-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_joint_scatterplots.py
213 lines (179 loc) · 7.23 KB
/
calculate_joint_scatterplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 17 12:49:23 2017
@author: lpsmith
"""
from __future__ import division
from os import walk
import sys
import lucianSNPLibrary as lsl
use_baf = True
use_lengths = False
use_disjoin = False
if (use_baf and use_lengths) or (use_baf and use_disjoin) or (use_lengths and use_disjoin):
print "You have to pick whether to run this over BAF values, length values, or disjoin values.\n"
sys.exit()
use_min = False
nsamples_min = 0 #Arbitrary value: minimum number of samples we require
use_max = False
nsamples_max = 10000000 #Arbitrary value: maximum number of samples we require
min_nBAF_SNPs = 0
g_binwidth = 0.001
inputdir = "CN_joint_log2rs/"
bafdir = "BAF_joint_vals_fixed_purity/"
output_directory = "joint_analysis_fixed_purity/"
ploidyfile = "joint_ploidy.txt"
purityfile = "joint_purities.txt"
# read the filtered data that compares Xiaohong's segmentation data with raw SNP data
doubled = [[141, 21060], [141, 21062], [141, 21064], [163, 19208], [163, 19214], [194, 19868], [194, 19880], [450, 18974], [450, 18982], [512, 18744], [512, 18746], [512, 18748], [512, 18750], [512, 18762], [660, 19260], [660, 19262], [660, 19264], [660, 19272], [664, 19954], [772, 18944], [772, 18946], [848, 18794], [884, 20354], [884, 20358], [954, 20014], [954, 20016], [954, 20018], [991, 20600], [997, 20656], [997, 20666], [997, 20668], [997, 20672], [997, 20674], [1006, 21104], [1044, 20856], [1044, 20864], [997, 20658], [997, 20660], [660, 19266], [660, 19270], [740, 20000], [997, 20662], [997, 20664]]
def sort_log2r(outvec, call, intA, intB, all_data, double_loss_data, loss_data, wt_data, loh_data, single_gain_03_data, single_gain_12_data, balanced_gain_data, double_gain_04_data, double_gain_13_data, gain_data):
all_data.append(outvec)
if (call == 0):
double_loss_data.append(outvec)
elif (call == 1):
loss_data.append(outvec)
elif call == 2:
if intA == intB:
wt_data.append(outvec)
else:
loh_data.append(outvec)
elif (call == 3):
if abs(intA-intB)==3:
single_gain_03_data.append(outvec)
else:
single_gain_12_data.append(outvec)
elif call == 4:
if intA==intB:
balanced_gain_data.append(outvec)
elif abs(intA-intB) == 4:
double_gain_04_data.append(outvec)
else:
double_gain_13_data.append(outvec)
else:
gain_data.append(outvec)
if (call > 2 and intA==intB):
all_balanced_gain_data.append(outvec)
all_data = []
double_loss_data = []
loss_data = []
wt_data = []
loh_data = []
single_gain_03_data = []
single_gain_12_data = []
double_gain_04_data = []
double_gain_13_data = []
balanced_gain_data = []
all_balanced_gain_data = []
gain_data = []
ploidies = {}
pfile = open(ploidyfile, "r")
for line in pfile:
if line.find("x") != -1:
continue
(id, ploidy) = line.rstrip().split()
id = id[1:len(id)-1]
(patient, sample) = id.split("_")
ploidy = float(ploidy)
#print "Setting", patient, sample, ploidy
ploidies[(patient, sample)] = ploidy
purities = {}
pfile = open(purityfile, "r")
for line in pfile:
if line.find("x") != -1:
continue
(id, purity) = line.rstrip().split()
id = id[1:len(id)-1]
(patient, sample) = id.split("_")
purity = float(purity)
#print "Setting", patient, sample, purity
purities[(patient, sample)] = purity
for ps in ploidies:
if ps in purities:
print ps[0], ps[1], ploidies[ps], purities[ps]
flist = []
for (_, _, f) in walk(inputdir):
flist += f
for f in flist:
if (f.find(".txt") == -1):
continue
split = f.split("_")
if (len(split) < 3):
continue
patient = split[0]
sample = split[1]
if (int(patient), int(sample)) in doubled:
print "Skipping due to doubling:", patient, sample
continue
ploidy = ploidies[(patient, sample)]
purity = purities[(patient, sample)]
print "Processing", patient, sample, ploidy, purity
baffilename = patient + "_" + sample + "_avgbafvs.txt"
baffile = open(bafdir + baffilename, "r")
bafs = {}
for line in baffile:
(chr, start, end, rawA, rawB, intA, intB, avgBAF, nBAF_SNPs) = line.rstrip().split()
if (chr=="chr"):
continue
chr = int(chr)
if (chr >= 23):
continue
nBAF_SNPs = int(nBAF_SNPs)
if (nBAF_SNPs < min_nBAF_SNPs):
avgBAF = "NA"
bafs[(chr, start, end)] = avgBAF
total_n = 0
log2rfile = open(inputdir + f, "r")
for line in log2rfile:
if line.find("chr") != -1:
continue
(chr, start, end, rawA, rawB, intA, intB, avg_log2r, nSNPs) = line.rstrip().split()
if (chr == "chr"):
continue
chr = int(chr)
if (chr >= 23):
continue
nSNPs = int(nSNPs)
if use_min and nSNPs < nsamples_min:
continue
elif (use_max and nSNPs > nsamples_max):
continue
rawA = float(rawA)
rawB = float(rawB)
intA = int(intA)
intB = int(intB)
avg_log2r = float(avg_log2r)
call = intA + intB
bafdiff = bafs.get((chr, start, end))
if (bafdiff == None):
print "Can't find BAF difference for patient ", patient, " sample ", sample, ", segment ", chr, start, end
continue
if (bafdiff == "NA"):
continue;
bafdiff = float(bafdiff)
disjoin = abs(rawA - intA) + abs(rawB - intB)
outvec = [avg_log2r, "", "", "", "", "", ploidy, purity, nSNPs, disjoin]
pindex = 5
if purity>=0.95:
pindex = 1
elif purity >= 0.9:
pindex = 2
elif purity >= 0.7:
pindex = 3
elif purity >= 0.5:
pindex = 4
outvec[pindex] = bafdiff
sort_log2r(outvec, call, intA, intB, all_data, double_loss_data, loss_data, wt_data, loh_data, single_gain_03_data, single_gain_12_data, balanced_gain_data, double_gain_04_data, double_gain_13_data, gain_data)
labels = "log2r\tBAF, 0.95<pur<=1\tBAF, 0.9<pur<0.95\tBAF, 0.7<pur<0.9\tBAF, 0.5<pur<0.7\tBAF, 0<pur<0.5\tploidy\tpurity\tnSNPs\tdisjoin"
lsl.saveScatterPlot(all_data, output_directory + "all_scatter.txt", labels)
lsl.saveScatterPlot(double_loss_data, output_directory + "double_loss_scatter.txt", labels)
lsl.saveScatterPlot(loss_data, output_directory + "loss_scatter.txt", labels)
lsl.saveScatterPlot(wt_data, output_directory + "wt_scatter.txt", labels)
lsl.saveScatterPlot(loh_data, output_directory + "loh_scatter.txt", labels)
lsl.saveScatterPlot(single_gain_03_data, output_directory + "single_gain_03_scatter.txt", labels)
lsl.saveScatterPlot(single_gain_12_data, output_directory + "single_gain_12_scatter.txt", labels)
lsl.saveScatterPlot(balanced_gain_data, output_directory + "balanced_gain_scatter.txt", labels)
lsl.saveScatterPlot(double_gain_04_data, output_directory + "double_gain_04_scatter.txt", labels)
lsl.saveScatterPlot(double_gain_13_data, output_directory + "double_gain_13_scatter.txt", labels)
lsl.saveScatterPlot(gain_data, output_directory + "other_gain_scatter.txt", labels)
lsl.saveScatterPlot(all_balanced_gain_data, output_directory + "all_balanced_gain_scatter.txt", labels)