Skip to content

Latest commit

 

History

History
3631 lines (2974 loc) · 132 KB

README.md

File metadata and controls

3631 lines (2974 loc) · 132 KB

About

Use this library to adopt AI APIs in your app. Swift clients for the following providers are included:

  • OpenAI
  • Gemini
  • Anthropic
  • Stability AI
  • DeepL
  • Together AI
  • Replicate
  • ElevenLabs
  • Fal
  • Groq
  • Perplexity
  • Mistral
  • EachAI
  • OpenRouter

Your initialization code determines whether requests go straight to the provider or are protected through the AIProxy backend.

We only recommend making requests straight to the provider during prototyping and for BYOK use-cases.

Requests that are protected through AIProxy have five levels of security applied to keep your API key secure and your AI bill predictable:

  • Certificate pinning
  • DeviceCheck verification
  • Split key encryption
  • Per user rate limits
  • Per IP rate limits

Installation

How to add this package as a dependency to your Xcode project

  1. From within your Xcode project, select File > Add Package Dependencies

    Add package dependencies
  2. Punch github.com/lzell/aiproxyswift into the package URL bar, and select the 'main' branch as the dependency rule. Alternatively, you can choose specific releases if you'd like to have finer control of when your dependency gets updated.

    Set package rule

How to configure the package for use with AIProxy

See the AIProxy integration video. Note that this is not required if you are shipping an app where the customers provide their own API keys (known as BYOK for "bring your own key").

If you are shipping an app using a personal or company API key, we highly recommend setting up AIProxy as an alternative to building, monitoring, and maintaining your own backend.

How to update the package

  • If you set the dependency rule to main in step 2 above, then you can ensure the package is up to date by right clicking on the package and selecting 'Update Package'

    Update package version
  • If you selected a version-based rule, inspect the rule in the 'Package Dependencies' section of your project settings:

    Update package rule

    Once the rule is set to include the release version that you'd like to bring in, Xcode should update the package automatically. If it does not, right click on the package in the project tree and select 'Update Package'.

Example usage

Along with the snippets below, which you can copy and paste into your Xcode project, we also offer full demo apps to jump-start your development. Please see the AIProxyBootstrap repo.

OpenAI

Get a non-streaming chat completion from OpenAI:

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    do {
        let response = try await openAIService.chatCompletionRequest(body: .init(
            model: "gpt-4o",
            messages: [.user(content: .text("hello world"))]
        ))
        print(response.choices.first?.message.content ?? "")
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not create OpenAI chat completion: \(error.localizedDescription)")
    }

Get a streaming chat completion from OpenAI:

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    let requestBody = OpenAIChatCompletionRequestBody(
        model: "gpt-4o-mini",
        messages: [.user(content: .text("hello world"))]
    )

    do {
        let stream = try await openAIService.streamingChatCompletionRequest(body: requestBody)
        for try await chunk in stream {
            print(chunk.choices.first?.delta.content ?? "")
        }
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not create OpenAI streaming chat completion: \(error.localizedDescription)")
    }

How to include history in chat completion requests to OpenAI

Use this approach to have a conversation with ChatGPT. All previous chat messages, whether issued by the user or the assistant (chatGPT), are fed back into the model on each request.

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    // We'll start the conversation by asking about the color of a blackberry.
    // There is no prior history, so we only send up a single user message.
    //
    // You can optionally include a .system message to give the model
    // instructions on how it should behave.
    let userMessage1: OpenAIChatCompletionRequestBody.Message = .user(
        content: .text("What color is a blackberry?")
    )

    // Create the first chat completion.
    var completion1: OpenAIChatCompletionResponseBody? = nil
    do {
        completion1 = try await openAIService.chatCompletionRequest(body: .init(
            model: "gpt-4o-mini",
            messages: [
                userMessage1
            ]
        ))
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not get first chat completion: \(error.localizedDescription)")
    }

    // Get the contents of the model's first response:
    guard let assistantContent1 = completion1?.choices.first?.message.content else {
        print("Completion1: ChatGPT did not respond with any assistant content")
        return
    }
    print("Completion1: \(assistantContent1)")

    // Continue the conversation by asking about a strawberry.
    // If the history were absent from the request, ChatGPT would respond with general facts.
    // By including the history, the model continues the conversation, understanding that we
    // are specifically interested in the strawberry's color.
    let userMessage2: OpenAIChatCompletionRequestBody.Message = .user(
        content: .text("And a strawberry?")
    )

    // Create the second chat completion, note the `messages` array.
    var completion2: OpenAIChatCompletionResponseBody? = nil
    do {
        completion2 = try await openAIService.chatCompletionRequest(body: .init(
            model: "gpt-4o-mini",
            messages: [
                userMessage1,
                .assistant(content: .text(assistantContent1)),
                userMessage2
            ]
        ))
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not get second chat completion: \(error.localizedDescription)")
    }

    // Get the contents of the model's second response:
    guard let assistantContent2 = completion2?.choices.first?.message.content else {
        print("Completion2: ChatGPT did not respond with any assistant content")
        return
    }
    print("Completion2: \(assistantContent2)")

Send a multi-modal chat completion request to OpenAI:

On macOS, use NSImage(named:) in place of UIImage(named:)

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    guard let image = UIImage(named: "myImage") else {
        print("Could not find an image named 'myImage' in your app assets")
        return
    }

    guard let imageURL = AIProxy.encodeImageAsURL(image: image, compressionQuality: 0.6) else {
        print("Could not convert image to OpenAI's imageURL format")
        return
    }

    do {
        let response = try await openAIService.chatCompletionRequest(body: .init(
            model: "gpt-4o",
            messages: [
                .system(
                    content: .text("Tell me what you see")
                ),
                .user(
                    content: .parts(
                        [
                            .text("What do you see?"),
                            .imageURL(imageURL, detail: .auto)
                        ]
                    )
                )
            ]
        ))
        print(response.choices.first?.message.content ?? "")
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not create OpenAI multi-modal chat completion: \(error.localizedDescription)")
    }

How to generate an image with DALLE

This snippet will print out the URL of an image generated with dall-e-3:

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    do {
        let requestBody = OpenAICreateImageRequestBody(
            prompt: "a skier",
            model: "dall-e-3"
        )
        let response = try await openAIService.createImageRequest(body: requestBody)
        print(response.data.first?.url ?? "")
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not generate an image with OpenAI's DALLE: \(error.localizedDescription)")
    }

How to ensure OpenAI returns JSON as the chat message content

If you need to enforce a strict JSON contract, please use Structured Outputs (the next example) instead of this approach. This approach is referred to as 'JSON mode' in the OpenAI docs, and is the predecessor to Structured Outputs.

JSON mode is enabled with responseFormat: .jsonObject, while Structured Outputs is enabled with responseFormat: .jsonSchema.

If you use JSON mode, set responseFormat and specify in the prompt that OpenAI should return JSON only:

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    do {
        let requestBody = OpenAIChatCompletionRequestBody(
            model: "gpt-4o",
            messages: [
                .system(content: .text("Return valid JSON only")),
                .user(content: .text("Return alice and bob in a list of names"))
            ],
            responseFormat: .jsonObject
        )
        let response = try await openAIService.chatCompletionRequest(body: requestBody)
        print(response.choices.first?.message.content ?? "")
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not create OpenAI chat completion in JSON mode: \(error.localizedDescription)")
    }

How to use OpenAI structured outputs (JSON schemas) in a chat response

This example prompts chatGPT to construct a color palette and conform to a strict JSON schema in its response:

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    do {
        let schema: [String: AIProxyJSONValue] = [
            "type": "object",
            "properties": [
                "colors": [
                    "type": "array",
                    "items": [
                        "type": "object",
                        "properties": [
                            "name": [
                                "type": "string",
                                "description": "A descriptive name to give the color"
                            ],
                            "hex_code": [
                                "type": "string",
                                "description": "The hex code of the color"
                            ]
                        ],
                        "required": ["name", "hex_code"],
                        "additionalProperties": false
                    ]
                ]
            ],
            "required": ["colors"],
            "additionalProperties": false
        ]
        let requestBody = OpenAIChatCompletionRequestBody(
            model: "gpt-4o-2024-08-06",
            messages: [
                .system(content: .text("Return valid JSON only, and follow the specified JSON structure")),
                .user(content: .text("Return a peaches and cream color palette"))
            ],
            responseFormat: .jsonSchema(
                name: "palette_creator",
                description: "A list of colors that make up a color pallete",
                schema: schema,
                strict: true
            )
        )
        let response = try await openAIService.chatCompletionRequest(body: requestBody)
        print(response.choices.first?.message.content ?? "")
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not create OpenAI chat completion with structured outputs: \(error.localizedDescription)")
    }

How to use OpenAI structured outputs with a function call

This implements the example in OpenAI's new function calling guide.

For more examples, see the original structured outputs announcement.

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )
        func getWeather(location: String?) -> String {
        // Fill this with your native function logic.
        // Using a stub for this example.
        return "Sunny and 65 degrees"
    }

    // We'll start the conversation by asking about the weather.
    // There is no prior history, so we only send up a single user message.
    //
    // You can optionally include a .system message to give the model
    // instructions on how it should behave.
    let userMessage: OpenAIChatCompletionRequestBody.Message = .user(
        content: .text("What is the weather in SF?")
    )

    var completion1: OpenAIChatCompletionResponseBody? = nil
    do {
        completion1 = try await openAIService.chatCompletionRequest(body: .init(
            model: "gpt-4o-mini",
            messages: [
                userMessage
            ],
            tools: [
                .function(
                    name: "get_weather",
                    description: "Get current temperature for a given location.",
                    parameters: [
                        "type": "object",
                        "properties": [
                            "location": [
                                "type": "string",
                                "description": "City and country e.g. Bogotá, Colombia"
                            ]
                        ],
                        "required": ["location"],
                        "additionalProperties": false
                    ],
                    strict: true
                )
            ]
        ))
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not get first chat completion: \(error.localizedDescription)")
    }

    // Get the contents of the model's first response:
    guard let toolCall = completion1?.choices.first?.message.toolCalls?.first else {
        print("Completion1: ChatGPT did not respond with a tool call")
        return
    }

    // Invoke the function call natively.
    guard toolCall.function.name == "get_weather" else {
        print("We only know how to get the weather")
        return
    }
    let weather = getWeather(location: toolCall.function.arguments?["location"] as? String)

    // Pass the results of the function call back to OpenAI.
    // We create a second chat completion, note the `messages` array in
    // the completion request. It passes back up:
    //   1. the original user message
    //   2. the response from the assistant, which told us to call the get_weather function
    //   3. the result of our `getWeather` invocation
    let toolMessage: OpenAIChatCompletionRequestBody.Message = .tool(
        content: .text(weather),
        toolCallID: toolCall.id
    )

    var completion2: OpenAIChatCompletionResponseBody? = nil
    do {
        completion2 = try await openAIService.chatCompletionRequest(
            body: .init(
                model: "gpt-4o-mini",
                messages: [
                    userMessage,
                    .assistant(
                        toolCalls: [
                            .init(
                                id: toolCall.id,
                                function: .init(
                                    name: toolCall.function.name,
                                    arguments: toolCall.function.argumentsRaw
                                )
                            )
                        ]
                    ),
                    toolMessage
                ]
            )
        )
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not get second chat completion: \(error.localizedDescription)")
    }

    // Get the contents of the model's second response:
    guard let assistantContent2 = completion2?.choices.first?.message.content else {
        print("Completion2: ChatGPT did not respond with any assistant content")
        return
    }
    print(assistantContent2)
    // Prints: "The weather in San Francisco is sunny with a temperature of 65 degrees Fahrenheit."

How to stream structured outputs tool calls with OpenAI

This example it taken from OpenAI's function calling guide.

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )
    let requestBody = OpenAIChatCompletionRequestBody(
        model: "gpt-4o-mini",
        messages: [
            .user(content: .text("What is the weather like in Paris today?")),
        ],
        tools: [
            .function(
                name: "get_weather",
                description: "Get current temperature for a given location.",
                parameters: [
                    "type": "object",
                    "properties": [
                        "location": [
                            "type": "string",
                            "description": "City and country e.g. Bogotá, Colombia"
                        ],
                    ],
                    "required": ["location"],
                    "additionalProperties": false
                ],
                strict: true
            ),
        ]
    )

    do {
        let stream = try await openAIService.streamingChatCompletionRequest(body: requestBody)
        for try await chunk in stream {
            guard let delta = chunk.choices.first?.delta else {
                continue
            }

            // If the model decided to call a function, this branch will be entered:
            if let toolCall = delta.toolCalls?.first {
                if let functionName = toolCall.function?.name {
                    print("ChatGPT wants to call function \(functionName) with arguments...")
                }
                print(toolCall.function?.arguments ?? "")
            }

            // If the model decided to chat, this branch will be entered:
            if let content = delta.content {
                print(content)
            }
        }
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not make a streaming tool call to OpenAI: \(error.localizedDescription)")
    }

How to get Whisper word-level timestamps in an audio transcription

  1. Record an audio file in quicktime and save it as "helloworld.m4a"
  2. Add the audio file to your Xcode project. Make sure it's included in your target: select your audio file in the project tree, type cmd-opt-0 to open the inspect panel, and view Target Membership
  3. Run this snippet:
    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    do {
        let url = Bundle.main.url(forResource: "helloworld", withExtension: "m4a")!
        let requestBody = OpenAICreateTranscriptionRequestBody(
            file: try Data(contentsOf: url),
            model: "whisper-1",
            responseFormat: "verbose_json",
            timestampGranularities: [.word, .segment]
        )
        let response = try await openAIService.createTranscriptionRequest(body: requestBody)
        if let words = response.words {
            for word in words {
                print("\(word.word) from \(word.start) to \(word.end)")
            }
        }
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not get word-level timestamps from OpenAI: \(error.localizedDescription)")
    }

How to use OpenAI text-to-speech

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    do {
        let requestBody = OpenAITextToSpeechRequestBody(
            input: "Hello world",
            voice: .nova
        )

        let mpegData = try await openAIService.createTextToSpeechRequest(body: requestBody)

        // Do not use a local `let` or `var` for AVAudioPlayer.
        // You need the lifecycle of the player to live beyond the scope of this function.
        // Instead, use file scope or set the player as a member of a reference type with long life.
        // For example, at the top of this file you may define:
        //
        //   fileprivate var audioPlayer: AVAudioPlayer? = nil
        //
        // And then use the code below to play the TTS result:
        audioPlayer = try AVAudioPlayer(data: mpegData)
        audioPlayer?.prepareToPlay()
        audioPlayer?.play()
    }  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not create OpenAI TTS audio: \(error.localizedDescription)")
    }

How to classify text and images as potentially harmful with OpenAI

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let openAIService = AIProxy.openAIDirectService(
    //     unprotectedAPIKey: "your-openai-key"
    // )

    /* Uncomment for all other production use cases */
    // let openAIService = AIProxy.openAIService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    let requestBody = OpenAIModerationRequestBody(
        input: [
            .text("is this bad"),
        ],
        model: "omni-moderation-latest"
    )
    do {
        let response = try await openAIService.moderationRequest(body: requestBody)
        print("Is this content flagged: \(response.results.first?.flagged ?? false)")
        //
        // For a more detailed assessment of the input content, inspect:
        //
        //     response.results.first?.categories
        //
        // and
        //
        //     response.results.first?.categoryScores
        //
    }  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not perform moderation request to OpenAI")
    }

How to use OpenAI through an Azure deployment

You can use all of the OpenAI snippets aboves with one change. Initialize the OpenAI service with:

import AIProxy

let openAIService = AIProxy.openAIService(
    partialKey: "partial-key-from-your-developer-dashboard",
    serviceURL: "service-url-from-your-developer-dashboard",
    requestFormat: .azureDeployment(apiVersion: "2024-06-01")
)

Gemini

How to generate text content with Gemini

import AIProxy

/* Uncomment for BYOK use cases */
// let geminiService = AIProxy.geminiDirectService(
//     unprotectedAPIKey: "your-gemini-key"
// )

/* Uncomment for all other production use cases */
// let geminiService = AIProxy.geminiService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

let requestBody = GeminiGenerateContentRequestBody(
    contents: [
        .init(
            parts: [.text("How do I use product xyz?")]
        )
    ],
    generationConfig: .init(maxOutputTokens: 1024),
    systemInstruction: .init(parts: [.text("Introduce yourself as a customer support person")])
)
do {
    let response = try await geminiService.generateContentRequest(
        body: requestBody,
        model: "gemini-2.0-flash-exp"
    )
    for part in response.candidates?.first?.content?.parts ?? [] {
        switch part {
        case .text(let text):
            print("Gemini sent: \(text)")
        case .functionCall(name: let functionName, args: let arguments):
            print("Gemini wants us to call function \(functionName) with arguments: \(arguments ?? [:])")
        }
    }
    if let usage = response.usageMetadata {
        print(
            """
            Used:
             \(usage.promptTokenCount ?? 0) prompt tokens
             \(usage.cachedContentTokenCount ?? 0) cached tokens
             \(usage.candidatesTokenCount ?? 0) candidate tokens
             \(usage.totalTokenCount ?? 0) total tokens
            """
        )
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create Gemini generate content request: \(error.localizedDescription)")
}

How to make a tool call with Gemini

import AIProxy

/* Uncomment for BYOK use cases */
// let geminiService = AIProxy.geminiDirectService(
//     unprotectedAPIKey: "your-gemini-key"
// )

/* Uncomment for all other production use cases */
// let geminiService = AIProxy.geminiService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

let functionParameters: [String: AIProxyJSONValue] = [
    "type": "OBJECT",
    "properties": [
        "brightness": [
            "description": "Light level from 0 to 100. Zero is off and 100 is full brightness.",
            "type": "NUMBER"
        ],
        "colorTemperature": [
            "description": "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.",
            "type": "STRING"
        ]
    ],
    "required": [
        "brightness",
        "colorTemperature"
    ]
]

let requestBody = GeminiGenerateContentRequestBody(
    contents: [
        .init(
            parts: [.text("Dim the lights so the room feels cozy and warm.")],
            role: "user"
        )
    ],
    /* Uncomment this to enforce that a function is called regardless of prompt contents. */
    // toolConfig: .init(
    //     functionCallingConfig: .init(
    //         allowedFunctionNames: ["controlLight"],
    //         mode: .anyFunction
    //     )
    // ),
    tools: [
        .functionDeclarations(
            [
                .init(
                    name: "controlLight",
                    description: "Set the brightness and color temperature of a room light.",
                    parameters: functionParameters
                )
            ]
        )
    ]
)

do {
    let response = try await geminiService.generateContentRequest(
        body: requestBody,
        model: "gemini-2.0-flash-exp"
    )
    for part in response.candidates?.first?.content?.parts ?? [] {
        switch part {
        case .text(let text):
            print("Gemini sent: \(text)")
        case .functionCall(name: let functionName, args: let arguments):
            print("Gemini wants us to call function \(functionName) with arguments: \(arguments ?? [:])")
        }
    }
    if let usage = response.usageMetadata {
        print(
            """
            Used:
             \(usage.promptTokenCount ?? 0) prompt tokens
             \(usage.cachedContentTokenCount ?? 0) cached tokens
             \(usage.candidatesTokenCount ?? 0) candidate tokens
             \(usage.totalTokenCount ?? 0) total tokens
            """
        )
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create Gemini tool (function) call: \(error.localizedDescription)")
}

How to make a search grounding call with Gemini

It's important that you connect a GCP billing account to your Gemini API key to use this feature. Otherwise, Gemini will return 429s for every call. You can connect your billing account for the API keys you use here.

Consider applying to google for startups to gain credits that you can put towards Gemini.

import AIProxy

/* Uncomment for BYOK use cases */
// let geminiService = AIProxy.geminiDirectService(
//     unprotectedAPIKey: "your-gemini-key"
// )

/* Uncomment for all other production use cases */
// let geminiService = AIProxy.geminiService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

let requestBody = GeminiGenerateContentRequestBody(
    contents: [
        .init(
            parts: [.text("What is the price of Google stock today")],
            role: "user"
        )
    ],
    tools: [
        .googleSearchRetrieval(.init(dynamicThreshold: 0.7, mode: .dynamic))
    ]
)
do {
    let response = try await geminiService.generateContentRequest(
        body: requestBody,
        model: "gemini-1.5-flash"
    )
    for part in response.candidates?.first?.content?.parts ?? [] {
        switch part {
        case .text(let text):
            print("Gemini sent: \(text)")
        case .functionCall(name: let functionName, args: let arguments):
            print("Gemini wants us to call function \(functionName) with arguments: \(arguments ?? [:])")
        }
    }
    if let usage = response.usageMetadata {
        print(
            """
            Used:
             \(usage.promptTokenCount ?? 0) prompt tokens
             \(usage.cachedContentTokenCount ?? 0) cached tokens
             \(usage.candidatesTokenCount ?? 0) candidate tokens
             \(usage.totalTokenCount ?? 0) total tokens
            """
        )
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create Gemini grounding search request: \(error.localizedDescription)")
}

How to transcribe audio with Gemini

Add a file called helloworld.m4a to your Xcode assets before running this sample snippet:

import AIProxy

/* Uncomment for BYOK use cases */
// let geminiService = AIProxy.geminiDirectService(
//     unprotectedAPIKey: "your-gemini-key"
// )

/* Uncomment for all other production use cases */
// let geminiService = AIProxy.geminiService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

guard let url = Bundle.main.url(forResource: "helloworld", withExtension: "m4a") else {
    print("Could not find an audio file named helloworld.m4a in your app bundle")
    return
}

do {
    let requestBody = GeminiGenerateContentRequestBody(
        contents: [
            .init(
                parts: [
                    .text("""
                          Can you transcribe this interview, in the format of timecode, speaker, caption?
                          Use speaker A, speaker B, etc. to identify speakers.
                          """),
                    .inline(data: try Data(contentsOf: url), mimeType: "audio/mp4")
                ]
            )
        ]
    )
    let response = try await geminiService.generateContentRequest(
        body: requestBody,
        model: "gemini-1.5-flash"
    )
    for part in response.candidates?.first?.content?.parts ?? [] {
        switch part {
        case .text(let text):
            print("Gemini transcript: \(text)")
        case .functionCall(name: let functionName, args: let arguments):
            print("Gemini wants us to call function \(functionName) with arguments: \(arguments ?? [:])")
        }
    }
    if let usage = response.usageMetadata {
        print(
            """
            Used:
             \(usage.promptTokenCount ?? 0) prompt tokens
             \(usage.cachedContentTokenCount ?? 0) cached tokens
             \(usage.candidatesTokenCount ?? 0) candidate tokens
             \(usage.totalTokenCount ?? 0) total tokens
            """
        )
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create transcript with Gemini: \(error.localizedDescription)")
}

How to use images in the prompt to Gemini

Add a file called 'my-image.jpg' to Xcode app assets. Then run this snippet:

import AIProxy

/* Uncomment for BYOK use cases */
// let geminiService = AIProxy.geminiDirectService(
//     unprotectedAPIKey: "your-gemini-key"
// )

/* Uncomment for all other production use cases */
// let geminiService = AIProxy.geminiService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

guard let image = NSImage(named: "my-image") else {
    print("Could not find an image named 'my-image' in your app assets")
    return
}

guard let jpegData = AIProxy.encodeImageAsJpeg(image: image, compressionQuality: 0.6) else {
    print("Could not encode image as Jpeg")
    return
}

do {
    let requestBody = GeminiGenerateContentRequestBody(
        contents: [
            .init(
                parts: [
                    .text("What do you see?"),
                    .inline(
                        data: jpegData,
                        mimeType: "image/jpeg"
                    )
                ]
            )
        ],
        safetySettings: [
            .init(category: .dangerousContent, threshold: .none),
            .init(category: .civicIntegrity, threshold: .none),
            .init(category: .harassment, threshold: .none),
            .init(category: .hateSpeech, threshold: .none),
            .init(category: .sexuallyExplicit, threshold: .none)
        ]
    )
    let response = try await geminiService.generateContentRequest(
        body: requestBody,
        model: "gemini-1.5-flash"
    )
    for part in response.candidates?.first?.content?.parts ?? [] {
        switch part {
        case .text(let text):
            print("Gemini sees: \(text)")
        case .functionCall(name: let functionName, args: let arguments):
            print("Gemini wants us to call function \(functionName) with arguments: \(arguments ?? [:])")
        }
    }
    if let usage = response.usageMetadata {
        print(
            """
            Used:
             \(usage.promptTokenCount ?? 0) prompt tokens
             \(usage.cachedContentTokenCount ?? 0) cached tokens
             \(usage.candidatesTokenCount ?? 0) candidate tokens
             \(usage.totalTokenCount ?? 0) total tokens
            """
        )
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create Gemini generate content request: \(error.localizedDescription)")
}

How to upload a video file to Gemini temporary storage

Add a file called my-movie.mov to your Xcode assets before running this sample snippet. If you use a file like my-movie.mp4, change the mime type from video/quicktime to video/mp4 in the snippet below.

import AIProxy

/* Uncomment for BYOK use cases */
// let geminiService = AIProxy.geminiDirectService(
//     unprotectedAPIKey: "your-gemini-key"
// )

/* Uncomment for all other production use cases */
// let geminiService = AIProxy.geminiService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

// Try to upload the zip file in Xcode assets
// Get the images to train with:
guard let movieAsset = NSDataAsset(name: "my-movie") else {
    print("""
          Drop my-movie.mov into Assets first.
          """)
    return
}

do {
    let geminiFile = try await geminiService.uploadFile(
        fileData: movieAsset.data,
        mimeType: "video/quicktime"
    )
    print("""
          Video file uploaded to Gemini's media storage.
          It will be available for 48 hours.
          Find it at \(geminiFile.uri.absoluteString)
          """)
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not upload file to Gemini: \(error.localizedDescription)")
}

How to convert video contents to text with Gemini

Use the file URL returned from the snippet above.

import AIProxy

let fileURL = URL(string: "url-from-snippet-above")!

/* Uncomment for BYOK use cases */
// let geminiService = AIProxy.geminiDirectService(
//     unprotectedAPIKey: "your-gemini-key"
// )

/* Uncomment for all other production use cases */
// let geminiService = AIProxy.geminiService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

let requestBody = GeminiGenerateContentRequestBody(
    model: "gemini-1.5-flash",
    contents: [
        .init(
            parts: [
                .text("Dump the text content in markdown from this video"),
                .file(
                    url: fileURL,
                    mimeType: "video/quicktime"
                )
            ]
        )
    ],
    safetySettings: [
        .init(category: .dangerousContent, threshold: .none),
        .init(category: .civicIntegrity, threshold: .none),
        .init(category: .harassment, threshold: .none),
        .init(category: .hateSpeech, threshold: .none),
        .init(category: .sexuallyExplicit, threshold: .none)
    ]
)

do {
    let response = try await geminiService.generateContentRequest(
        body: requestBody,
        model: "gemini-1.5-flash"
    )
    for part in response.candidates?.first?.content?.parts ?? [] {
        switch part {
        case .text(let text):
            print("Gemini transcript: \(text)")
        case .functionCall(name: let functionName, args: let arguments):
            print("Gemini wants us to call function \(functionName) with arguments: \(arguments ?? [:])")
        }
    }
    if let usage = response.usageMetadata {
        print(
            """
            Used:
             \(usage.promptTokenCount ?? 0) prompt tokens
             \(usage.cachedContentTokenCount ?? 0) cached tokens
             \(usage.candidatesTokenCount ?? 0) candidate tokens
             \(usage.totalTokenCount ?? 0) total tokens
            """
        )
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create Gemini vision request: \(error.localizedDescription)")
}

How to delete a temporary file from Gemini storage

import AIProxy

let fileURL = URL(string: "url-from-snippet-above")!

/* Uncomment for BYOK use cases */
// let geminiService = AIProxy.geminiDirectService(
//     unprotectedAPIKey: "your-gemini-key"
// )

/* Uncomment for all other production use cases */
// let geminiService = AIProxy.geminiService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    try await geminiService.deleteFile(fileURL: fileURL)
    print("File deleted from \(fileURL.absoluteString)")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not delete file from Gemini temporary storage: \(error.localizedDescription)")
}

Anthropic

How to send an Anthropic message request

import AIProxy

/* Uncomment for BYOK use cases */
// let anthropicService = AIProxy.anthropicDirectService(
//     unprotectedAPIKey: "your-anthropic-key"
// )

/* Uncomment for all other production use cases */
// let anthropicService = AIProxy.anthropicService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let response = try await anthropicService.messageRequest(body: AnthropicMessageRequestBody(
        maxTokens: 1024,
        messages: [
            AnthropicInputMessage(content: [.text("hello world")], role: .user)
        ],
        model: "claude-3-5-sonnet-20240620"
    ))
    for content in response.content {
        switch content {
        case .text(let message):
            print("Claude sent a message: \(message)")
        case .toolUse(id: _, name: let toolName, input: let toolInput):
            print("Claude used a tool \(toolName) with input: \(toolInput)")
        }
    }
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create an Anthropic message: \(error.localizedDescription)")
}

How to use streaming text messages with Anthropic

import AIProxy

/* Uncomment for BYOK use cases */
// let anthropicService = AIProxy.anthropicDirectService(
//     unprotectedAPIKey: "your-anthropic-key"
// )

/* Uncomment for all other production use cases */
// let anthropicService = AIProxy.anthropicService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let requestBody = AnthropicMessageRequestBody(
        maxTokens: 1024,
        messages: [
            .init(
                content: [.text("hello world")],
                role: .user
            )
        ],
        model: "claude-3-5-sonnet-20240620"
    )

    let stream = try await anthropicService.streamingMessageRequest(body: requestBody)
    for try await chunk in stream {
        switch chunk {
        case .text(let text):
            print(text)
        case .toolUse(name: let toolName, input: let toolInput):
            print("Claude wants to call tool \(toolName) with input \(toolInput)")
        }
    }
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not use Anthropic's message stream: \(error.localizedDescription)")
}

How to use streaming tool calls with Anthropic

import AIProxy

/* Uncomment for BYOK use cases */
// let anthropicService = AIProxy.anthropicDirectService(
//     unprotectedAPIKey: "your-anthropic-key"
// )

/* Uncomment for all other production use cases */
// let anthropicService = AIProxy.anthropicService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let requestBody = AnthropicMessageRequestBody(
        maxTokens: 1024,
        messages: [
            .init(
                content: [.text("What is nvidia's stock price?")],
                role: .user
            )
        ],
        model: "claude-3-5-sonnet-20240620",
        tools: [
            .init(
                description: "Call this function when the user wants a stock symbol",
                inputSchema: [
                    "type": "object",
                    "properties": [
                        "ticker": [
                            "type": "string",
                            "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
                        ]
                    ],
                    "required": ["ticker"]
                ],
                name: "get_stock_symbol"
            )
        ]
    )

    let stream = try await anthropicService.streamingMessageRequest(body: requestBody)
    for try await chunk in stream {
        switch chunk {
        case .text(let text):
            print(text)
        case .toolUse(name: let toolName, input: let toolInput):
            print("Claude wants to call tool \(toolName) with input \(toolInput)")
        }
    }
    print("Done with stream")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print(error.localizedDescription)
}

How to send an image to Anthropic

On macOS, use NSImage(named:) in place of UIImage(named:)

import AIProxy

guard let image = UIImage(named: "myImage") else {
    print("Could not find an image named 'myImage' in your app assets")
    return
}

guard let jpegData = AIProxy.encodeImageAsJpeg(image: image, compressionQuality: 0.6) else {
    print("Could not convert image to jpeg")
    return
}

/* Uncomment for BYOK use cases */
// let anthropicService = AIProxy.anthropicDirectService(
//     unprotectedAPIKey: "your-anthropic-key"
// )

/* Uncomment for all other production use cases */
// let anthropicService = AIProxy.anthropicService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let response = try await anthropicService.messageRequest(body: AnthropicMessageRequestBody(
        maxTokens: 1024,
        messages: [
            AnthropicInputMessage(content: [
                .text("Provide a very short description of this image"),
                .image(mediaType: .jpeg, data: jpegData.base64EncodedString())
            ], role: .user)
        ],
        model: "claude-3-5-sonnet-20240620"
    ))
    for content in response.content {
        switch content {
        case .text(let message):
            print("Claude sent a message: \(message)")
        case .toolUse(id: _, name: let toolName, input: let toolInput):
            print("Claude used a tool \(toolName) with input: \(toolInput)")
        }
    }
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not send a multi-modal message to Anthropic: \(error.localizedDescription)")
}

How to use the tools API with Anthropic

import AIProxy

/* Uncomment for BYOK use cases */
// let anthropicService = AIProxy.anthropicDirectService(
//     unprotectedAPIKey: "your-anthropic-key"
// )

/* Uncomment for all other production use cases */
// let anthropicService = AIProxy.anthropicService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let requestBody = AnthropicMessageRequestBody(
        maxTokens: 1024,
        messages: [
            .init(
                content: [.text("What is nvidia's stock price?")],
                role: .user
            )
        ],
        model: "claude-3-5-sonnet-20240620",
        tools: [
            .init(
                description: "Call this function when the user wants a stock symbol",
                inputSchema: [
                    "type": "object",
                    "properties": [
                        "ticker": [
                            "type": "string",
                            "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
                        ]
                    ],
                    "required": ["ticker"]
                ],
                name: "get_stock_symbol"
            )
        ]
    )
    let response = try await anthropicService.messageRequest(body: requestBody)
    for content in response.content {
        switch content {
        case .text(let message):
            print("Claude sent a message: \(message)")
        case .toolUse(id: _, name: let toolName, input: let toolInput):
            print("Claude used a tool \(toolName) with input: \(toolInput)")
        }
    }
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create Anthropic message with tool call: \(error.localizedDescription)")
}

How to use Anthropic's pdf support in a buffered chat completion

This snippet includes a pdf mydocument.pdf in the Anthropic request. Adjust the filename to match the pdf included in your Xcode project. The snippet expects the pdf in the app bundle.

```swift
import AIProxy

/* Uncomment for BYOK use cases */
// let anthropicService = AIProxy.anthropicDirectService(
//     unprotectedAPIKey: "your-anthropic-key"
// )

/* Uncomment for all other production use cases */
// let anthropicService = AIProxy.anthropicService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

guard let pdfFileURL = Bundle.main.url(forResource: "mydocument", withExtension: "pdf"),
      let pdfData = try? Data(contentsOf: pdfFileURL)
else {
    print("""
          Drop mydocument.pdf file into your Xcode project first.
          """)
    return
}

do {
    let response = try await anthropicService.messageRequest(body: AnthropicMessageRequestBody(
        maxTokens: 1024,
        messages: [
            AnthropicInputMessage(content: [.pdf(data: pdfData.base64EncodedString())], role: .user),
            AnthropicInputMessage(content: [.text("Summarize this")], role: .user)
        ],
        model: "claude-3-5-sonnet-20241022"
    ))
    for content in response.content {
        switch content {
        case .text(let message):
            print("Claude sent a message: \(message)")
        case .toolUse(id: _, name: let toolName, input: let toolInput):
            print("Claude used a tool \(toolName) with input: \(toolInput)")
        }
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not use Anthropic's buffered pdf support: \(error.localizedDescription)")
}
```

How to use Anthropic's pdf support in a streaming chat completion

This snippet includes a pdf mydocument.pdf in the Anthropic request. Adjust the filename to match the pdf included in your Xcode project. The snippet expects the pdf in the app bundle.

```swift
import AIProxy

/* Uncomment for BYOK use cases */
// let anthropicService = AIProxy.anthropicDirectService(
//     unprotectedAPIKey: "your-anthropic-key"
// )

/* Uncomment for all other production use cases */
// let anthropicService = AIProxy.anthropicService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

guard let pdfFileURL = Bundle.main.url(forResource: "mydocument", withExtension: "pdf"),
      let pdfData = try? Data(contentsOf: pdfFileURL)
else {
    print("""
          Drop mydocument.pdf file into your Xcode project first.
          """)
    return
}

do {
    let stream = try await anthropicService.streamingMessageRequest(body: AnthropicMessageRequestBody(
        maxTokens: 1024,
        messages: [
            AnthropicInputMessage(content: [.pdf(data: pdfData.base64EncodedString())], role: .user),
            AnthropicInputMessage(content: [.text("Summarize this")], role: .user)
        ],
        model: "claude-3-5-sonnet-20241022"
    ))
    for try await chunk in stream {
        switch chunk {
        case .text(let text):
            print(text)
        case .toolUse(name: let toolName, input: let toolInput):
            print("Claude wants to call tool \(toolName) with input \(toolInput)")
        }
    }
    print("Done with stream")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not use Anthropic's streaming pdf support: \(error.localizedDescription)")
}
```

Stability.ai

How to generate an image with Stability.ai

In the snippet below, replace NSImage with UIImage if you are building on iOS. For a SwiftUI example, see this gist

import AIProxy

/* Uncomment for BYOK use cases */
// let stabilityService = AIProxy.stabilityDirectService(
//     unprotectedAPIKey: "your-stability-key"
// )

/* Uncomment for all other production use cases */
// let service = AIProxy.stabilityAIService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let body = StabilityAIUltraRequestBody(prompt: "Lighthouse on a cliff overlooking the ocean")
    let response = try await service.ultraRequest(body: body)
    let image = NSImage(data: response.imageData)
    // Do something with `image`
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not generate an image with StabilityAI: \(error.localizedDescription)")
}

DeepL

How to create translations using DeepL

import AIProxy

/* Uncomment for BYOK use cases */
// let deepLService = AIProxy.deepLDirectService(
//     unprotectedAPIKey: "your-deepL-key"
// )

/* Uncomment for all other production use cases */
// let service = AIProxy.deepLService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let body = DeepLTranslateRequestBody(targetLang: "ES", text: ["hello world"])
    let response = try await service.translateRequest(body: body)
    // Do something with `response.translations`
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create DeepL translation: \(error.localizedDescription)")
}

TogetherAI

How to create a non-streaming chat completion with TogetherAI

See the TogetherAI model list for available options to pass as the model argument:

import AIProxy

/* Uncomment for BYOK use cases */
// let togetherAIService = AIProxy.togetherAIDirectService(
//     unprotectedAPIKey: "your-togetherAI-key"
// )

/* Uncomment for all other production use cases */
// let togetherAIService = AIProxy.togetherAIService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let requestBody = TogetherAIChatCompletionRequestBody(
        messages: [TogetherAIMessage(content: "Hello world", role: .user)],
        model: "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
    )
    let response = try await togetherAIService.chatCompletionRequest(body: requestBody)
    print(response.choices.first?.message.content ?? "")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create TogetherAI chat completion: \(error.localizedDescription)")
}

How to create a streaming chat completion with TogetherAI

See the TogetherAI model list for available options to pass as the model argument:

import AIProxy

/* Uncomment for BYOK use cases */
// let togetherAIService = AIProxy.togetherAIDirectService(
//     unprotectedAPIKey: "your-togetherAI-key"
// )

/* Uncomment for all other production use cases */
// let togetherAIService = AIProxy.togetherAIService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let requestBody = TogetherAIChatCompletionRequestBody(
        messages: [TogetherAIMessage(content: "Hello world", role: .user)],
        model: "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
    )
    let stream = try await togetherAIService.streamingChatCompletionRequest(body: requestBody)
    for try await chunk in stream {
        print(chunk.choices.first?.delta.content ?? "")
    }
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create TogetherAI streaming chat completion: \(error.localizedDescription)")
}

How to create a JSON response with TogetherAI

JSON mode is handy for enforcing that the model returns JSON in a structure that your application expects. You specify the contract using schema below. Note that only some models support JSON mode. See this guide for a list.

import AIProxy

/* Uncomment for BYOK use cases */
// let togetherAIService = AIProxy.togetherAIDirectService(
//     unprotectedAPIKey: "your-togetherAI-key"
// )

/* Uncomment for all other production use cases */
// let togetherAIService = AIProxy.togetherAIService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let schema: [String: AIProxyJSONValue] = [
        "type": "object",
        "properties": [
            "colors": [
                "type": "array",
                "items": [
                    "type": "object",
                    "properties": [
                        "name": [
                            "type": "string",
                            "description": "A descriptive name to give the color"
                        ],
                        "hex_code": [
                            "type": "string",
                            "description": "The hex code of the color"
                        ]
                    ],
                    "required": ["name", "hex_code"],
                    "additionalProperties": false
                ]
            ]
        ],
        "required": ["colors"],
        "additionalProperties": false
    ]
    let requestBody = TogetherAIChatCompletionRequestBody(
        messages: [
            TogetherAIMessage(
                content: "You are a helpful assistant that answers in JSON",
                role: .system
            ),
            TogetherAIMessage(
                content: "Create a peaches and cream color palette",
                role: .user
            )
        ],
        model: "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
        responseFormat: .json(schema: schema)
    )
    let response = try await togetherAIService.chatCompletionRequest(body: requestBody)
    print(response.choices.first?.message.content ?? "")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create TogetherAI JSON chat completion: \(error.localizedDescription)")
}

How to make a tool call request with Llama and TogetherAI

If you need this use case, please open a github issue. We don't currently get the tool call result out of the response!

This example is a Swift port of this guide:

import AIProxy

/* Uncomment for BYOK use cases */
// let togetherAIService = AIProxy.togetherAIDirectService(
//     unprotectedAPIKey: "your-togetherAI-key"
// )

/* Uncomment for all other production use cases */
// let togetherAIService = AIProxy.togetherAIService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let function = TogetherAIFunction(
        description: "Call this when the user wants the weather",
        name: "get_weather",
        parameters: [
            "type": "object",
            "properties": [
                "location": [
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA",
                ],
                "num_days": [
                    "type": "integer",
                    "description": "The number of days to get the forecast for",
                ],
            ],
            "required": ["location", "num_days"],
        ]
    )

    let toolPrompt = """
    You have access to the following functions:

    Use the function '\(function.name)' to '\(function.description)':
    \(try function.serialize())

    If you choose to call a function ONLY reply in the following format with no prefix or suffix:

    <function=example_function_name>{{\"example_name\": \"example_value\"}}</function>

    Reminder:
    - Function calls MUST follow the specified format, start with <function= and end with </function>
    - Required parameters MUST be specified
    - Only call one function at a time
    - Put the entire function call reply on one line
    - If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls

    """

    let requestBody = TogetherAIChatCompletionRequestBody(
        messages: [
            TogetherAIMessage(
                content: toolPrompt,
                role: .system
            ),
            TogetherAIMessage(
                content: "What's the weather like in Tokyo over the next few days?",
                role: .user
            )
        ],
        model: "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
        temperature: 0,
        tools: [
            TogetherAITool(function: function)
        ]
    )
    let response = try await togetherAIService.chatCompletionRequest(body: requestBody)
    print(response.choices.first?.message.content ?? "")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create TogetherAI llama 3.1 tool completion: \(error.localizedDescription)")
}

Replicate

How to generate a Flux-Schnell image by Black Forest Labs, using Replicate

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let input = ReplicateFluxSchnellInputSchema(
        prompt: "Monument valley, Utah"
    )
    let output = try await replicateService.createFluxSchnellImageURLs(
        input: input
    )
    print("Done creating Flux-Schnell image: ", output.first ?? "")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create Flux-Schnell image: \(error.localizedDescription)")
}

See the full range of controls for generating an image by viewing ReplicateFluxSchnellInputSchema.swift

How to generate a Flux-Dev image by Black Forest Labs, using Replicate

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let input = ReplicateFluxDevInputSchema(
        prompt: "Monument valley, Utah. High res"
    )
    let output = try await replicateService.createFluxDevImageURLs(
        input: input
    )
    print("Done creating Flux-Dev image: ", output.first ?? "")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create Flux-Dev image: \(error.localizedDescription)")
}

See the full range of controls for generating an image by viewing ReplicateFluxDevInputSchema.swift

How to generate a Flux-Pro image by Black Forest Labs, using Replicate

This snippet generates a version 1.1 image. If you would like to generate version 1, make the following substitutions:

  • ReplicateFluxProInputSchema_v1_1 -> ReplicateFluxProInputSchema

  • createFluxProImage_v1_1 -> createFluxProImage

    import AIProxy
    
    /* Uncomment for BYOK use cases */
    // let replicateService = AIProxy.replicateDirectService(
    //     unprotectedAPIKey: "your-replicate-key"
    // )
    
    /* Uncomment for all other production use cases */
    // let replicateService = AIProxy.replicateService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )
    
    do {
        let input = ReplicateFluxProInputSchema_v1_1(
            prompt: "Monument valley, Utah. High res"
        )
        let output = try await replicateService.createFluxProImageURL_v1_1(
            input: input
        )
        print("Done creating Flux-Pro image: ", output)
    }  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received \(statusCode) status code with response body: \(responseBody)")
    } catch {
        print("Could not create Flux-Pro image: \(error.localizedDescription)")
    }
    

See the full range of controls for generating an image by viewing ReplicateFluxProInputSchema_v1_1.swift

How to generate a Flux-PuLID image using Replicate

On macOS, use NSImage(named:) in place of UIImage(named:)

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

guard let image = UIImage(named: "face") else {
    print("Could not find an image named 'face' in your app assets")
    return
}

guard let imageURL = AIProxy.encodeImageAsURL(image: image, compressionQuality: 0.6) else {
    print("Could not convert image to a local data URI")
    return
}

do {
    let input = ReplicateFluxPulidInputSchema(
        mainFaceImage: imageURL,
        prompt: "smiling man holding sign with glowing green text 'PuLID for FLUX'",
        numOutputs: 1,
        startStep: 4
    )
    let output = try await replicateService.createFluxPulidImage(
        input: input
    )
    print("Done creating Flux-PuLID image: ", output)
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not create Flux-Pulid images: \(error.localizedDescription)")
}

See the full range of controls for generating an image by viewing ReplicateFluxPulidInputSchema.swift

How to generate an image from a reference image using Flux ControlNet on Replicate

There are many controls to play with for this use case. Please see ReplicateFluxDevControlNetInputSchema.swift for the full range of controls.

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let input = ReplicateFluxDevControlNetInputSchema(
        controlImage: URL(string: "https://example.com/your/image")!,
        prompt: "a cyberpunk with natural greys and whites and browns",
        controlStrength: 0.4
    )
    let output = try await replicateService.createFluxDevControlNetImage(
        input: input
    )
    print("Done creating Flux-ControlNet image: ", output)
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not create Flux-ControlNet image: \(error.localizedDescription)")
}

How to generate an SDXL image by StabilityAI, using Replicate

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let input = ReplicateSDXLInputSchema(
        prompt: "Monument valley, Utah"
    )
    let urls = try await replicateService.createSDXLImageURLs(
        input: input
    )
    print("Done creating SDXL image: ", urls.first ?? "")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create SDXL image: \(error.localizedDescription)")
}

See the full range of controls for generating an image by viewing ReplicateSDXLInputSchema.swift

How to generate an SDXL Fresh Ink image by fofr, using Replicate

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let input = ReplicateSDXLFreshInkInputSchema(
        prompt: "A fresh ink TOK tattoo of monument valley, Utah",
        negativePrompt: "ugly, broken, distorted"
    )
    let urls = try await replicateService.createSDXLFreshInkImageURLs(
        input: input
    )
    print("Done creating SDXL fresh ink image: ", urls.first ?? "")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create SDXL fresh ink image: \(error.localizedDescription)")
}

See the full range of controls for generating an image by viewing ReplicateSDXLFreshInkInputSchema.swift

How to call your own models on Replicate.

Look in the ReplicateService+Convenience.swift file for inspiration on how to do this.

  1. Generate the Encodable representation of your input schema. Take a look at any of the input schemas used in ReplicateService+Convenience.swift for inspiration. Find the schema format that you should conform to using replicate's web dashboard and tapping through Your Model > API > Schema > Input Schema

  2. Generate the Decodable representation of your output schema. The output schema is defined on replicate's site at Your Model > API > Schema > Output Schema. I find that unfortunately these schemas are not always accurate, so sometimes you have to look at the network response manually. For simple cases, a typealias will do (for example, if the output schema is just a string or an array of strings). Look at ReplicateFluxOutputSchema.swift for inspiration. If you need help doing this, please reach out.

  3. Call the createSynchronousPredictionUsingVersion or createSynchronousPredictionUsingOfficialModel method and grab the output off the response. See createFaceSwapImage in ReplicateService+Convenience.swift as an example.

You'll need to change YourInputSchema, YourOutputSchema and your-model-version in this snippet:

```
import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let input = YourInputSchema(
        prompt: "Monument valley, Utah"
    )

    let apiResult: ReplicateSynchronousAPIOutput<YourOutputSchema> = try await replicateService.createSynchronousPredictionUsingVersion(
        modelVersion: "your-model-version",
        input: input,
        secondsToWait: secondsToWait
    )

    guard let output = apiResult.output else {
        throw ReplicateError.predictionDidNotIncludeOutput
    }

    // Do something with output
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create replicate synchronous prediction: \(error.localizedDescription)")
}
```

How to create a replicate model for your own Flux fine tune

Replace <your-account>:

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let modelURL = try await replicateService.createModel(
        owner: "<your-account>",
        name: "my-model",
        description: "My great model",
        hardware: "gpu-t4",
        visibility: .private
    )
    print("Your model is at \(modelURL)")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create replicate model: \(error.localizedDescription)")
}

How to upload training data for your own Flux fine tune

Create a zip file called training.zip and drop it in your Xcode assets. See the "Prepare your training data" section of this guide for tips on what to include in the zip file. Then run:

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

guard let trainingData = NSDataAsset(name: "training") else {
    print("""
          Drop training.zip file into Assets first.
          See the 'Prepare your training data' of this guide:
          https://replicate.com/blog/fine-tune-flux
          """)
    return
}

do {
    let fileUploadResponse = try await replicateService.uploadTrainingZipFile(
        zipData: trainingData.data,
        name: "training.zip"
    )
    print("""
          Training file uploaded. Find it at \(fileUploadResponse.urls.get)
          You you can train with this file until \(fileUploadResponse.expiresAt ?? "")
          """)

}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not upload file to replicate: \(error.localizedDescription)")
}

How to train a flux fine-tune

Use the <training-url> returned from the snippet above. Use the <model-name> that you used from the snippet above that.

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    // You should experiment with the settings in `ReplicateFluxTrainingInput.swift` to
    // find what works best for your use case.
    //
    // The `layersToOptimizeRegex` argument here speeds training and works well for faces.
    // You could could optionally remove that argument to see if the final trained model
    // works better for your user case.
    let trainingInput = ReplicateFluxTrainingInput(
        inputImages: URL(string: "<training-url>")!,
        layersToOptimizeRegex: "transformer.single_transformer_blocks.(7|12|16|20).proj_out",
        steps: 200,
        triggerWord: "face"
    )
    let reqBody = ReplicateTrainingRequestBody(destination: "<model-owner>/<model-name>", input: trainingInput)


    // Find valid version numbers here: https://replicate.com/ostris/flux-dev-lora-trainer/train
    let training = try await replicateService.createTraining(
        modelOwner: "ostris",
        modelName: "flux-dev-lora-trainer",
        versionID: "d995297071a44dcb72244e6c19462111649ec86a9646c32df56daa7f14801944",
        body: reqBody
    )
    print("Get training status at: \(training.urls?.get?.absoluteString ?? "unknown")")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create replicate training: \(error.localizedDescription)")
}

How to poll the flux fine-tune for training complete

Use the <url> that is returned from the snippet above.

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

// This URL comes from the output of the sample above
let url = URL(string: "<url>")!

do {
    let training = try await replicateService.pollForTrainingComplete(
        url: url,
        pollAttempts: 100,
        secondsBetweenPollAttempts: 10
    )
    print("""
          Flux training status: \(training.status?.rawValue ?? "unknown")
          Your model version is: \(training.output?.version ?? "unknown")
          """)
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not poll for the replicate training: \(error.localizedDescription)")
}

How to generate images with your own flux fine-tune

Use the <version> string that was returned from the snippet above, but do not include the model owner and model name in the string.

import AIProxy

/* Uncomment for BYOK use cases */
// let replicateService = AIProxy.replicateDirectService(
//     unprotectedAPIKey: "your-replicate-key"
// )

/* Uncomment for all other production use cases */
// let replicateService = AIProxy.replicateService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

let input = ReplicateFluxFineTuneInputSchema(
    prompt: "an oil painting of my face on a blimp",
    model: .dev,
    numInferenceSteps: 28  // Replicate recommends around 28 steps for `.dev` and 4 for `.schnell`
)

do {
    let predictionResponse = try await replicateService.createPrediction(
        version: "<version>",
        input: input,
        output: ReplicatePredictionResponseBody<[URL]>.self
    )

    let predictionOutput: [URL] = try await replicateService.pollForPredictionOutput(
        predictionResponse: predictionResponse,
        pollAttempts: 30,
        secondsBetweenPollAttempts: 5
    )
    print("Done creating predictionOutput: \(predictionOutput)")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create replicate prediction: \(error.localizedDescription)")
}

ElevenLabs

How to use ElevenLabs for text-to-speech

import AIProxy

/* Uncomment for BYOK use cases */
// let elevenLabsService = AIProxy.elevenLabsDirectService(
//     unprotectedAPIKey: "your-elevenLabs-key"
// )

/* Uncomment for all other production use cases */
// let elevenLabsService = AIProxy.elevenLabsService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let body = ElevenLabsTTSRequestBody(
        text: "Hello world"
    )
    let mpegData = try await elevenLabsService.ttsRequest(
        voiceID: "EXAVITQu4vr4xnSDxMaL",
        body: body
    )

    // Do not use a local `let` or `var` for AVAudioPlayer.
    // You need the lifecycle of the player to live beyond the scope of this function.
    // Instead, use file scope or set the player as a member of a reference type with long life.
    // For example, at the top of this file you may define:
    //
    //   fileprivate var audioPlayer: AVAudioPlayer? = nil
    //
    // And then use the code below to play the TTS result:
    audioPlayer = try AVAudioPlayer(data: mpegData)
    audioPlayer?.prepareToPlay()
    audioPlayer?.play()
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print("Could not create ElevenLabs TTS audio: \(error.localizedDescription)")
}
```

How to use ElevenLabs for speech-to-speech

  1. Record an audio file in quicktime and save it as "helloworld.m4a"

  2. Add the audio file to your Xcode project. Make sure it's included in your target: select your audio file in the project tree, type cmd-opt-0 to open the inspect panel, and view Target Membership

  3. Run this snippet:

    import AIProxy
    
    /* Uncomment for BYOK use cases */
    // let elevenLabsService = AIProxy.elevenLabsDirectService(
    //     unprotectedAPIKey: "your-elevenLabs-key"
    // )
    
    /* Uncomment for all other production use cases */
    // let elevenLabsService = AIProxy.elevenLabsService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )
    
    guard let localAudioURL = Bundle.main.url(forResource: "helloworld", withExtension: "m4a") else {
        print("Could not find an audio file named helloworld.m4a in your app bundle")
        return
    }
    
    do {
        let body = ElevenLabsSpeechToSpeechRequestBody(
            audio: try Data(contentsOf: localAudioURL),
            modelID: "eleven_english_sts_v2",
            removeBackgroundNoise: true
        )
        let mpegData = try await elevenLabsService.speechToSpeechRequest(
            voiceID: "EXAVITQu4vr4xnSDxMaL",
            body: body
        )
    
        // Do not use a local `let` or `var` for AVAudioPlayer.
        // You need the lifecycle of the player to live beyond the scope of this function.
        // Instead, use file scope or set the player as a member of a reference type with long life.
        // For example, at the top of this file you may define:
        //
        //   fileprivate var audioPlayer: AVAudioPlayer? = nil
        //
        // And then use the code below to play the TTS result:
        audioPlayer = try AVAudioPlayer(data: mpegData)
        audioPlayer?.prepareToPlay()
        audioPlayer?.play()
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not create ElevenLabs STS audio: \(error.localizedDescription)")
    }

Fal

How to generate a FastSDXL image using Fal

import AIProxy

/* Uncomment for BYOK use cases */
// let falService = AIProxy.falDirectService(
//     unprotectedAPIKey: "your-fal-key"
// )

/* Uncomment for all other production use cases */
// let falService = AIProxy.falService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

let input = FalFastSDXLInputSchema(
    prompt: "Yosemite Valley",
    enableSafetyChecker: false
)
do {
    let output = try await falService.createFastSDXLImage(input: input)
    print("""
          The first output image is at \(output.images?.first?.url?.absoluteString ?? "")
          It took \(output.timings?.inference ?? Double.nan) seconds to generate.
          """)
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not create Fal SDXL image: \(error.localizedDescription)")
}

See the full range of controls for generating an image by viewing FalFastSDXLInputSchema.swift

How to use the fashn/tryon model on Fal

The garmentImage and modelImage arguments may be:

  1. A remote URL to the image hosted on a public site

  2. A local data URL that you construct using AIProxy.encodeImageAsURL

    import AIProxy
    
    /* Uncomment for BYOK use cases */
    // let falService = AIProxy.falDirectService(
    //     unprotectedAPIKey: "your-fal-key"
    // )
    
    /* Uncomment for all other production use cases */
    // let falService = AIProxy.falService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )
    
    guard let garmentImage = NSImage(named: "garment-image"),
          let garmentImageURL = AIProxy.encodeImageAsURL(image: garmentImage
                                                         compressionQuality: 0.6) else {
        print("Could not find an image named 'garment-image' in your app assets")
        return
    }
    
    guard let modelImage = NSImage(named: "model-image"),
          let modelImageURL = AIProxy.encodeImageAsURL(image: modelImage,
                                                       compressionQuality: 0.6) else {
        print("Could not find an image named 'model-image' in your app assets")
        return
    }
    
    let input = FalTryonInputSchema(
        category: .tops,
        garmentImage: garmentImageURL,
        modelImage: modelImageURL
    )
    do {
        let output = try await falService.createTryonImage(input: input)
        print("Tryon image is available at: \(output.images.first?.url.absoluteString ?? "No URL")")
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not create fashn/tryon image on Fal: \(error.localizedDescription)")
    }

How to train Flux on your own images using Fal

Upload training data to Fal

Your training data must be a zip file of images. You can either pull the zip from assets (what I do here), or construct the zip in memory:

import AIProxy

/* Uncomment for BYOK use cases */
// let falService = AIProxy.falDirectService(
//     unprotectedAPIKey: "your-fal-key"
// )

/* Uncomment for all other production use cases */
// let falService = AIProxy.falService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

// Get the images to train with:
guard let trainingData = NSDataAsset(name: "training") else {
    print("Drop training.zip file into Assets first")
    return
}

do {
    let url = try await falService.uploadTrainingZipFile(
        zipData: trainingData.data,
        name: "training.zip"
    )
    print("Training file uploaded. Find it at \(url.absoluteString)")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not upload file to Fal: \(error.localizedDescription)")
}

Train fal-ai/flux-lora-fast-training using your uploaded data

Using the URL returned in the step above:

let input = FalFluxLoRAFastTrainingInputSchema(
    imagesDataURL: <url-from-step-above>
    triggerWord: "face"
)
do {
    let output = try await falService.createFluxLoRAFastTraining(input: input)
    print("""
          Fal's Flux LoRA fast trainer is complete.
          Your weights are at: \(output.diffusersLoraFile?.url?.absoluteString ?? "")
          """)
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not create Fal Flux training: \(error.localizedDescription)")
}

See FalFluxLoRAFastTrainingInputSchema.swift for the full range of training controls.

Run inference on your trained model

Using the LoRA URL returned in the step above:

let inputSchema = FalFluxLoRAInputSchema(
    prompt: "face on a blimp over Monument Valley, Utah",
    loras: [
        .init(
            path: <lora-url-from-step-above>
            scale: 0.9
        )
    ],
    numImages: 2,
    outputFormat: .jpeg
)
do {
    let output = try await falService.createFluxLoRAImage(input: inputSchema)
    print("""
          Fal's Flux LoRA inference is complete.
          Your images are at: \(output.images?.compactMap {$0.url?.absoluteString} ?? [])
          """)
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not create Fal LoRA image: \(error.localizedDescription)")
}

See FalFluxLoRAInputSchema.swift for the full range of inference controls


Groq

How to generate a non-streaming chat completion using Groq

import AIProxy

/* Uncomment for BYOK use cases */
// let groqService = AIProxy.groqDirectService(
//     unprotectedAPIKey: "your-groq-key"
// )

/* Uncomment for all other production use cases */
// let groqService = AIProxy.groqService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let response = try await groqService.chatCompletionRequest(body: .init(
        messages: [.assistant(content: "hello world")],
        model: "mixtral-8x7b-32768"
    ))
    print(response.choices.first?.message.content ?? "")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print(error.localizedDescription)
}

How to generate a streaming chat completion using Groq

import AIProxy

/* Uncomment for BYOK use cases */
// let groqService = AIProxy.groqDirectService(
//     unprotectedAPIKey: "your-groq-key"
// )

/* Uncomment for all other production use cases */
// let groqService = AIProxy.groqService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let stream = try await groqService.streamingChatCompletionRequest(body: .init(
            messages: [.assistant(content: "hello world")],
            model: "mixtral-8x7b-32768"
        )
    )
    for try await chunk in stream {
        print(chunk.choices.first?.delta.content ?? "")
    }
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received \(statusCode) status code with response body: \(responseBody)")
} catch {
    print(error.localizedDescription)
}

How to transcribe audio with Groq

  1. Record an audio file in quicktime and save it as "helloworld.m4a"

  2. Add the audio file to your Xcode project. Make sure it's included in your target: select your audio file in the project tree, type cmd-opt-0 to open the inspect panel, and view Target Membership

  3. Run this snippet:

    import AIProxy
    
    /* Uncomment for BYOK use cases */
    // let groqService = AIProxy.groqDirectService(
    //     unprotectedAPIKey: "your-groq-key"
    // )
    
    /* Uncomment for all other production use cases */
    // let groqService = AIProxy.groqService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )
    
    do {
        let url = Bundle.main.url(forResource: "helloworld", withExtension: "m4a")!
        let requestBody = GroqTranscriptionRequestBody(
            file: try Data(contentsOf: url),
            model: "whisper-large-v3-turbo",
            responseFormat: "json"
        )
        let response = try await groqService.createTranscriptionRequest(body: requestBody)
        let transcript = response.text ?? "None"
        print("Groq transcribed: \(transcript)")
    }  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not get audio transcription from Groq: \(error.localizedDescription)")
    }
    

Perplexity

How to create a chat completion with Perplexity

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let perplexityService = AIProxy.perplexityDirectService(
    //     unprotectedAPIKey: "your-perplexity-key"
    // )

    /* Uncomment for all other production use cases */
    // let perplexityService = AIProxy.perplexityService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    do {
        let response = try await perplexityService.chatCompletionRequest(body: .init(
            messages: [.user(content: "How many national parks in the US?")],
            model: "llama-3.1-sonar-small-128k-online"
        ))

        print(
            """
            Received from Perplexity:
            \(response.choices.first?.message?.content ?? "no content")

            With citations:
            \(response.citations ?? ["none"])

            Using:
            \(response.usage?.promptTokens ?? 0) prompt tokens
            \(response.usage?.completionTokens ?? 0) completion tokens
            \(response.usage?.totalTokens ?? 0) total tokens
            """
        )
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not create perplexity chat completion: \(error.localizedDescription)")
    }

How to create a streaming chat completion with Perplexity

    import AIProxy

    /* Uncomment for BYOK use cases */
    // let perplexityService = AIProxy.perplexityDirectService(
    //     unprotectedAPIKey: "your-perplexity-key"
    // )

    /* Uncomment for all other production use cases */
    // let perplexityService = AIProxy.perplexityService(
    //     partialKey: "partial-key-from-your-developer-dashboard",
    //     serviceURL: "service-url-from-your-developer-dashboard"
    // )

    do {
        let stream = try await perplexityService.streamingChatCompletionRequest(body: .init(
            messages: [.user(content: "How many national parks in the US?")],
            model: "llama-3.1-sonar-small-128k-online"
        ))

        var lastChunk: PerplexityChatCompletionResponseBody?
        for try await chunk in stream {
            print(chunk.choices.first?.delta?.content ?? "")
            lastChunk = chunk
        }

        if let lastChunk = lastChunk {
            print(
                """
                Citations:
                \(lastChunk.citations ?? ["none"])

                Using:
                \(lastChunk.usage?.promptTokens ?? 0) prompt tokens
                \(lastChunk.usage?.completionTokens ?? 0) completion tokens
                \(lastChunk.usage?.totalTokens ?? 0) total tokens
                """
            )
        }
    } catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
        print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
    } catch {
        print("Could not create perplexity streaming chat completion: \(error.localizedDescription)")
    }

Mistral

How to create a chat completion with Mistral

Use api.mistral.ai as the proxy domain when creating your AIProxy service in the developer dashboard.

import AIProxy

/* Uncomment for BYOK use cases */
// let mistralService = AIProxy.mistralDirectService(
//     unprotectedAPIKey: "your-mistral-key"
// )

/* Uncomment for all other production use cases */
// let mistralService = AIProxy.mistralService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let response = try await mistralService.chatCompletionRequest(body: .init(
        messages: [.user(content: "Hello world")],
        model: "mistral-small-latest"
    ))
    print(response.choices.first?.message.content ?? "")
    if let usage = response.usage {
        print(
            """
            Used:
             \(usage.promptTokens ?? 0) prompt tokens
             \(usage.completionTokens ?? 0) completion tokens
             \(usage.totalTokens ?? 0) total tokens
            """
        )
    }
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not create mistral chat completion: \(error.localizedDescription)")
}

How to create a streaming chat completion with Mistral

Use api.mistral.ai as the proxy domain when creating your AIProxy service in the developer dashboard.

import AIProxy

/* Uncomment for BYOK use cases */
// let mistralService = AIProxy.mistralDirectService(
//     unprotectedAPIKey: "your-mistral-key"
// )

/* Uncomment for all other production use cases */
// let mistralService = AIProxy.mistralService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let stream = try await mistralService.streamingChatCompletionRequest(body: .init(
        messages: [.user(content: "Hello world")],
        model: "mistral-small-latest"
    ))
    for try await chunk in stream {
        print(chunk.choices.first?.delta.content ?? "")
        if let usage = chunk.usage {
            print(
                """
                Used:
                 \(usage.promptTokens ?? 0) prompt tokens
                 \(usage.completionTokens ?? 0) completion tokens
                 \(usage.totalTokens ?? 0) total tokens
                """
            )
        }
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not create mistral streaming chat completion: \(error.localizedDescription)")
}

EachAI

How to kick off an EachAI workflow

Use flows.eachlabs.ai as the proxy domain when creating your AIProxy service in the developer dashboard.

import AIProxy

/* Uncomment for BYOK use cases */
// let eachAIService = AIProxy.eachAIDirectService(
//     unprotectedAPIKey: "your-eachAI-key"
// )

/* Uncomment for all other production use cases */
// let eachAIService = AIProxy.eachAIService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

// Update the arguments here based on your eachlabs use case:
let workflowID = "your-workflow-id"
let requestBody = EachAITriggerWorkflowRequestBody(
    parameters: [
        "img": "https://storage.googleapis.com/magicpoint/models/women.png"
    ]
)

do {
    let triggerResponse = try await eachAIService.triggerWorkflow(
        workflowID: workflowID,
        body: requestBody
    )
    let executionResponse = try await eachAIService.pollForWorkflowExecutionComplete(
        workflowID: workflowID,
        triggerID: triggerResponse.triggerID
    )
    print("Workflow result is available at \(executionResponse.output ?? "output missing")")
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not execute EachAI workflow: \(error.localizedDescription)")
}

OpenRouter

How to make a non-streaming chat completion with OpenRouter

import AIProxy

/* Uncomment for BYOK use cases */
// let openRouterService = AIProxy.openRouterDirectService(
//     unprotectedAPIKey: "your-openRouter-key"
// )

/* Uncomment for all other production use cases */
// let openRouterService = AIProxy.openRouterService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let requestBody = OpenRouterChatCompletionRequestBody(
        messages: [.user(content: .text("hello world"))],
        models: [
            "deepseek/deepseek-chat",
            "google/gemini-2.0-flash-exp:free",
            // ...
        ],
        route: .fallback
    )
    let response = try await openRouterService.chatCompletionRequest(requestBody)
    print("""
        Received: \(response.choices.first?.message.content ?? "")
        Served by \(response.provider ?? "unspecified")
        using model \(response.model ?? "unspecified")
        """
    )
    if let usage = response.usage {
        print(
            """
            Used:
             \(usage.promptTokens ?? 0) prompt tokens
             \(usage.completionTokens ?? 0) completion tokens
             \(usage.totalTokens ?? 0) total tokens
            """
        )
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not get OpenRouter buffered chat completion: \(error.localizedDescription)")
}

How to make a streaming chat completion with OpenRouter

import AIProxy

/* Uncomment for BYOK use cases */
// let openRouterService = AIProxy.openRouterDirectService(
//     unprotectedAPIKey: "your-openRouter-key"
// )

/* Uncomment for all other production use cases */
// let openRouterService = AIProxy.openRouterService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

let requestBody = OpenRouterChatCompletionRequestBody(
    messages: [.user(content: .text("hello world"))],
    models: [
        "deepseek/deepseek-chat",
        "google/gemini-2.0-flash-exp:free",
        // ...
    ],
    route: .fallback
)

do {
    let stream = try await openRouterService.streamingChatCompletionRequest(body: requestBody)
    for try await chunk in stream {
        print(chunk.choices.first?.delta.content ?? "")
        if let usage = chunk.usage {
            print(
                """
                Served by \(chunk.provider ?? "unspecified")
                using model \(chunk.model ?? "unspecified")
                Used:
                 \(usage.promptTokens ?? 0) prompt tokens
                 \(usage.completionTokens ?? 0) completion tokens
                 \(usage.totalTokens ?? 0) total tokens
                """
            )
        }
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not get OpenRouter streaming chat completion: \(error.localizedDescription)")
}

How to make a structured outputs chat completion with OpenRouter

import AIProxy

/* Uncomment for BYOK use cases */
// let openRouterService = AIProxy.openRouterDirectService(
//     unprotectedAPIKey: "your-openRouter-key"
// )

/* Uncomment for all other production use cases */
// let openRouterService = AIProxy.openRouterService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )

do {
    let schema: [String: AIProxyJSONValue] = [
        "type": "object",
        "properties": [
            "colors": [
                "type": "array",
                "items": [
                    "type": "object",
                    "properties": [
                        "name": [
                            "type": "string",
                            "description": "A descriptive name to give the color"
                        ],
                        "hex_code": [
                            "type": "string",
                            "description": "The hex code of the color"
                        ]
                    ],
                    "required": ["name", "hex_code"],
                    "additionalProperties": false
                ]
            ]
        ],
        "required": ["colors"],
        "additionalProperties": false
    ]
    let requestBody = OpenRouterChatCompletionRequestBody(
        messages: [
            .system(content: .text("Return valid JSON only, and follow the specified JSON structure")),
            .user(content: .text("Return a peaches and cream color palette"))
        ],
        models: [
            "cohere/command-r7b-12-2024",
            "meta-llama/llama-3.3-70b-instruct",
            // ...
        ],
        responseFormat: .jsonSchema(
            name: "palette_creator",
            description: "A list of colors that make up a color pallete",
            schema: schema,
            strict: true
        ),
        route: .fallback
    )
    let response = try await openRouterService.chatCompletionRequest(body: requestBody)
    print("""
        Received: \(response.choices.first?.message.content ?? "")
        Served by \(response.provider ?? "unspecified")
        using model \(response.model ?? "unspecified")
        """
    )
    if let usage = response.usage {
        print(
            """
            Used:
             \(usage.promptTokens ?? 0) prompt tokens
             \(usage.completionTokens ?? 0) completion tokens
             \(usage.totalTokens ?? 0) total tokens
            """
        )
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not get structured outputs response from OpenRouter: \(error.localizedDescription)")
}

How to use vision requests on OpenRouter (multi-modal chat)

On macOS, use NSImage(named:) in place of UIImage(named:)

import AIProxy

/* Uncomment for BYOK use cases */
// let openRouterService = AIProxy.openRouterDirectService(
//     unprotectedAPIKey: "your-openRouter-key"
// )

/* Uncomment for all other production use cases */
// let openRouterService = AIProxy.openRouterService(
//     partialKey: "partial-key-from-your-developer-dashboard",
//     serviceURL: "service-url-from-your-developer-dashboard"
// )
guard let image = NSImage(named: "myImage") else {
    print("Could not find an image named 'myImage' in your app assets")
    return
}

guard let imageURL = AIProxy.encodeImageAsURL(image: image, compressionQuality: 0.6) else {
    print("Could not encode image as a data URI")
    return
}

do {
    let response = try await openRouterService.chatCompletionRequest(body: .init(
        messages: [
            .system(
                content: .text("Tell me what you see")
            ),
            .user(
                content: .parts(
                    [
                        .text("What do you see?"),
                        .imageURL(imageURL)
                    ]
                )
            )
        ],
        models: [
            "x-ai/grok-2-vision-1212",
            "openai/gpt-4o"
        ],
        route: .fallback
    ))
    print("""
        Received: \(response.choices.first?.message.content ?? "")
        Served by \(response.provider ?? "unspecified")
        using model \(response.model ?? "unspecified")
        """
    )
    if let usage = response.usage {
        print(
            """
            Used:
             \(usage.promptTokens ?? 0) prompt tokens
             \(usage.completionTokens ?? 0) completion tokens
             \(usage.totalTokens ?? 0) total tokens
            """
        )
    }
} catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch {
    print("Could not make a vision request to OpenRouter: \(error.localizedDescription)")
}

OpenMeteo

How to fetch the weather with OpenMeteo

This pattern is slightly different than the others, because OpenMeteo has an official lib that we'd like to rely on. To run the snippet below, you'll need to add AIProxySwift and OpenMeteoSDK to your Xcode project. Add OpenMeteoSDK:

  • In Xcode, go to File > Add Package Dependences
  • Enter the package URL https://github.com/open-meteo/sdk
  • Choose your dependency rule (e.g. the main branch for the most up-to-date package)

Next, use AIProxySwift's core functionality to get a URLRequest and URLSession, and pass those into the OpenMeteoSDK:

import AIProxy
import OpenMeteoSdk

do {
    let request = try await AIProxy.request(
        partialKey: "partial-key-from-your-aiproxy-developer-dashboard",
        serviceURL: "service-url-from-your-aiproxy-developer-dashboard",
        proxyPath: "/v1/forecast?latitude=52.52&longitude=13.41&hourly=temperature_2m&format=flatbuffers"
    )
    let session = AIProxy.session()
    let responses = try await WeatherApiResponse.fetch(request: request, session: session)
    // Do something with `responses`. For a usage example, follow these instructions:
    // 1. Navigate to https://open-meteo.com/en/docs
    // 2. Scroll to the 'API response' section
    // 3. Tap on Swift
    // 4. Scroll to 'Usage'
    print(responses)
} catch {
    print("Could not fetch the weather: \(error.localizedDescription)")
}

Advanced Settings

Specify your own clientID to annotate requests

If your app already has client or user IDs that you want to annotate AIProxy requests with, pass a second argument to the provider's service initializer. For example:

let openAIService = AIProxy.openAIService(
    partialKey: "partial-key-from-your-developer-dashboard",
    serviceURL: "service-url-from-your-developer-dashboard",
    clientID: "<your-id>"
)

Requests that are made using openAIService will be annotated on the AIProxy backend, so that when you view top users, or the timeline of requests, your client IDs will be familiar.

If you do not have existing client or user IDs, no problem! Leave the clientID argument out, and we'll generate IDs for you. See AIProxyIdentifier.swift if you would like to see ID generation specifics.

How to catch Foundation errors for specific conditions

We use Foundation's URL types such as URLRequest and URLSession for all connections to AIProxy. You can view the various errors that Foundation may raise by viewing NSURLError.h (which is easiest to find by punching cmd-shift-o in Xcode and searching for it).

Some errors may be more interesting to you, and worth their own error handler to pop UI for your user. For example, to catch NSURLErrorTimedOut, NSURLErrorNetworkConnectionLost and NSURLErrorNotConnectedToInternet, you could use the following try/catch structure:

import AIProxy

let openAIService = AIProxy.openAIService(
    partialKey: "partial-key-from-your-developer-dashboard",
    serviceURL: "service-url-from-your-developer-dashboard"
)

do {
    let response = try await openAIService.chatCompletionRequest(body: .init(
        model: "gpt-4o-mini",
        messages: [.assistant(content: .text("hello world"))]
    ))
    print(response.choices.first?.message.content ?? "")
}  catch AIProxyError.unsuccessfulRequest(let statusCode, let responseBody) {
    print("Received non-200 status code: \(statusCode) with response body: \(responseBody)")
} catch let err as URLError where err.code == URLError.timedOut {
    print("Request for OpenAI buffered chat completion timed out")
} catch let err as URLError where [.notConnectedToInternet, .networkConnectionLost].contains(err.code) {
    print("Could not make buffered chat request. Please check your internet connection")
} catch {
    print("Could not get buffered chat completion: \(error.localizedDescription)")
}

Troubleshooting

No such module 'AIProxy' error

Occassionally, Xcode fails to automatically add the AIProxy library to your target's dependency list. If you receive the No such module 'AIProxy' error, first ensure that you have added the package to Xcode using the Installation steps. Next, select your project in the Project Navigator (cmd-1), select your target, and scroll to the Frameworks, Libraries, and Embedded Content section. Tap on the plus icon:

Add library dependency

And add the AIProxy library:

Select the AIProxy dependency

macOS network sandbox

If you encounter the error

networkd_settings_read_from_file Sandbox is preventing this process from reading networkd settings file at "/Library/Preferences/com.apple.networkd.plist", please add an exception.

or

 A server with the specified hostname could not be found

Modify your macOS project settings by tapping on your project in the Xcode project tree, then select Signing & Capabilities and enable Outgoing Connections (client)

'async' call in a function that does not support concurrency

If you use the snippets above and encounter the error

'async' call in a function that does not support concurrency

it is because we assume you are in a structured concurrency context. If you encounter this error, you can use the escape hatch of wrapping your snippet in a Task {}.

Requests to AIProxy fail in iOS XCTest UI test cases

If you'd like to do UI testing and allow the test cases to execute real API requests, you must set the AIPROXY_DEVICE_CHECK_BYPASS env variable in your test plan and forward the env variable from the test case to the host simulator (Apple does not do this by default, which I consider a bug). Here is how to set it up:

  • Set the AIPROXY_DEVICE_CHECK_BYPASS env variable in your test environment:

    • Open the scheme editor at Product > Scheme > Edit Scheme

    • Select Test

    • Tap through to the test plan

      Select test plan
    • Select Configurations > Environment Variables

      Select env variables
    • Add the AIPROXY_DEVICE_CHECK_BYPASS env variable with your value

      Enter env variable value
  • Important Edit your test cases to forward on the env variable to the host simulator:

func testExample() throws {
    let app = XCUIApplication()
    app.launchEnvironment = [
        "AIPROXY_DEVICE_CHECK_BYPASS": ProcessInfo.processInfo.environment["AIPROXY_DEVICE_CHECK_BYPASS"]!
    ]
    app.launch()
}

FAQ

What is the AIPROXY_DEVICE_CHECK_BYPASS constant?

AIProxy uses Apple's DeviceCheck to ensure that requests received by the backend originated from your app on a legitimate Apple device. However, the iOS simulator cannot produce DeviceCheck tokens. Rather than requiring you to constantly build and run on device during development, AIProxy provides a way to skip the DeviceCheck integrity check. The token is intended for use by developers only. If an attacker gets the token, they can make requests to your AIProxy project without including a DeviceCheck token, and thus remove one level of protection.

The AIPROXY_DEVICE_CHECK_BYPASS is intended for the simulator only. Do not let it leak into a distribution build of your app (including a TestFlight distribution). If you follow the integration steps we provide, then the constant won't leak because env variables are not packaged into the app bundle.

What is the aiproxyPartialKey constant?

This constant is intended to be included in the distributed version of your app. As the name implies, it is a partial representation of your OpenAI key. Specifically, it is one half of an encrypted version of your key. The other half resides on AIProxy's backend. As your app makes requests to AIProxy, the two encrypted parts are paired, decrypted, and used to fulfill the request to OpenAI.

Community contributions

Contributions are welcome! This library uses the MIT license.

Contribution style guidelines

  • Services should conform to a NameService protocol that defines the interface that the direct service and proxied service adopt. Factory methods on AIProxy.swift are typed to return an existential (e.g. NameService) rather than a concrete type (e.g. NameProxiedService)

    • Why do we do this? Two reason:
      1. We want to make it as easy as possible for lib users to swap between the BYOK use case and the proxied use case. By returning an existential, callers can use conditional logic in their app to select which service to use:

        let service = byok ? AIProxy.openaiDirectService() : AIProxy.openaiProxiedService()
        
      2. We prevent the direct and proxied concrete types from diverging in the public interface. As we add more functionality to the service's protocol, the compiler helps us ensure that the functionality is implemented for our two major use cases.

  • In codable representations, fields that are required by the API should be above fields that are optional. Within the two groups (required and optional) all fields should be alphabetically ordered.

  • Decodables should all have optional properties. Why? We don't want to fail decoding in live apps if the provider changes something out from under us (which can happen purposefully due to deprecations, or by accident due to regressions). If we use non-optionals in decodable definitions, then a provider removing a field, changing the type of a field, or removing an enum case would cause decoding to fail. You may think this isn't too bad, since the JSONDecoder throws anyway, and therefore client code will already be wrapped in a do/catch. However, we always want to give the best chance that decodable succeeds for the properties that the client actually uses. That is, if the provider changes out the enum case of a property unused by the client, we want the client application to continue functioning correctly, not to throw an error and enter the catch branch of the client's call site.

  • When a request or response object is deeply nested by the API provider, create nested types in the same namespace as the top level struct. For examples:

    public struct ProviderResponseBody: Decodable {
    
        public let status: Status?
    
        // ... other fields ...
    }
    
    extension ProviderResponseBody {
        public enum Status: String, Decodable {
            case succeeded
            case failed
            case canceled
        }
    }

    This pattern avoids collisions, works well with Xcode's cmd-click to jump to definition, and improves source understanding for folks that use ctrl-6 to navigate through a file.

    You may wonder why we don't nest all types within the original top level type definition:

    public struct ProviderResponseBody: Decodable {
        public enum Status: String, Decodable {
            ...
        }
    }

    This approach is readable when the nested types are small and the nesting level is not too deep. When either of those conditions flip, readability suffers. This is particularly true for nested types that require their own coding keys and encodable/decodable logic, which balloon line count with implementation detail that a user of the top level type has no interest in.

  • If you are implementing an API contract that could reuse a provider's nested structure, and it's reasonable to suppose that the two objects will change together, then pull the nested struct into its own file and give it a longer prefix. The example above would become:

    // ProviderResponseBody.swift
    public struct ProviderResponseBody: Decodable {
    
        // An examples status
        public let status: ProviderStatus?
    
        // ... other fields ...
    }
    
    // ProviderStatus.swift
    public enum ProviderStatus: String, Decodable {
        case succeeded
        case failed
        case canceled
    }
    

Release naming guidelines

Give each release a semantic version without a v prefix on the version name. That is the most reliable way to make Xcode's File > Add Package Dependency flow default to sane version values.