forked from prajwalsingh/EEG2Image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
217 lines (171 loc) · 8.95 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import tensorflow as tf
from tensorflow.keras import Model, layers, backend
from tensorflow.keras.constraints import Constraint
from losses import disc_hinge, disc_loss, gen_loss, gen_hinge
from diff_augment import diff_augment
from tensorflow_addons.layers import SpectralNormalization
tf.random.set_seed(45)
# np.random.seed(45)
class Generator(Model):
def __init__(self, n_class=10, res=128):
super(Generator, self).__init__()
# filters = [ 1024, 512, 256, 128, 64, 32]#, 32, 16]
# strides = [ 4, 2, 2, 2, 2, 2]#, 2, 2]
filters = [ 1024, 512, 256, 128, 64, 32]#, 16]
strides = [ 4, 2, 2, 2, 2, 2]#, 2]
self.cnn_depth = len(filters)
# For discrete condition we are using Embedding
self.cond_embedding = layers.Embedding(input_dim=n_class, output_dim=50)
self.cond_flat = layers.Flatten()
self.cond_dense = layers.Dense(units=(8 * 8 * 1))
self.cond_reshape = layers.Reshape(target_shape=(64,))
# Hyperparameter:
# If only conv : mean=0.0, var=0.02
# If using bnorm: mean=1.0, var=0.02
self.conv = [SpectralNormalization(layers.Conv2DTranspose(\
filters=filters[idx], kernel_size=3,\
strides=strides[idx], padding='same',\
kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0.0, stddev=0.02),\
use_bias=False))\
for idx in range(self.cnn_depth)]
self.act = [layers.LeakyReLU() for idx in range(self.cnn_depth)]
self.bnorm = [layers.BatchNormalization() for idx in range(self.cnn_depth)]
self.last_conv = SpectralNormalization(layers.Conv2D(filters=3, kernel_size=3,\
strides=1, padding='same',\
activation='tanh',\
kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0.0, stddev=0.02),\
use_bias=False))
@tf.function
def call(self, X):
# C = self.cond_reshape( self.cond_dense( self.cond_flat( self.cond_embedding( C ) ) ) )
# X = tf.concat([C, X], axis=-1)
X = tf.expand_dims(tf.expand_dims(X, axis=1), axis=1)
X = self.act[0]( self.conv[0]( X ) )
for idx in range(1, self.cnn_depth):
X = self.act[idx]( self.bnorm[idx]( self.conv[idx]( X ) ) )
# X = self.bnorm[idx]( self.act[idx]( self.conv[idx]( X ) ) )
# X = self.act[idx]( self.conv[idx]( X ) )
X = self.last_conv(X)
return X
class Discriminator(Model):
def __init__(self, n_class=10, res=128):
super(Discriminator, self).__init__()
# filters = [32, 64, 128, 256, 256, 512, 512, 1]
# strides = [ 2, 2, 2, 2, 2, 2, 1, 1]
# filters = [ 64, 128, 256, 512, 1024, 1]
# strides = [ 2, 2, 2, 2, 1, 1]
filters = [ 64, 128, 256, 512, 1024, 1]
strides = [ 2, 2, 2, 2, 1, 1]
self.cnn_depth = len(filters)
# For discrete condition we are using Embedding
self.cond_embedding = layers.Embedding(input_dim=n_class, output_dim=50)
self.cond_flat = layers.Flatten()
self.cond_dense = layers.Dense(units=(res * res * 1))
self.cond_reshape = layers.Reshape(target_shape=(res, res, 1))
self.cnn_conv = [layers.Conv2D(filters=filters[i], kernel_size=3,\
strides=strides[i], padding='same',\
kernel_initializer=tf.keras.initializers.TruncatedNormal(mean=0.0, stddev=0.02),\
use_bias=False)\
for i in range(self.cnn_depth)]
self.cnn_bnorm = [layers.BatchNormalization() for _ in range(self.cnn_depth)]
self.cnn_act = [layers.LeakyReLU(alpha=0.2) for _ in range(self.cnn_depth)]
# self.final_act = layers.Activation('sigmoid')
self.flat = layers.Flatten()
self.disc_out = layers.Dense(units=1)
# self.autoenc = Autoencoder()
@tf.function
def call(self, x, C):
#x = self.cnn_merge( x )
#x = self.cnn_exp( x )
# mem_bank = []
# C = self.cond_reshape( self.cond_dense( self.cond_flat( self.cond_embedding( C ) ) ) )
C = tf.expand_dims( tf.expand_dims(C, axis=1), axis=1)
C = tf.tile(C, [1, x.shape[1], x.shape[2], 1])
x = tf.concat([x, C], axis=-1)
for layer_no in range(self.cnn_depth):
# print(x.shape)
x = self.cnn_act[layer_no]( self.cnn_bnorm[layer_no]( self.cnn_conv[layer_no]( x ) ) )
# x = self.cnn_bnorm[layer_no]( self.cnn_act[layer_no]( self.cnn_conv[layer_no]( x ) ) )
# x = self.cnn_act[layer_no]( self.cnn_conv[layer_no]( x ) )
# if layer_no == 0:
# mem_bank.append( x )
# if layer_no == 1:
# mem_bank.append( x )
# x = self.cnn_act[layer_no]( self.cnn_conv[layer_no]( x ) )
# reconst_x = self.autoenc( x )
# condition = tf.expand_dims(tf.expand_dims(condition, axis=1), axis=1)
# condition = tf.tile(condition, [1, x.shape[1], x.shape[1], 1])
# x = tf.concat([x, condition], axis=-1)
# x = self.cnn_act[layer_no+1]( self.cnn_bnorm[layer_no+1]( self.cnn_conv[layer_no+1]( x ) ) )
# x = self.cnn_bnorm[layer_no+1]( self.cnn_act[layer_no+1]( self.cnn_conv[layer_no+1]( x ) ) )
# x = self.cnn_act[layer_no+1]( self.cnn_conv[layer_no+1]( x ) )
# reconst_x = self.autoenc( x )
reconst_x = None
# x = self.cnn_act[layer_no+2]( self.cnn_bnorm[layer_no+2]( self.cnn_conv[layer_no+2]( x ) ) )
# reconst_x = self.autoenc( x, mem_bank )
# x = self.final_act( x )
# x = self.out( self.flat( x ) )
x = self.disc_out( self.flat( x ) )
return x, reconst_x
class DCGAN(Model):
def __init__(self):
super(DCGAN, self).__init__()
self.gen = Generator()
self.disc = Discriminator()
@tf.function
def dist_train_step(mirrored_strategy, model, model_gopt, model_copt, X, C, latent_dim=96, batch_size=64):
diff_augment_policies = "color,translation"
noise_vector = tf.random.uniform(shape=(batch_size, latent_dim), minval=-1, maxval=1)
noise_vector_2 = tf.random.uniform(shape=(batch_size, latent_dim), minval=-1, maxval=1)
noise_vector = tf.concat([noise_vector, C], axis=-1)
noise_vector_2 = tf.concat([noise_vector_2, C], axis=-1)
# @tf.function
def train_step_disc(model, model_gopt, model_copt, X, C, latent_dim=96, batch_size=64):
with tf.GradientTape() as ctape:
# noise_vector = tf.random.uniform(shape=(batch_size, latent_dim), minval=-1, maxval=1)
# noise_vector = tf.random.uniform(shape=(batch_size, latent_dim), minval=-1, maxval=1)
# noise_vector = tf.random.normal(shape=(batch_size, latent_dim))
fake_img = model.gen(noise_vector, training=False)
X_aug = diff_augment(X, policy=diff_augment_policies)
fake_img = diff_augment(fake_img, policy=diff_augment_policies)
D_real, X_recon = model.disc(X_aug, C, training=True)
D_fake, _ = model.disc(fake_img, C, training=True)
# c_loss = disc_loss(D_real, D_fake) +\
# tf.reduce_mean(tf.keras.losses.MeanAbsoluteError(reduction=tf.keras.losses.Reduction.NONE)(X_aug, X_recon))
# c_loss = disc_hinge(D_real, D_fake) +\
# tf.reduce_mean(tf.keras.losses.MeanAbsoluteError(reduction=tf.keras.losses.Reduction.NONE)(X_aug, X_recon))
c_loss = disc_hinge(D_real, D_fake)
variables = model.disc.trainable_variables
gradients = ctape.gradient(c_loss, variables)
model_copt.apply_gradients(zip(gradients, variables))
return c_loss
# @tf.function
def train_step_gen(model, model_gopt, model_copt, X, C, latent_dim=96, batch_size=64):
with tf.GradientTape() as gtape:
# noise_vector = tf.random.uniform(shape=(batch_size, latent_dim), minval=-1, maxval=1)
# noise_vector = tf.random.normal(shape=(batch_size, latent_dim))
fake_img_o = model.gen(noise_vector, training=True)
fake_img_2_o = model.gen(noise_vector_2, training=True)
#D_fake = model.disc(fake_img, H_hat, training=False)
fake_img = diff_augment(fake_img_o, policy=diff_augment_policies)
fake_img_2 = diff_augment(fake_img_2_o, policy=diff_augment_policies)
D_fake, _ = model.disc(fake_img, C, training=False)
D_fake_2, _ = model.disc(fake_img_2, C, training=False)
# g_loss = gen_loss(D_fake)
g_loss = gen_hinge(D_fake) + gen_hinge(D_fake_2)
mode_loss = tf.divide(tf.reduce_mean(tf.abs(tf.subtract(fake_img_2_o, fake_img_o))),\
tf.reduce_mean(tf.abs(tf.subtract(noise_vector_2, noise_vector)))
)
mode_loss = tf.divide(1.0, mode_loss + 1e-5)
g_loss = g_loss + 1.0 * mode_loss
variables = model.gen.trainable_variables #+ model.gcn.trainable_variables
gradients = gtape.gradient(g_loss, variables)
model_gopt.apply_gradients(zip(gradients, variables))
return g_loss
per_replica_loss_disc = mirrored_strategy.run(train_step_disc, args=(model, model_gopt, model_copt, X, C, latent_dim, batch_size,))
per_replica_loss_gen = mirrored_strategy.run(train_step_gen, args=(model, model_gopt, model_copt, X, C, latent_dim, batch_size,))
# print(per_replica_loss_disc)
# print(mirrored_strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_loss_disc, axis=0).numpy())
discriminator_loss = mirrored_strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_loss_disc, axis=None)
generator_loss = mirrored_strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_loss_gen, axis=None)
return generator_loss, discriminator_loss