-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_diploid_likelihood.py
282 lines (246 loc) · 9.42 KB
/
calculate_diploid_likelihood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 17 11:30:20 2017
@author: lpsmith
"""
#This opens the evidence file and makes decisions accordingly.
from __future__ import division
#from os import walk
import shutil
import glob
from os import path
from os import mkdir
#import lucianSNPLibrary as lsl
use_challenge = False
only_challenge_evidence = False
if use_challenge:
evidence = "calling_evidence_challenge_inc.tsv"
oddsfile = "calling_evidence_challenge_inc_odds.tsv"
elif only_challenge_evidence:
evidence = "calling_evidence.tsv"
oddsfile = "calling_evidence_only_challev_odds.tsv"
else:
evidence = "calling_evidence.tsv"
oddsfile = "calling_evidence_odds.tsv"
evidence_keys = ["flow", "tom", "VAF", "close_diploid", "close_tetraploid", "better_acc", "nygc", "goodness", "xcloser"]
if only_challenge_evidence:
evidence_keys = ["flow", "close_diploid", "close_tetraploid", "better_acc", "goodness", "xcloser"]
def calculateBayes(orig, d_h, d_notH):
return (orig*d_h) / (d_h*orig + d_notH*(1-orig))
# P(H|D) = [P(D|H)P(H)]/[P(D|H)P(H)+P(D|H')(1-P(H))]
def writeHeader(outfile):
outfile.write("Patient")
outfile.write("\tSample")
outfile.write("\tFlow ratio")
outfile.write("\tAdjusted Flow ratio")
if not only_challenge_evidence:
outfile.write("\tTom's Partek Column baseline 2n")
outfile.write("\tTom's Partek: odds")
outfile.write("\tVAF histogram category")
outfile.write("\tVAF histogram odds")
outfile.write("\tClose diploid flow?")
outfile.write("\tClose diploid odds")
outfile.write("\tClose tetraploid flow?")
outfile.write("\tClose tetraploid odds")
outfile.write("\tBetter accuracy?")
outfile.write("\tBetter accuracy odds")
if not only_challenge_evidence:
outfile.write("\tNYGC closer?")
outfile.write("\tNYGC closer odds")
outfile.write("\tBetter goodness")
outfile.write("\tBetter goodness odds")
outfile.write("\tXiaohong closer")
outfile.write("\tXiaohong closer odds")
outfile.write("\tPrior from flow")
outfile.write("\tOdds of being diploid")
outfile.write("\tFinal call from Hutch")
outfile.write("\n")
def writeNewLine(outfile, patient, sample, evidence, oddsvec, odds_str, final):
outfile.write(patient)
outfile.write("\t" + sample)
for key in evidence_keys:
outfile.write("\t" + evidence[key])
outfile.write("\t" + odds_str[key])
for odds in oddsvec:
outfile.write("\t" + str(odds))
outfile.write("\t" + final)
outfile.write("\n")
f = open(evidence, "r")
outfile = open(oddsfile, "w")
writeHeader(outfile)
unused_VAFs = set()
for line in f:
evidence = {}
odds_str = {}
if "Patient" in line:
continue
(patient, sample, tom_call, VAF_type, flow_ratio, close_dip, close_tet, better_accuracy, __, nygc, goodness, xcloser, final) = line.rstrip().split('\t')
evidence["tom"] = tom_call
evidence["VAF"] = VAF_type
evidence["close_diploid"] = close_dip
evidence["close_tetraploid"] = close_tet
evidence["better_acc"] = better_accuracy
evidence["nygc"] = nygc
evidence["goodness"] = goodness
evidence["xcloser"] = xcloser
(flowa, flowb) = flow_ratio.split('::')
flowa = int(flowa)
flowb = int(flowb)
evidence["flow"] = str(flowb-flowa) + "::" + str(flowa)
base_odds = 0.5
if flowb>0:
base_odds = flowa/(flowb)
odds_str["flow"] = flow_ratio
if (base_odds < 0.5):
base_odds_skew = (flowa+3)/(flowb+3)
odds_str["flow"] = str(flowb-flowa) + "::" + str(flowa+3)
if base_odds_skew > 0.5:
base_odds = 0.5
odds_str["flow"] = str(int(flowb/2)) + "::" + str(int(flowb/2))
else:
base_odds = base_odds_skew
else:
base_odds_skew = flowa/(flowb+3)
odds_str["flow"] = str(flowb+3-flowa) + "::" + str(flowa)
if base_odds_skew < 0.5:
base_odds = 0.5
odds_str["flow"] = str(int(flowb/2)) + "::" + str(int(flowb/2))
else:
base_odds = base_odds_skew
oddsvec = [1-base_odds, 1-base_odds]
if not only_challenge_evidence:
ptom_dip = 0.50
ptom_tet = 0.50
if tom_call == "yes" or tom_call=="gastric":
ptom_dip = 0.970
ptom_tet = 0.054
elif tom_call =="no":
ptom_dip = 0.003
ptom_tet = 0.629
elif tom_call == "?":
ptom_dip = 0.033
ptom_tet = 0.314
elif tom_call == "Unknown":
#Don't do anything
assert(True)
else:
print("Unknown tom call:", tom_call)
oddsvec[1] = calculateBayes(oddsvec[1], ptom_dip, ptom_tet)
odds_str["tom"] = str(int(100*ptom_dip)) + "::" + str(int(100*ptom_tet))
pVAF_dip = 0.5
pVAF_tet = 0.5
if VAF_type == "0.1 and 0.4 anomaly":
pVAF_dip = 0.125
pVAF_tet = 0.054
elif VAF_type == "0.1 and 0.5 clean":
pVAF_dip = 0.310
pVAF_tet = 0.054
elif VAF_type == "Clear .25 peak":
pVAF_dip = 0.043
pVAF_tet = 0.200
elif VAF_type == "Multi-hump":
pVAF_dip = 0.243
pVAF_tet = 0.429
elif VAF_type == "Primarily 0.5":
pVAF_dip = 0.079
pVAF_tet = 0.027
elif VAF_type == "Single peak anomaly":
pVAF_dip = 0.118
pVAF_tet = 0.200
elif VAF_type == "Single sharp peak low VAF":
pVAF_dip = 0.040
pVAF_tet = 0.027
else:
unused_VAFs.add(VAF_type)
oddsvec[1] = calculateBayes(oddsvec[1], pVAF_dip, pVAF_tet) #P(01/05|dip, P(01/05|tet))
odds_str["VAF"] = str(int(100*pVAF_dip)) + "::" + str(int(100*pVAF_tet))
pclose_d_dip = 0.5
pclose_d_tet = 0.5
#We are lumping 'true' and 'false' together here, since there were only 13 samples that weren't 'two', and both sets
# indicated 'this is probably tetraploid'.
if close_dip == "True":
pclose_d_dip = 0.007
pclose_d_tet = 0.091
elif close_dip == "False":
pclose_d_dip = 0.007
pclose_d_tet = 0.091
elif close_dip == "Two":
pclose_d_dip = 0.997
pclose_d_tet = 0.229
oddsvec[1] = calculateBayes(oddsvec[1], pclose_d_dip, pclose_d_tet) #P(close_dip_T|dip, P(close_dip_T|tet))
odds_str["close_diploid"] = str(int(100*pclose_d_dip)) + "::" + str(int(100*pclose_d_tet))
pclose_t_dip = 0.5
pclose_t_tet = 0.5
if close_tet == "True":
pclose_t_dip = 0.393
pclose_t_tet = 0.629
oddsvec[1] = calculateBayes(oddsvec[1], 0.5, 0.86) #P(close_tet_T|dip, P(close_tet_T|tet))
elif close_tet == "False":
pclose_t_dip = 0.601
pclose_t_tet = 0.378
oddsvec[1] = calculateBayes(oddsvec[1], pclose_t_dip, pclose_t_tet) #P(close_tet_F|dip, P(close_tet_F|tet))
odds_str["close_tetraploid"] = str(int(100*pclose_t_dip)) + "::" + str(int(100*pclose_t_tet))
pbetter_acc_dip = 0.5
pbetter_acc_tet = 0.5
if better_accuracy == "Diploid":
assert(True)
#This doesn't actually tell you anything (sigh)
elif better_accuracy == "Tetraploid":
pbetter_acc_dip = 0.144
pbetter_acc_tet = 0.171
if better_accuracy == "Diploid only":
pass
elif better_accuracy == "Diploid only at all gammas":
pbetter_acc_dip = 1
pbetter_acc_tet = 0
elif better_accuracy == "Tetraploid only at all gammas":
pbetter_acc_dip = 0
pbetter_acc_tet = 1
#To few to assess
elif better_accuracy == "Tetraploid only":
pbetter_acc_dip = 0.003
pbetter_acc_tet = 0.629
# if int(sample) < 23341:
# pbetter_acc_dip = 0
# pbetter_acc_tet = 1
oddsvec[1] = calculateBayes(oddsvec[1], pbetter_acc_dip, pbetter_acc_tet) #P(dip_better|dip, P(dip_better|tet))
odds_str["better_acc"] = str(int(100*pbetter_acc_dip)) + "::" + str(int(100*pbetter_acc_tet))
if not only_challenge_evidence:
nygc_dip = 0.5
nygc_tet = 0.5
if nygc == "Diploid":
nygc_dip = 0.986
nygc_tet = 0.286
elif nygc == "Tetraploid":
nygc_dip = 0.017
nygc_tet = 0.727
oddsvec[1] = calculateBayes(oddsvec[1], nygc_dip, nygc_tet) #P(dip_better|dip, P(dip_better|tet))
odds_str["nygc"] = str(int(100*nygc_dip)) + "::" + str(int(100*nygc_tet))
goodness_dip = 0.5
goodness_tet = 0.5
if goodness == "Diploid":
goodness_dip = 0.884
goodness_tet = 0.216
elif goodness == "Tetraploid":
goodness_dip = 0.111
goodness_tet = 0.143
oddsvec[1] = calculateBayes(oddsvec[1], goodness_dip, goodness_tet) #P(dip_better|dip, P(dip_better|tet))
odds_str["goodness"] = str(int(100*goodness_dip)) + "::" + str(int(100*goodness_tet))
xcloser_dip = 0.5
xcloser_tet = 0.5
if xcloser == "Diploid":
xcloser_dip = 0.970
xcloser_tet = 0.054
elif xcloser == "Tetraploid":
xcloser_dip = 0.003
xcloser_tet = 0.429
elif xcloser == "Neither":
xcloser_dip = 0.033
xcloser_tet = 0.514
oddsvec[1] = calculateBayes(oddsvec[1], xcloser_dip, xcloser_tet) #P(dip_better|dip, P(dip_better|tet))
odds_str["xcloser"] = str(int(100*xcloser_dip)) + "::" + str(int(100*xcloser_tet))
writeNewLine(outfile, patient, sample, evidence, oddsvec, odds_str, final)
for unused in unused_VAFs:
print("Unused VAF call", unused)
outfile.close()