We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
在做外卖分类的时候可以正常训练,但是在验证的最后一般发现无法保存出现报错如下:--------------------------------------------------------------------------- IndexError Traceback (most recent call last) Cell In[39], line 1 ----> 1 keras_model.fit(train_data = dl_train, 2 val_data = dl_val, 3 epochs=2, 4 patience=3, 5 monitor='val_loss', 6 mode='min', 7 ckpt_path = ckpt_path, 8 mixed_precision='no', 9 gradient_accumulation_steps = 16 10 )
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerasmodel.py:242, in KerasModel.fit(self, train_data, val_data, epochs, ckpt_path, patience, monitor, mode, callbacks, plot, wandb, quiet, mixed_precision, cpu, gradient_accumulation_steps) 239 self.history[name] = self.history.get(name, []) + [metric] 241 if self.accelerator.is_local_main_process: --> 242 [cb.on_validation_epoch_end(model = self) for cb in self.callbacks 243 if hasattr(cb,'on_validation_epoch_end')] 245 # 3,early-stopping ------------------------------------------------- 246 self.accelerator.wait_for_everyone()
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerasmodel.py:242, in (.0) 239 self.history[name] = self.history.get(name, []) + [metric] 241 if self.accelerator.is_local_main_process: --> 242 [cb.on_validation_epoch_end(model = self) for cb in self.callbacks 243 if hasattr(cb,'on_validation_epoch_end')] 245 # 3,early-stopping ------------------------------------------------- 246 self.accelerator.wait_for_everyone()
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerascallbacks.py:187, in VisMetric.on_validation_epoch_end(self, model) 185 n = len(dfhistory) 186 x_bounds = [dfhistory['epoch'].min(), min(10+(n//10)*10,model.epochs)] --> 187 title = self.get_title(model) 188 self.update_graph(model, title = title,x_bounds = x_bounds)
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerascallbacks.py:204, in VisMetric.get_title(self, model) 203 def get_title(self, model:'KerasModel'): --> 204 best_epoch,best_score = self.get_best_score(model) 205 title = f'best {model.monitor}={best_score:.4f} (@epoch {best_epoch})' 206 return title
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerascallbacks.py:200, in VisMetric.get_best_score(self, model) 198 arr_scores = dfhistory[model.monitor] 199 best_score = np.max(arr_scores) if model.mode=="max" else np.min(arr_scores) --> 200 best_epoch = dfhistory.loc[arr_scores==best_score,'epoch'].tolist()[0] 201 return (best_epoch, best_score)
IndexError: list index out of range
The text was updated successfully, but these errors were encountered:
一样的错误 楼主解决了吗?
Sorry, something went wrong.
No branches or pull requests
在做外卖分类的时候可以正常训练,但是在验证的最后一般发现无法保存出现报错如下:---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
Cell In[39], line 1
----> 1 keras_model.fit(train_data = dl_train,
2 val_data = dl_val,
3 epochs=2,
4 patience=3,
5 monitor='val_loss',
6 mode='min',
7 ckpt_path = ckpt_path,
8 mixed_precision='no',
9 gradient_accumulation_steps = 16
10 )
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerasmodel.py:242, in KerasModel.fit(self, train_data, val_data, epochs, ckpt_path, patience, monitor, mode, callbacks, plot, wandb, quiet, mixed_precision, cpu, gradient_accumulation_steps)
239 self.history[name] = self.history.get(name, []) + [metric]
241 if self.accelerator.is_local_main_process:
--> 242 [cb.on_validation_epoch_end(model = self) for cb in self.callbacks
243 if hasattr(cb,'on_validation_epoch_end')]
245 # 3,early-stopping -------------------------------------------------
246 self.accelerator.wait_for_everyone()
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerasmodel.py:242, in (.0)
239 self.history[name] = self.history.get(name, []) + [metric]
241 if self.accelerator.is_local_main_process:
--> 242 [cb.on_validation_epoch_end(model = self) for cb in self.callbacks
243 if hasattr(cb,'on_validation_epoch_end')]
245 # 3,early-stopping -------------------------------------------------
246 self.accelerator.wait_for_everyone()
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerascallbacks.py:187, in VisMetric.on_validation_epoch_end(self, model)
185 n = len(dfhistory)
186 x_bounds = [dfhistory['epoch'].min(), min(10+(n//10)*10,model.epochs)]
--> 187 title = self.get_title(model)
188 self.update_graph(model, title = title,x_bounds = x_bounds)
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerascallbacks.py:204, in VisMetric.get_title(self, model)
203 def get_title(self, model:'KerasModel'):
--> 204 best_epoch,best_score = self.get_best_score(model)
205 title = f'best {model.monitor}={best_score:.4f} (@epoch {best_epoch})'
206 return title
File ~/.conda/envs/Luobaseline/lib/python3.10/site-packages/torchkeras/kerascallbacks.py:200, in VisMetric.get_best_score(self, model)
198 arr_scores = dfhistory[model.monitor]
199 best_score = np.max(arr_scores) if model.mode=="max" else np.min(arr_scores)
--> 200 best_epoch = dfhistory.loc[arr_scores==best_score,'epoch'].tolist()[0]
201 return (best_epoch, best_score)
IndexError: list index out of range
The text was updated successfully, but these errors were encountered: