-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathball_euler_integration.py
82 lines (59 loc) · 1.33 KB
/
ball_euler_integration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#bouncing ball example using euler integration
# import stuff
from numpy import array, arange
from pylab import plot, show, xlim, ylim
# define evolution equations
g = 9.81
def deriv(P):
x = P[0]
y = P[1]
vx = P[2]
vy = P[3]
ax = 0.0
ay = -g
return array([vx,vy,ax,ay],float)
# setup integration time and time resolution
t0 = 0.0
t1 = 10.0
N = 10000
dt = (t1-t0)/float(N)
tpoints = arange(t0,t1,dt)
# set up boundary conditions
# walls at x0, x1, y0, y1
x0 = 0.0
x1 = 5.0
y0 = 0.0
y1 = 3.0
# set up intial conditions
p = array([0.0, 2.0, 1.5, 0.2],float)
xpoints = []
ypoints = []
# iterate through steps
# using Euler integration
for t in tpoints:
xpoints.append(p[0])
ypoints.append(p[1])
p += dt*deriv(p)
# reflect off walls
if p[0] < x0:
p[0] = 2.0*x0 - p[0]
p[2] = - p[2]
if p[0] > x1:
p[0] = 2.0*x1 - p[0]
p[2] = - p[2]
if p[1] < y0:
p[1] = 2.0*y0 - p[1]
p[3] = - p[3]
if p[1] > y1:
p[1] = 2.0*y1 - p[1]
p[3] = - p[3]
# show results
xlim(x0 - 1, x1 + 1)
ylim(y0 - 1, y1 + 1)
# draw box
boxx = [x0,x1,x1,x0,x0]
boxy = [y0,y0,y1,y1,y0]
plot(boxx,boxy, 'k-')
#draw path
plot(xpoints,ypoints)
show()