-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfour_gamete_persample.py
264 lines (222 loc) · 9.22 KB
/
four_gamete_persample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 20 15:02:52 2016
@author: lpsmith
"""
#Create parallel BAF segmentation files to match the CN segmentation files
from __future__ import division
from os import walk
from os.path import isfile
import lucianSNPLibrary as lsl
import random
import numpy
#Use if you want to analyze the 'rejoined' data:
#expands_directory = "expands_rejoined_input/results_rejoined/"
#outDirectory = "expands_pairs_rejoined_shuffled/"
#Use if you want to analyze the original Xiaohong-segmented data:
expands_directory = "expands_input_shuffled_results/"
outDirectory = "expands_inshuffled_summary/"
mindiff = 10000
#deq_out = open("diseqs_test.txt", "w")
persample = open("four_gamete_inshuffled_persample.txt", "w")
perpatient = open("four_gamete_inshuffled_perpatient.txt", "w")
def combinePopsInList(combinedpops, point, sample, pops):
if not(point in combinedpops):
combinedpops[point] = {}
combinedpops[point][sample] = pops
def findFourGametes(segments):
foundfour = 0
notfour = 0
for n in range(0, len(segments)-1):
gametes1 = segments[n][3]
for s in range(n+1, len(segments)):
gametes2 = segments[s][3]
if (len(gametes1) != len(gametes2)):
print "Error!"
g4test = set()
g4test.add("zerozero") #Because we know that the ancestral allele was WT.
for g in range(0,len(gametes1)):
g1 = gametes1[g]
g2 = gametes2[g]
if (g1==1):
if (g2==1):
g4test.add("oneone")
else:
g4test.add("onezero")
else:
if (g2==1):
g4test.add("zeroone")
else:
g4test.add("zerozero")
if len(g4test) > 3:
foundfour += 1
else:
notfour += 1
return (foundfour, notfour)
def findFourGametesPopsOnly(allpops):
foundfour = 0
notfour = 0
for n in range(0, len(allpops)-1):
gametes1 = allpops[n]
for s in range(n+1, len(allpops)):
gametes2 = allpops[s]
if (len(gametes1) != len(gametes2)):
print "Error!"
g4test = set()
g4test.add("zerozero") #Because we know that the ancestral allele was WT.
for g in range(0,len(gametes1)):
g1 = gametes1[g]
g2 = gametes2[g]
if (g1==1):
if (g2==1):
g4test.add("oneone")
else:
g4test.add("onezero")
else:
if (g2==1):
g4test.add("zeroone")
else:
g4test.add("zerozero")
if len(g4test) > 3:
foundfour += 1
else:
notfour += 1
return (foundfour, notfour)
flist = []
filesets = {}
#SNPfiles.append(["1034", "20008"])
for (_, _, f) in walk(expands_directory):
flist += f
for f in flist:
if f.find(".sps") != -1 and f.find(".cbs") == -1 and f.find(".spstats") == -1:
treename = f.replace(".sps", ".tree")
if not(isfile(expands_directory + treename)):
continue
(patient, sample, tag) = f.split("_")
if not(patient in filesets):
filesets[patient] = list()
filesets[patient].append(f)
persample.write("Patient\tSample\tnumpops\tnFourGametes\tnNotFour\tFoundRandomFreq\tavgFourGametes\tstDevFourGametes\tDiseq\tavg_diseq\tstd_diseq\n")
patientdata = {}
for patient in filesets:
fileset = filesets[patient]
if len(fileset) == 1:
continue
numsamples = 0
for outfile in fileset:
(patient, sample, __) = outfile.split("_")
efile = open(expands_directory + outfile, "r")
numpops = 0
segments = []
for line in efile:
if line.find("expands version") != -1:
continue
if line.find("chr") != -1:
numpops = len(line.split()) - 16
continue
rowvec = line.rstrip().split()
scenario = rowvec[14]
if (scenario == "4"):
#Don't count the ones that separate the CN and the BAF segments into different populations.
continue
chr = int(rowvec[0])
start = int(float(rowvec[1]))
end = int(float(rowvec[2]))
pops = rowvec[15:15+numpops]
for p in range(0,len(pops)):
pops[p] = int(pops[p])
segment = [chr, start, end, pops]
segments.append(segment)
if (numpops <3):
perpatient.write(patient + "\t" + sample + "\t" + str(numpops) + "\t---\n")
continue
(foundfour, notfour) = findFourGametes(segments)
numlteqFF = 0
numtot = 10000
totfoundfour = []
samplepops = []
for segment in segments:
samplepops.append(segment[3])
samplepops = numpy.array(samplepops)
for n in range(0,numtot):
lsl.shufflePops(segments)
(rfoundfour, rnotfour) = findFourGametes(segments)
if (rfoundfour <= foundfour):
numlteqFF += 1
totfoundfour.append(rfoundfour)
print "Calculating info for patient", patient, "sample", sample
probones = []
numsegs = len(samplepops)
numpops = len(samplepops[0])
for n in range(0, numsegs):
probones.append(numpy.sum(samplepops[n])/len(samplepops[n]))
persample.write(patient + "\t" + sample + "\t" + str(numpops) + "\t" + str(foundfour) + "\t" + str(notfour) + "\t" + str(numlteqFF/numtot) + "\t" + str(numpy.average(totfoundfour)) + "\t" + str(numpy.std(totfoundfour)) + "\n")
# avgdiseq = lsl.CalculateAverageDiseq(samplepops, probones, numsegs, numpops)
# shuffledaverages = []
# shuffled = samplepops
# for n in range(0,1000):
# shuffled = lsl.ShufflePops(shuffled)
# avg = lsl.CalculateAverageDiseq(shuffled, probones, numsegs, numpops)
# shuffledaverages.append(avg)
# print "Writing info for patient", patient, "sample", sample
# persample.write(patient + "\t" + sample + "\t" + str(numpops) + "\t" + str(foundfour) + "\t" + str(notfour) + "\t" + str(numlteqFF/numtot) + "\t" + str(numpy.average(totfoundfour)) + "\t" + str(numpy.std(totfoundfour)) + "\t" + str(avgdiseq) + "\t" + str(numpy.average(shuffledaverages)) + "\t" + str(numpy.std(shuffledaverages)) + "\n")
if not(patient in patientdata):
patientdata[patient] = []
ss = (sample, segments)
patientdata[patient].append(ss)
numsamples += 1
armlist = []
if (patient in patientdata):
armlist = lsl.OneSegmentPerArm(patientdata[patient], numsamples, mindiff)
if (len(armlist) < 2):
perpatient.write(str(patient) + "\t" + str(numsamples) + "\t" + str(len(armlist)) + "\t---\t---\t---\n")
continue
allpops = []
for seglist in armlist:
onearmpops = []
for oneseg in seglist[1]:
onearmpops += oneseg[1][3]
allpops.append(onearmpops)
allpops = numpy.array(allpops)
(foundfour, notfour) = findFourGametesPopsOnly(allpops)
numlteqFF = 0
numtot = 10000
totfoundfour = []
samplepops = []
for segment in allpops:
samplepops.append(segment[3])
samplepops = numpy.array(samplepops)
for n in range(0,numtot):
randomizePopulationsPopsOnly(allpops)
(rfoundfour, rnotfour) = findFourGametesPopsOnly(allpops)
if (rfoundfour <= foundfour):
numlteqFF += 1
totfoundfour.append(rfoundfour)
print "Calculating info for patient", patient, "sample", sample
probones = []
numsegs = len(samplepops)
numpops = len(samplepops[0])
for n in range(0, numsegs):
probones.append(numpy.sum(samplepops[n])/len(samplepops[n]))
perpatient.write(patient + "\t" + str(numpops) + "\t" + str(foundfour) + "\t" + str(notfour) + "\t" + str(numlteqFF/numtot) + "\t" + str(numpy.average(totfoundfour)) + "\t" + str(numpy.std(totfoundfour)) + "\n")
#print allpops
# probones = []
# numsegs = len(allpops)
# numpops = len(allpops[0])
# for n in range(0, numsegs):
# probones.append(numpy.sum(allpops[n])/len(allpops[n]))
# avgdiseq = lsl.CalculateAverageDiseq(allpops, probones, numsegs, numpops)
# shuffledaverages = []
# shuffled = allpops
# for n in range(0,1000):
# shuffled = lsl.ShufflePops(shuffled)
# avg = lsl.CalculateAverageDiseq(shuffled, probones, numsegs, numpops)
# shuffledaverages.append(avg)
# deq_out.write(str(avg))
# deq_out.write("\t")
# deq_out.write("\n")
# perpatient.write(str(patient) + "\t" + str(numsamples) + "\t" + str(len(allpops)) + "\t" + str(avgdiseq) + "\t" + str(numpy.average(shuffledaverages)) + "\t" + str(numpy.std(shuffledaverages)) + "\n")
#deq_out.close()
perpatient.close()
persample.close()