forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgather_kernel.cuh
136 lines (127 loc) · 5.47 KB
/
gather_kernel.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cute/numeric/math.hpp"
namespace example
{
// Naive grid-stride loop implementation of gather
template<typename Element, typename Func>
__global__ void
gather_kernel(Element const * __restrict__ input,
Element * __restrict__ output,
Func func,
int num_elems_input,
int num_elems_output,
cutlass::FastDivmod stride_divmod)
{
Element const * input_b = input + blockIdx.z * num_elems_input;
Element * output_b = output + blockIdx.z * num_elems_output;
int tidx = threadIdx.x + blockIdx.x * blockDim.x;
for (int k = tidx; k < num_elems_output; k += blockDim.x * gridDim.x) {
int i,j;
stride_divmod(j, i, k);
output_b[k] = input_b[i + func(j) * stride_divmod.divisor];
}
}
// Gather elements along strided dimension of the tensor according to given indices
template<typename Element, typename Func>
void
gather(Element const * input,
Element * output,
Func func,
int batch_size,
int num_elems_input,
int num_elems_output,
int stride,
cutlass::KernelHardwareInfo const& hw_info)
{
// Upcast to uint128_t data type
int factor = 128 / cutlass::sizeof_bits<Element>::value;
assert(stride % factor == 0);
int stride_upcast = stride/factor;
int num_elems_input_upcast = num_elems_input / factor;
int num_elems_output_upcast = num_elems_output / factor;
cutlass::FastDivmod stride_divmod(stride_upcast);
dim3 blocks(hw_info.sm_count, 1, batch_size);
gather_kernel<<<blocks, 1024>>>(reinterpret_cast<cute::uint128_t const *>(input),
reinterpret_cast<cute::uint128_t *>(output),
func,
num_elems_input_upcast,
num_elems_output_upcast,
stride_divmod);
}
// Naive grid-stride loop implementation of scatter
template<typename Element, typename Func>
__global__ void
scatter_kernel(Element const * __restrict__ input,
Element * __restrict__ output,
Func func,
int num_elems_input,
int num_elems_output,
cutlass::FastDivmod stride_divmod)
{
Element const * input_b = input + blockIdx.z * num_elems_input;
Element * output_b = output + blockIdx.z * num_elems_output;
int tidx = threadIdx.x + blockIdx.x * blockDim.x;
for (int k = tidx; k < num_elems_input; k += blockDim.x * gridDim.x) {
int i,j;
stride_divmod(j, i, k);
output_b[i + func(j) * stride_divmod.divisor] = input_b[k];
}
}
// Gather elements along strided dimension of the tensor according to given indices
template<typename Element, typename Func>
void
scatter(Element const * input,
Element * output,
Func func,
int batch_size,
int num_elems_input,
int num_elems_output,
int stride,
cutlass::KernelHardwareInfo const& hw_info)
{
// Upcast to uint128_t data type
int factor = 128 / cutlass::sizeof_bits<Element>::value;
assert(stride % factor == 0);
int stride_upcast = stride/factor;
int num_elems_input_upcast = num_elems_input / factor;
int num_elems_output_upcast = num_elems_output / factor;
cutlass::FastDivmod stride_divmod(stride_upcast);
dim3 blocks(hw_info.sm_count, 1, batch_size);
scatter_kernel<<<blocks, 1024>>>(reinterpret_cast<cute::uint128_t const *>(input),
reinterpret_cast<cute::uint128_t *>(output),
func,
num_elems_input_upcast,
num_elems_output_upcast,
stride_divmod);
}
} // namespace example