-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
294 lines (243 loc) · 13.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import sys
import argparse
import numpy as np
from breizhcrops.models import LSTM, TempCNN, MSResNet, TransformerModel, InceptionTime, StarRNN, OmniScaleCNN
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.optim import Adam
import torch
import pandas as pd
import os
import sklearn.metrics
from dataset import Dataset, CLASSES
from models import SpatiotemporalModel
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
from transforms import random_crop, crop_or_pad_to_size
import shutil
def train(args):
# MR: setting this to False prevents CUDNN_STATUS_EXECUTION_FAILED on my local GeForce GTX 970
# may speed up training if set to true.
# LK: can now be passed as an argument, defaults to false
torch.backends.cudnn.enabled=args.backend
torch.backends.cudnn.benchmark = True
num_classes = 9
ndims = 4
sequencelength = 365
def transform(image_stack, mask):
if args.spatial_encoder == "none": # average over field mask: T, D = image_stack.shape
image_stack = image_stack[:, :, mask > 0].mean(2)
mask = -1 # mask is meaningless now but needs to be constant size for batching
else: # crop/pad image to fixed size + augmentations: T, D, H, W = image_stack.shape
if image_stack.shape[2] >= args.imagesize and image_stack.shape[3] >= args.imagesize:
image_stack, mask = random_crop(image_stack, mask, args.imagesize)
image_stack, mask = crop_or_pad_to_size(image_stack, mask, args.imagesize)
# rotations
rot = np.random.choice([0, 1, 2, 3])
image_stack = np.rot90(image_stack, rot, [2, 3])
mask = np.rot90(mask, rot)
# flip up down
if np.random.rand() < 0.5:
image_stack = np.flipud(image_stack)
mask = np.flipud(mask)
# flip left right
if np.random.rand() < 0.5:
image_stack = np.fliplr(image_stack)
mask = np.fliplr(mask)
image_stack = image_stack * 1e-4
# z-normalize
image_stack -= 0.1014 + np.random.normal(scale=0.01)
image_stack /= 0.1171 + np.random.normal(scale=0.01)
return torch.from_numpy(np.ascontiguousarray(image_stack)).float(), torch.from_numpy(np.ascontiguousarray(mask))
dataset = Dataset(tifroot=args.datapath,
labelgeojson=args.labelgeojson,
transform=transform)
indices = list(range(len(dataset)))
np.random.RandomState(0).shuffle(indices)
split = int(np.floor(args.validation_split * len(dataset)))
train_indices, val_indices = indices[split:], indices[:split]
traindataset = torch.utils.data.Subset(dataset, train_indices)
valdataset = torch.utils.data.Subset(dataset, val_indices)
traindataloader = torch.utils.data.DataLoader(traindataset, batch_size=args.batchsize, num_workers=args.workers)
testdataloader = torch.utils.data.DataLoader(valdataset, batch_size=args.batchsize, num_workers=args.workers)
device = torch.device(args.device)
model = SpatiotemporalModel(spatial_backbone=args.spatial_encoder, temporal_backbone=args.temporal_encoder,
input_dim=ndims, num_classes=num_classes, sequencelength=sequencelength, device=device)
model.to(device)
# loss becomes nan sometimes during training. trying gradient clipping
clip_value = 1e-2
for p in model.parameters():
p.register_hook(lambda grad: torch.clamp(grad, -clip_value, clip_value))
optimizer = Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
print(f"Initialized {model.modelname}")
logdir = os.path.join(args.logdir, model.modelname)
os.makedirs(logdir, exist_ok=True)
print(f"Logging results to {logdir}")
summarywriter = SummaryWriter(log_dir=logdir)
criterion = torch.nn.CrossEntropyLoss(reduction="mean")
log = list()
start_epoch = 1
# resume model if exists
snapshot_path = os.path.join(logdir, "model.pth.tar")
if os.path.exists(snapshot_path):
checkpoint = torch.load(snapshot_path)
start_epoch = checkpoint["epoch"]
log = checkpoint["log"]
optimizer.load_state_dict(checkpoint["optimizer_state"])
model.load_state_dict(checkpoint["model_state"])
print(f"resuming from {snapshot_path}, epoch {start_epoch}")
for epoch in range(start_epoch,args.epochs+1):
train_loss = train_epoch(model, optimizer, criterion, traindataloader, device)
test_loss, y_true, y_pred, *_ = test_epoch(model, criterion, testdataloader, device)
scores = metrics(y_true.cpu(), y_pred.cpu())
scores_msg = ", ".join([f"{k}={v:.2f}" for (k, v) in scores.items()])
test_loss = test_loss.cpu().detach().numpy()[0]
train_loss = train_loss.cpu().detach().numpy()[0]
scores["epoch"] = epoch
scores["trainloss"] = train_loss
scores["testloss"] = test_loss
log.append(scores)
summarywriter.add_scalars("losses", dict(train=train_loss,
test=test_loss), global_step=epoch)
summarywriter.add_scalars("metrics",
{key: scores[key] for key in
['accuracy', 'kappa', 'f1_micro', 'f1_macro', 'f1_weighted', 'recall_micro',
'recall_macro', 'recall_weighted', 'precision_micro', 'precision_macro',
'precision_weighted']},
global_step=epoch)
confusion_matrix = sklearn.metrics.confusion_matrix(y_true=y_true, y_pred=y_pred.cpu().detach().numpy(),
labels=np.arange(len(CLASSES)))
summarywriter.add_figure("confusion_matrix",confusion_matrix_figure(confusion_matrix, labels=CLASSES),
global_step=epoch)
log_df = pd.DataFrame(log).set_index("epoch")
log_df.to_csv(os.path.join(logdir, "trainlog.csv"))
torch.save(
dict(
model_state=model.state_dict(),
optimizer_state=optimizer.state_dict(),
epoch=epoch + 1,
log=log),
snapshot_path)
if len(log) > 2:
if test_loss < np.array([l["testloss"] for l in log[:-1]]).min():
best_model = snapshot_path.replace("model.pth.tar","model_best.pth.tar")
print(f"new best model with testloss {test_loss:.2f} at {best_model}")
shutil.copy(snapshot_path, best_model)
print(f"epoch {epoch}: trainloss {train_loss:.2f}, testloss {test_loss:.2f} " + scores_msg)
def metrics(y_true, y_pred):
accuracy = sklearn.metrics.accuracy_score(y_true, y_pred)
kappa = sklearn.metrics.cohen_kappa_score(y_true, y_pred)
f1_micro = sklearn.metrics.f1_score(y_true, y_pred, average="micro", zero_division=0)
f1_macro = sklearn.metrics.f1_score(y_true, y_pred, average="macro", zero_division=0)
f1_weighted = sklearn.metrics.f1_score(y_true, y_pred, average="weighted", zero_division=0)
recall_micro = sklearn.metrics.recall_score(y_true, y_pred, average="micro")
recall_macro = sklearn.metrics.recall_score(y_true, y_pred, average="macro")
recall_weighted = sklearn.metrics.recall_score(y_true, y_pred, average="weighted")
precision_micro = sklearn.metrics.precision_score(y_true, y_pred, average="micro", zero_division=0)
precision_macro = sklearn.metrics.precision_score(y_true, y_pred, average="macro", zero_division=0)
precision_weighted = sklearn.metrics.precision_score(y_true, y_pred, average="weighted")
return dict(
accuracy=accuracy,
kappa=kappa,
f1_micro=f1_micro,
f1_macro=f1_macro,
f1_weighted=f1_weighted,
recall_micro=recall_micro,
recall_macro=recall_macro,
recall_weighted=recall_weighted,
precision_micro=precision_micro,
precision_macro=precision_macro,
precision_weighted=precision_weighted,
)
def train_epoch(model, optimizer, criterion, dataloader, device):
model.train()
losses = list()
with tqdm(enumerate(dataloader), total=len(dataloader), leave=True) as iterator:
for idx, batch in iterator:
optimizer.zero_grad()
x, y_true, _ = batch
loss = criterion(model.forward(x.to(device)), y_true.to(device))
loss.backward()
optimizer.step()
iterator.set_description(f"train loss={loss:.2f}")
losses.append(loss)
return torch.stack(losses)
def test_epoch(model, criterion, dataloader, device):
model.eval()
with torch.no_grad():
losses = list()
y_true_list = list()
y_pred_list = list()
y_score_list = list()
field_ids_list = list()
with tqdm(enumerate(dataloader), total=len(dataloader), leave=True) as iterator:
for idx, batch in iterator:
x, y_true, field_id = batch
logprobabilities = model.forward(x.to(device))
loss = criterion(logprobabilities, y_true.to(device))
iterator.set_description(f"test loss={loss:.2f}")
losses.append(loss)
y_true_list.append(y_true)
y_pred_list.append(logprobabilities.argmax(-1))
y_score_list.append(logprobabilities.exp())
field_ids_list.append(field_id)
return torch.stack(losses), torch.cat(y_true_list), torch.cat(y_pred_list), torch.cat(y_score_list), torch.cat(field_ids_list)
def parse_args():
parser = argparse.ArgumentParser(description='Train an evaluate time series deep learning models on the'
'BreizhCrops dataset. This script trains a model on training dataset'
'partition, evaluates performance on a validation or evaluation partition'
'and stores progress and model paths in --logdir')
parser.add_argument(
'spatial_encoder', type=str, default="mobilenet_v3_small", help='select CNN model architecture. Available models '
'correspond to torchvision models (https://pytorch.org/vision/stable/models.html)')
parser.add_argument(
'temporal_encoder', type=str, default="LSTM", help='select model architecture. Available models are '
'"LSTM","TempCNN","MSRestNet","TransformerEncoder"')
parser.add_argument(
'-b', '--batchsize', type=int, default=4, help='batch size (number of time series processed simultaneously)')
parser.add_argument(
'-i', '--imagesize', type=int, default=32, help='square size of the images. fields larger than the size will be cropped, smaller fields zero-padded')
parser.add_argument(
'-e', '--epochs', type=int, default=150, help='number of training epochs (training on entire dataset)')
parser.add_argument(
'-D', '--datapath', type=str, default="/ssd/DENETHOR/PlanetL3H/Train/PF-SR", help='PF-SR folder containg tiff images')
parser.add_argument(
'-L', '--labelgeojson', type=str, default="/ssd/DENETHOR/crops_train_2018.geojson",
help='to the geojson containing label data')
parser.add_argument(
'-w', '--workers', type=int, default=0, help='number of CPU workers to load the next batch')
parser.add_argument(
'--weight-decay', type=float, default=1e-6, help='optimizer weight_decay (default 1e-6)')
parser.add_argument(
'--learning-rate', type=float, default=1e-3, help='optimizer learning rate (default 1e-3)')
parser.add_argument(
'--validation_split', type=float, default=0.25, help='ratio of validation a to training data')
parser.add_argument(
'-d', '--device', type=str, default=None, help='torch.Device. either "cpu" or "cuda". '
'default will check by torch.cuda.is_available() ')
parser.add_argument(
'-ba', '--backend', type=bool, default=False, help='This sets torch.backends.cudnn.enabled which may speed up training if true')
parser.add_argument(
'-l', '--logdir', type=str, default="/tmp", help='logdir to store progress and models (defaults to /tmp)')
args = parser.parse_args()
if args.device is None:
args.device = "cuda" if torch.cuda.is_available() else "cpu"
return args
def confusion_matrix_figure(conf_matrix, labels):
fig, ax = plt.subplots(figsize=(7.5, 7.5))
cm = conf_matrix / (conf_matrix.sum(1) + 1e-12)
ax.matshow(cm, cmap=plt.cm.Blues, alpha=0.3)
for i in range(conf_matrix.shape[0]):
for j in range(conf_matrix.shape[1]):
ax.text(x=j, y=i, s=conf_matrix[i, j], va='center', ha='center', size='xx-large')
ax.set_xticks(np.arange(len(labels)))
ax.set_yticks(np.arange(len(labels)))
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)
ax.set_xlabel('Predictions', fontsize=18)
ax.set_ylabel('Actuals', fontsize=18)
ax.set_title('Confusion Matrix', fontsize=18)
return fig
if __name__ == "__main__":
args = parse_args()
train(args)