-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathere.conf
194 lines (147 loc) · 3.89 KB
/
ere.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
base_config_conll04 {
task = "ere"
dataset = "conll04"
data_dir = ${ASP}/data/conll04_ere/
model_dir = ${ASP}/data/conll04_ere/
log_root = ${ASP}/data/conll04_ere/
max_segment_len = 256
# Learning
use_amp = true
optimizer = "adamw"
plm_learning_rate = 3e-5
task_learning_rate = 3e-4
plm_scheduler = "linear_with_warmup" # constant / constant_with_warmup / linear_with_warmup
task_scheduler = "linear_with_warmup"
warmup_ratio = 0.05
adam_eps = 1e-8
adam_weight_decay = 0.1
init_std = 0.02
max_grad_norm = 1 # Set 0 to disable clipping
batch_size = 8
gradient_accumulation_steps = 1
num_epochs = 200
# Model hyperparameters.
activation = "relu"
dropout_rate = 0.3
feature_emb_size = 20
hidden_size = 1500
# number of types
num_typing_classes = 4
num_linking_classes = 5
# Other.
beam_size = 1
eval_frequency = 500
report_frequency = 20
plm_tokenizer_name = t5-small
}
t5_base_conll04 = ${base_config_conll04}{
plm_learning_rate = 5e-5
task_learning_rate = 1e-4
plm_pretrained_name_or_path = t5-base
}
flant5_base_conll04 = ${t5_base_conll04}{
plm_learning_rate = 5e-5
task_learning_rate = 1e-4
plm_pretrained_name_or_path = google/flan-t5-base
}
t5_large_conll04 = ${base_config_conll04}{
plm_learning_rate = 5e-5
task_learning_rate = 3e-4
plm_pretrained_name_or_path = t5-large
}
flant5_large_conll04 = ${t5_large_conll04}{
plm_pretrained_name_or_path = google/flan-t5-large
}
t5_3b_conll04 = ${t5_large_conll04}{
plm_learning_rate = 3e-5
task_learning_rate = 3e-4
plm_pretrained_name_or_path = t5-3b
}
flant5_xl_conll04 = ${t5_3b_conll04}{
plm_pretrained_name_or_path = google/flan-t5-xl
}
t0_3b_conll04 = ${t5_3b_conll04}{
plm_pretrained_name_or_path = bigscience/T0_3B
}
base_config_ace05 {
task = "ere"
dataset = "ace05"
data_dir = ${ASP}/data/ace05_ere/
model_dir = ${ASP}/data/ace05_ere/
log_root = ${ASP}/data/ace05_ere/
# Learning
use_amp = true
optimizer = "adamw"
plm_scheduler = "linear_with_warmup" # constant / constant_with_warmup / linear_with_warmup
task_scheduler = "linear_with_warmup"
plm_learning_rate = 5e-5
task_learning_rate = 1e-4
adam_eps = 1e-8
adam_weight_decay = 0.1
init_std = 0.02
feature_emb_size = 20
hidden_size = 150
max_segment_len = 256
warmup_ratio = 0.1
max_grad_norm = 1 # Set 0 to disable clipping
gradient_accumulation_steps = 1
batch_size = 8
# Model hyperparameters.
activation = "relu"
dropout_rate = 0.3
num_epochs = 100
# number of types
num_typing_classes = 7
num_linking_classes = 6
lr_weight = 1.0
rb_action_logit = false
# Other.
beam_size = 1
eval_frequency = 3000
report_frequency = 100
conll_eval_path = none
plm_tokenizer_name = t5-small
}
t5_base_ace05 = ${base_config_ace05}{
plm_learning_rate = 5e-5
task_learning_rate = 3e-4
warmup_ratio = 0.1
hidden_size = 150
eval_frequency = 1000
plm_pretrained_name_or_path = t5-base
}
flant5_base_ace05 = ${t5_base_ace05}{
plm_pretrained_name_or_path = google/flan-t5-base
}
t5_large_ace05 = ${base_config_ace05}{
plm_learning_rate = 5e-5
task_learning_rate = 3e-4
warmup_ratio = 0.05
hidden_size = 150
eval_frequency = 1000
plm_pretrained_name_or_path = t5-large
}
flant5_large_ace05 = ${t5_large_ace05}{
plm_pretrained_name_or_path = google/flan-t5-large
}
t5_3b_ace05 = ${base_config_ace05}{
plm_learning_rate = 5e-5
task_learning_rate = 3e-4
warmup_ratio = 0.05
hidden_size = 150
eval_frequency = 1000
plm_pretrained_name_or_path = t5-3b
}
t0_3b_ace05 = ${t5_3b_ace05}{
plm_pretrained_name_or_path = bigscience/T0_3B
}
flant5_xl_ace05 = ${t5_3b_ace05}{
plm_pretrained_name_or_path = google/flan-t5-xl
}
t5_11b_ace05 = ${t5_3b_ace05}{
plm_pretrained_name_or_path = t5-11b
}
flant5_xxl_ace05 = ${t5_3b_ace05}{
plm_pretrained_name_or_path = bigscience/flan-t5-xxl
eval_frequency = 2000
}