_pytorch.ScoreModel(mode=2, stats_file='res/stats_pytorch/fid_stats_cifar10_train.npz', cuda=cuda)
imgs_nchw = torch.Tensor(50000, C, H, W) # torch.Tensor in -1~1, normalized by mean=[0.500, 0.500, 0.500], std=[0.500, 0.500, 0.500]
is_mean, is_std, fid = is_fid_model.get_score_image_tensor(imgs_nchw)
# we can also pass in mu, sigma for get_score_image_tensor()
is_fid_model = is_fid_pytorch.ScoreModel(mode=2, cuda=cuda)
mu, sigma = is_fid_pytorch.read_stats_file('res/stats_pytorch/fid_stats_cifar10_train.npz')
is_mean, is_std, fid = is_fid_model.get_score_image_tensor(imgs_nchw, mu1=mu, sigma1=sigma)
# if no need FID
is_fid_model = is_fid_pytorch.ScoreModel(mode=2, cuda=cuda)
is_mean, is_std, _ = is_fid_model.get_score_image_tensor(imgs_nchw)
# if want stats (mu, sigma) for imgs_nchw, send in return_stats=True
is_mean, is_std, _, mu, sigma = is_fid_model.get_score_image_tensor(imgs_nchw, return_stats=True)
# from pytorch dataset, use get_score_dataset(), instead of get_score_image_tensor(), other usage is the same
cifar = dset.CIFAR10(root='../data/cifar10', download=True,
transform=transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
)
IgnoreLabelDataset(cifar)
is_mean, is_std, _ = is_fid_model.get_score_dataset(IgnoreLabelDataset(cifar))
```
@Note:
This Pytorch version is only for getting an overview
on pytorch=1.0.1, torchvision=0.2.2, n_split=10
result for CIFAR10 train data:
IS = 9.672782245310362, 0.14991606199684318
if we want to report value in papers,
we should use the official tensorflow implementation:
[openai/improved-gan](https://github.com/openai/improved-gan)
[bioinf-jku/TTUR](https://github.com/bioinf-jku/TTUR)
see paperwithcode:
* https://paperswithcode.com/sota/image-generation-generative-models-of-ci
* https://paperswithcode.com/task/conditional-image-generation
"""
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import functional as F
import torch.utils.data
from torchvision.models.inception import inception_v3
from scipy.stats import entropy
import scipy.misc
from scipy import linalg
import numpy as np
from tqdm import tqdm
from glob import glob
import pathlib
import os
import sys
import random
CUR_DIRNAME = os.path.dirname(os.path.abspath(__file__))
def read_stats_file(filepath):
"""read mu, sigma from .npz"""
if filepath.endswith('.npz'):
f = np.load(filepath)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
raise Exception('ERROR! pls pass in correct npz file %s' % filepath)
return m, s
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths %s, %s' % (mu1.shape, mu2.shape)
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions %s, %s' % (sigma1.shape, sigma2.shape)
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
class ScoreModel:
def __init__(self, mode, cuda=True,
stats_file='', mu1=0, sigma1=0):
"""
Computes the inception score of the generated images
cuda -- whether or not to run on GPU
mode -- image passed in inceptionV3 is normalized by mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]
and in range of [-1, 1]
1: image passed in is normalized by mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
2: image passed in is normalized by mean=[0.500, 0.500, 0.500], std=[0.500, 0.500, 0.500]
"""
# load mu, sigma for calc FID
self.calc_fid = False
if stats_file:
self.calc_fid = True
self.mu1, self.sigma1 = read_stats_file(stats_file)
elif type(mu1) == type(sigma1) == np.ndarray:
self.calc_fid = True
self.mu1, self.sigma1 = mu1, sigma1
# Set up dtype
if cuda:
self.dtype = torch.cuda.FloatTensor
else:
if torch.cuda.is_available():
print("WARNING: You have a CUDA device, so you should probably set cuda=True")
self.dtype = torch.FloatTensor
# setup image normalization mode
self.mode = mode
if self.mode == 1:
transform_input = True
elif self.mode == 2:
transform_input = False
else:
raise Exception("ERR: unknown input img type, pls specify norm method!")
self.inception_model = inception_v3(pretrained=True, transform_input=transform_input).type(self.dtype)
self.inception_model.eval()
# self.up = nn.Upsample(size=(299, 299), mode='bilinear', align_corners=False).type(self.dtype)
# remove inception_model.fc to get pool3 output 2048 dim vector
self.fc = self.inception_model.fc
self.inception_model.fc = nn.Sequential()
# wrap with nn.DataParallel
self.inception_model = nn.DataParallel(self.inception_model)
self.fc = nn.DataParallel(self.fc)
def __forward(self, x):
"""
x should be N x 3 x 299 x 299
and should be in range [-1, 1]
"""
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False)
x = self.inception_model(x)
pool3_ft = x.data.cpu().numpy()
x = self.fc(x)
preds = F.softmax(x, 1).data.cpu().numpy()
return pool3_ft, preds
@staticmethod
def __calc_is(preds, n_split, return_each_score=False):
"""
regularly, return (is_mean, is_std)
if n_split==1 and return_each_score==True:
return (scores, 0)
# scores is a list with len(scores) = n_img = preds.shape[0]
"""
n_img = preds.shape[0]
# Now compute the mean kl-div
split_scores = []
for k in range(n_split):
part = preds[k * (n_img // n_split): (k + 1) * (n_img // n_split), :]
py = np.mean(part, axis=0)
scores = []
for i in range(part.shape[0]):
pyx = part[i, :]
scores.append(entropy(pyx, py))
split_scores.append(np.exp(np.mean(scores)))
if n_split == 1 and return_each_score:
return scores, 0
return np.mean(split_scores), np.std(split_scores)
@staticmethod
def __calc_stats(pool3_ft):
mu = np.mean(pool3_ft, axis=0)
sigma = np.cov(pool3_ft, rowvar=False)
return mu, sigma
def get_score_image_tensor(self, imgs_nchw, mu1=0, sigma1=0,
n_split=10, batch_size=32, return_stats=False,
return_each_score=False):
"""
param:
imgs_nchw -- Pytorch Tensor, size=(N,C,H,W), in range of [-1, 1]
batch_size -- batch size for feeding into Inception v3
n_splits -- number of splits
return:
is_mean, is_std, fid
mu, sigma of dataset
regularly, return (is_mean, is_std)
if n_split==1 and return_each_score==True:
return (scores, 0)
# scores is a list with len(scores) = n_img = preds.shape[0]
"""
n_img = imgs_nchw.shape[0]
assert batch_size > 0
assert n_img > batch_size
pool3_ft = np.zeros((n_img, 2048))
preds = np.zeros((n_img, 1000))
for i in tqdm(range(np.int32(np.ceil(1.0 * n_img / batch_size)))):
batch_size_i = min((i+1) * batch_size, n_img) - i * batch_size
batchv = Variable(imgs_nchw[i * batch_size:i * batch_size + batch_size_i, ...].type(self.dtype))
pool3_ft[i * batch_size:i * batch_size + batch_size_i], preds[i * batch_size:i * batch_size + batch_size_i] = self.__forward(batchv)
# if want to return stats
# or want to calc fid
if return_stats or \
type(mu1) == type(sigma1) == np.ndarray or self.calc_fid:
mu2, sigma2 = self.__calc_stats(pool3_ft)
if self.calc_fid:
mu1 = self.mu1
sigma1 = self.sigma1
is_mean, is_std = self.__calc_is(preds, n_split, return_each_score)
fid = -1
if type(mu1) == type(sigma1) == np.ndarray or self.calc_fid:
fid = calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
if return_stats:
return is_mean, is_std, fid, mu2, sigma2
else:
return is_mean, is_std, fid
def get_score_dataset(self, dataset, mu1=0, sigma1=0,
n_split=10, batch_size=32, return_stats=False,
return_each_score=False):
"""
get score from a dataset
param:
dataset -- pytorch dataset, img in range of [-1, 1]
batch_size -- batch size for feeding into Inception v3
n_splits -- number of splits
return:
is_mean, is_std, fid
mu, sigma of dataset
regularly, return (is_mean, is_std)
if n_split==1 and return_each_score==True:
return (scores, 0)
# scores is a list with len(scores) = n_img = preds.shape[0]
"""
n_img = len(dataset)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size)
pool3_ft = np.zeros((n_img, 2048))
preds = np.zeros((n_img, 1000))
for i, batch in tqdm(enumerate(dataloader, 0)):
batch = batch.type(self.dtype)
batchv = Variable(batch)
batch_size_i = batch.size()[0]
pool3_ft[i * batch_size:i * batch_size + batch_size_i], preds[i * batch_size:i * batch_size + batch_size_i] = self.__forward(batchv)
# if want to return stats
# or want to calc fid
if return_stats or \
type(mu1) == type(sigma1) == np.ndarray or self.calc_fid:
mu2, sigma2 = self.__calc_stats(pool3_ft)
if self.calc_fid:
mu1 = self.mu1
sigma1 = self.sigma1
is_mean, is_std = self.__calc_is(preds, n_split, return_each_score)
fid = -1
if type(mu1) == type(sigma1) == np.ndarray or self.calc_fid:
fid = calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
if return_stats:
return is_mean, is_std, fid, mu2, sigma2
else:
return is_mean, is_std, fid
if __name__ == '__main__':
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--path', type=str, default='', help='Path to the generated images or to .npz statistic files')
parser.add_argument('--fid', type=str, default='', help='Path to the generated images or to .npz statistic files')
parser.add_argument('--save-stats-path', type=str, default='', help='Path to save .npz statistic files')
args = parser.parse_args()
# read folder, return torch Tensor in NCHW, normalized
def read_folder(foldername):
files = []
for ext in ('*.png', '*.jpg', '*.jpeg', '*.bmp'):
files.extend(glob(os.path.join(foldername, ext)))
img_list = []
print('Reading Images from %s ...' % foldername)
for file in tqdm(files):
img = scipy.misc.imread(file, mode='RGB')
img = scipy.misc.imresize(img, (299, 299), interp='bilinear')
img = np.cast[np.float32]((-128 + img) / 128.) # 0~255 -> -1~1
img = np.expand_dims(img, axis=0).transpose(0, 3, 1, 2) # NHWC -> NCHW
img_list.append(img)
random.shuffle(img_list)
img_list_tensor = torch.Tensor(np.concatenate(img_list, axis=0))
return img_list_tensor
# if no args.path, calc cifar10 train IS score
if not args.path:
class IgnoreLabelDataset(torch.utils.data.Dataset):
def __init__(self, orig):
self.orig = orig
def __getitem__(self, index):
return self.orig[index][0]
def __len__(self):
return len(self.orig)
import torchvision.datasets as dset
import torchvision.transforms as transforms
cifar = dset.CIFAR10(root='%s/../data/cifar10' % CUR_DIRNAME, download=True,
transform=transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
)
IgnoreLabelDataset(cifar)
print ("Calculating IS score on CIFAR 10...")
is_fid_model = ScoreModel(mode=2, cuda=True)
# save calculated npz
if args.save_stats_path:
is_mean, is_std, _, mu, sigma = is_fid_model.get_score_dataset(IgnoreLabelDataset(cifar),
n_split=10, return_stats=True)
print(is_mean, is_std)
np.savez_compressed(args.save_stats_path, mu=mu, sigma=sigma)
print('Stats save to %s' % args.save_stats_path)
else:
is_mean, is_std, _ = is_fid_model.get_score_dataset(IgnoreLabelDataset(cifar), n_split=10)
print(is_mean, is_std)
elif args.path.endswith('.npz') and args.fid.endswith('.npz'):
mu1, sigma1 = read_stats_file(args.path)
mu2, sigma2 = read_stats_file(args.fid)
fid = calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
print('FID =', fid)
# if argv have foldername/, calc IS score of pictures in this folder
elif args.path:
if args.fid.endswith('.npz'):
is_fid_model = ScoreModel(mode=2, stats_file=args.fid, cuda=True)
img_list_tensor = read_folder(args.path)
is_mean, is_std, fid = is_fid_model.get_score_image_tensor(img_list_tensor, n_split=10)
print(is_mean, is_std)
print('FID =', fid)
# args.fid == a foldername/
elif args.fid:
is_fid_model = ScoreModel(mode=2, cuda=True)
img_list_tensor1 = read_folder(args.path)
img_list_tensor2 = read_folder(args.fid)
print('Calculating 1st stat ...')
is_mean1, is_std1, _, mu1, sigma1 = \
is_fid_model.get_score_image_tensor(img_list_tensor1, n_split=10, return_stats=True)
print('Calculating 2nd stat ...')
is_mean2, is_std2, fid = is_fid_model.get_score_image_tensor(img_list_tensor2,
mu1=mu1, sigma1=sigma1,
n_split=10)
print('1st IS score =', is_mean1, ',', is_std1)
print('2nd IS score =', is_mean2, ',', is_std2)
print('FID =', fid)
# no args.fid
else:
is_fid_model = ScoreModel(mode=2, cuda=True)
img_list_tensor = read_folder(args.path)
# save calculated npz
if args.save_stats_path:
is_mean, is_std, _, mu, sigma = is_fid_model.get_score_image_tensor(img_list_tensor,
n_split=10, return_stats=True)
print(is_mean, is_std)
np.savez_compressed(args.save_stats_path, mu=mu, sigma=sigma)
print('Stats save to %s' % args.save_stats_path)
else:
is_mean, is_std, _ = is_fid_model.get_score_image_tensor(img_list_tensor, n_split=10)
print(is_mean, is_std)