-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathjointly_learning_demo_v1.py
140 lines (113 loc) · 4.32 KB
/
jointly_learning_demo_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import torch.nn as nn
from LeNet import LeNet
import torchvision as tv
import torchvision.transforms as transforms
import copy
import torch.optim as optim
import argparse
import platform
import math
import time
EPOCH_NUM = 50
BATCH_SIZE = 64
LR = 0.001
CLIENT_NUM = 2
device = torch.device("cuda")
torch.cuda.set_device(2)
transform = transforms.ToTensor()
MNIST_data = "/home/dchen/dataset"
trainset = tv.datasets.MNIST(
root=MNIST_data,
train=True,
download=False,
transform=transform)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=BATCH_SIZE,
shuffle=True,
)
testset = tv.datasets.MNIST(
root=MNIST_data,
train=False,
download=False,
transform=transform)
testloader = torch.utils.data.DataLoader(
testset,
batch_size=BATCH_SIZE,
shuffle=False,
)
dataset_list = list(trainloader)
dataset_len = len(dataset_list)
client_len = dataset_len // CLIENT_NUM
def weight_init(m):
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
net = LeNet()
net.apply(weight_init)
criterion = nn.CrossEntropyLoss()
optimizer_server = optim.SGD(net.parameters(), lr=LR, momentum=0.9)
client_0_net = LeNet().to(device)
client_1_net = LeNet().to(device)
def get_client_grad(client_inputs, client_labels, net_dict, client_net):
client_net.load_state_dict(net_dict)
client_outputs = client_net(client_inputs)
client_loss = criterion(client_outputs, client_labels)
client_optimizer = optim.SGD(client_net.parameters(), lr=LR, momentum=0.9)
client_optimizer.zero_grad()
client_loss.backward()
client_grad_dict = dict()
params_modules = list(client_net.named_parameters())
for params_module in params_modules:
name, params = params_module
params_grad = copy.deepcopy(params.grad)
client_grad_dict[name] = params_grad
client_optimizer.zero_grad()
return client_grad_dict
for epoch in range(EPOCH_NUM):
for index in range(client_len):
net_dict = net.state_dict()
client_0_inputs, client_0_labels = dataset_list[index]
client_0_inputs, client_0_labels = client_0_inputs.to(device), client_0_labels.to(device)
client_0_grad_dict = get_client_grad(client_0_inputs, client_0_labels, net_dict, client_0_net)
client_1_inputs, client_1_labels = dataset_list[index + client_len ]
client_1_inputs, client_1_labels = client_1_inputs.to(device), client_1_labels.to(device)
client_1_grad_dict = get_client_grad(client_1_inputs, client_1_labels, net_dict, client_1_net)
client_average_grad_dict = dict()
for key in client_0_grad_dict:
client_average_grad_dict[key] = client_0_grad_dict[key] / CLIENT_NUM + client_1_grad_dict[key] / CLIENT_NUM
params_modules_server = net.to(device).named_parameters()
for params_module in params_modules_server:
name, params = params_module
params.grad = client_average_grad_dict[name]
optimizer_server.step()
with torch.no_grad():
correct = 0
total = 0
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Epoch %d Acc: %.2f%%' % (epoch + 1, (100 * float(correct) / total)))
with torch.no_grad():
correct = 0
total = 0
for i, data in enumerate(testloader):
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('------------------------------------------------------')
print('Final Acc: %.2f%% (%d / %d)' % ((100 * float(correct) / total), correct, total))
print('------------------------------------------------------')
#torch.save(net.state_dict(), 'models/jointly_learning_demo_%d.pth' % (epoch + 1))
#print('successfully save the model to models/jointly_learning_demo_%d.pth' % (epoch + 1))