-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
368 lines (316 loc) · 17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Time : 23-11-09
# @Author : Antimage
import torch
import argparse
import warnings
from functools import partial
warnings.filterwarnings("ignore")
import logging
from copy import deepcopy
from tqdm import tqdm
logging.basicConfig(format='%(asctime)s - %(levelname)s: %(message)s',
level=logging.DEBUG)
import pickle
import os
import json
import sys
from typing import List, Tuple
from datasets import load_dataset
from load_data import TripletData, DataLoader
from utils import build_graph, generate_and_tokenize_prompt, print_number_of_trainable_model_parameters
from pretrain_nn import gnn_kge
from prompt import Prompter
from model import KGEAdapterLLM
from torch.optim import AdamW
from torch import nn
from transformers import get_linear_schedule_with_warmup
from transformers import LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments, DataCollatorForSeq2Seq
from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainingArguments, Seq2SeqTrainer
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
prepare_model_for_kbit_training
)
import warnings
warnings.filterwarnings("ignore")
def run(args):
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
train_data_loader = TripletData(args.data_path, args.dataset)
train_data_loader.load('train')
train_data = train_data_loader.triples
num_nodes, num_rels = train_data_loader.num_nodes, train_data_loader.num_rels
g, train_data = build_graph(num_nodes, num_rels, train_data, use_cuda, args.gpu)
g = g.to(device)
train_data.to(device)
use_gnn = 'gcn'
if args.gcn == False:
use_gnn = 'none'
logging.info("Use gcn: {}".format(use_gnn))
kge_dir = os.path.join(args.save_path, args.dataset)
if not os.path.exists(kge_dir):
os.makedirs(kge_dir)
kge_ent_embs_path = os.path.join(kge_dir, 'entity_emb_{}_{}.pkl'.format(args.score_func, use_gnn))
kge_rel_embs_path = os.path.join(kge_dir, 'relation_emb_{}_{}.pkl'.format(args.score_func, use_gnn))
if args.do_pretrain:
logging.info('*' * 20 + 'Start pretraining' + '*' * 20)
global_model = gnn_kge(g, num_nodes, num_rels, args.hidden_size, args.score_func, args.global_layers,
args.global_heads, args.global_gnn).to(device)
kge_optimizer = AdamW(global_model.parameters(), lr=args.kge_lr, weight_decay=args.weight_decay)
loss_fn = nn.CrossEntropyLoss(reduction='mean', weight=None)
global_step = (len(train_data) // args.kge_batch_size) * args.n_global_epochs if len(train_data) % args.kge_batch_size == 0 \
else (len(train_data) // args.kge_batch_size + 1) * args.n_global_epoch
kge_scheduler = get_linear_schedule_with_warmup(optimizer=kge_optimizer, num_warmup_steps=100, num_training_steps=global_step)
logging.info('Data size: {}, batch size: {}, training epoch: {}.'.format(len(train_data), args.kge_batch_size, args.n_global_epoch))
for epoch in range(args.n_global_epoch):
samples, length = deepcopy(train_data).to(device), len(train_data)
losses = []
samples = samples[torch.randperm(samples.shape[0]), :]
iters = int(length // args.kge_batch_size) + 1 if length % args.kge_batch_size != 0 else length // args.kge_batch_size
for step in tqdm(range(iters)):
new_feature = global_model.gnn_forward(args.gcn)
batch_data = samples[args.kge_batch_size * step : min(length, args.kge_batch_size * (step + 1))]
score = global_model(batch_data, new_feature)
loss = loss_fn(score, batch_data[:, 2])
losses.append(loss)
loss.backward()
torch.nn.utils.clip_grad_norm_(global_model.parameters(), args.grad_norm) # clip gradients
kge_optimizer.step()
kge_optimizer.zero_grad()
kge_scheduler.step()
logging.info("Epoch {:04d} in static KGE | Ave Loss: {:.4f} ".format(epoch, sum(losses) / len(losses)))
pickle.dump(global_model.ent_embedding, open(kge_ent_embs_path, 'wb'))
pickle.dump(global_model.rel_embedding, open(kge_rel_embs_path, 'wb'))
# temporarily ignore the graph embedding
# else:
# if args.add_prefix and os.path.exists(kge_ent_embs_path) and os.path.exists(kge_rel_embs_path):
# pass
# else:
# raise Exception("KGE files {} do not exist!".format(kge_ent_embs_path))
if args.do_finetune:
logging.info('*' * 20 + 'Start fine-tuning' + '*' * 20)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
llm_path = os.path.join(args.base_model_path, args.base_model)
gradient_accumulation_steps = args.batch_size // args.sm_batch_size
## training setting
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
## Prepare data
data_loader = DataLoader(args, os.path.join(args.data_path, args.dataset), ['train.txt'], 'valid.txt', )
data_loader.generate_history()
id2ent, id2rel = data_loader.entity_dic, data_loader.relation_dic
### valid data in fine-tune and test data in inference
test_samples = data_loader.load_test_quadruples(direction=args.ft_direction)
val_set_size = args.val_size
### dump prompt
prompt_save_dir = os.path.join(args.prompt_path, args.dataset)
if not os.path.exists(prompt_save_dir):
os.makedirs(prompt_save_dir)
aug = "aug" if args.data_augment else "noaug"
prompt_save_file = os.path.join(prompt_save_dir, '{}_{}_{}_{}.json'.format(args.base_model, args.history_length, args.ft_direction, aug))
template_path = os.path.join(args.template_path, args.base_model + '.json')
prompter = Prompter(args, template_path, id2ent, id2rel)
prompts = []
timeflow, timestamp_history = test_samples[0][0][3], [] # start time in test period
for sample, direction in tqdm(test_samples):
h, r, t, ts = sample
if ts != timeflow:
### timestamp change, updating history list
timeflow = ts
data_loader.update_history(timestamp_history)
timestamp_history = []
timestamp_history.append((sample, direction))
history_list = data_loader.search_history(h, r, args.history_length, direction)
if len(history_list) == 0:
continue
prompt = prompter.prepare_prompt((h, r, ts), history_list, response=t)
prompts.append(prompt)
json.dump(prompts, open(prompt_save_file, 'w'))
## Tokenize
tokenizer = AutoTokenizer.from_pretrained(llm_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
def tokenize(prompt, tokenizer, length_limit, add_eos_token=False):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=length_limit,
padding=False,
return_tensors=None,
)
# if (
# result["input_ids"][-1] != tokenizer.eos_token_id
# and len(result["input_ids"]) < length_limit
# and add_eos_token
# ):
# result["input_ids"].append(tokenizer.eos_token_id)
# result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
data_point["query"],
data_point["response"],
)
full_tokenized = tokenize(full_prompt, tokenizer, args.truncation_length, add_eos_token=True)
user_prompt = prompter.generate_prompt(
data_point["query"]
)
user_tokenized = tokenize(user_prompt, tokenizer, args.truncation_length)
user_length = len(user_tokenized["input_ids"])
mask_token = [-100] * user_length
full_tokenized["labels"] = mask_token + full_tokenized["labels"][user_length : ]
return full_tokenized
data = load_dataset('json', data_files=prompt_save_file)
# partial_func = partial(generate_and_tokenize_prompt, prompter=prompter, tokenizer=tokenizer, length_limit=args.truncation_length, if_test=False)
# train_data = data["train"].shuffle().map(partial_func)
train_data = data["train"].map(generate_and_tokenize_prompt)
val_data = None
## create peft model and trainer
# if not ddp and torch.cuda.device_count() > 1:
# # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
# model.is_parallelizable = True
# model.model_parallel = True
## Prepare model
model = AutoModelForCausalLM.from_pretrained(
llm_path,
torch_dtype=torch.float16,
device_map=device_map,
)
ori_p = print_number_of_trainable_model_parameters(model)
if args.prepare_kbit:
model = prepare_model_for_kbit_training(model)
peft_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=args.lora_target_modules,
lora_dropout=args.lora_dropout,
bias='none',
task_type='CAUSAL_LM'
)
model = get_peft_model(model, peft_config)
peft_p = print_number_of_trainable_model_parameters(model)
logging.info(f'# Trainable parameter \nBefore: {ori_p}\nAfter: {peft_p} \nPercentage: {round(peft_p/ori_p * 100, 2)}')
if args.add_prefix:
logging.info("****Add prefix embedding****")
prefix_model = KGEAdapterLLM(model, args.history_length + 2, (kge_ent_embs_path, kge_rel_embs_path))
training_args = TrainingArguments(
per_device_train_batch_size=args.sm_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=500,
num_train_epochs=args.n_ft_epoch,
learning_rate=args.lr,
fp16=True,
logging_steps=100,
optim="paged_adamw_32bit",
save_strategy="steps",
eval_steps=None,
save_steps=5000,
output_dir=args.output_dir,
save_total_limit=2,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=False,
report_to='wandb',
run_name=args.run_name,
)
if args.add_prefix:
trainer = Trainer(
model=prefix_model,
train_dataset=train_data,
eval_dataset=val_data,
args=training_args,
data_collator=DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
else:
trainer = Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=training_args,
data_collator=DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
# old_state_dict = model.state_dict
# model.state_dict = (
# lambda self, *_, **__: get_peft_model_state_dict(
# self, old_state_dict()
# )
# ).__get__(model, type(model))
# import sys
# if torch.__version__ >= "2" and sys.platform != "win32":
# model = torch.compile(model)
trainer.train()
model.save_pretrained(args.output_dir)
if args.add_prefix:
torch.save(prefix_model.embeddings, os.path.join(args.output_dir, "embeddings.pth"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='LLM for TKGC')
parser.add_argument('--data-path', type=str, default='./data', help='data path')
parser.add_argument("--dataset", type=str, default='ICEWS14', help='select dataset', choices=['ICEWS14', 'ICEWS18', 'ICEWS05-15', 'YAGO', 'WIKI'])
parser.add_argument("--save-path", type=str, default='./pretrained_emb', help='embedding save path')
parser.add_argument("--template-path", type=str, default='./templates', help='prompt template path')
parser.add_argument("--prompt-path", type=str, default='./prompts', help='prompt save path')
parser.add_argument("--base-model-path", type=str, default='/mnt/data/lrl23/models', help='base llm')
parser.add_argument("--base-model", type=str, default='Llama-2-7b-ms', help='base llm')
parser.add_argument("--gpu", type=int, default=1, help='gpu id')
# Configure for global KGE
parser.add_argument("--hidden-size", type=int, default=200, help='hidden size for KGE')
parser.add_argument("--global-gnn", type=str, default='rgat', help='type of gnn in global graph')
parser.add_argument("--global-heads", type=int, default=4, help='heads of attention during RGAT')
parser.add_argument("--global-layers", type=int, default=1, help='numbers of propagation')
parser.add_argument("--n-global-epoch", type=int, default=200, help='KGE epochs')
parser.add_argument("--gcn", action='store_true', help='whether use rgcn or some other gnn models during pretraining')
parser.add_argument("--score-func", type=str, default='RotatE', help='KGE model for optimization')
parser.add_argument("--kge-lr", type=str, default=1e-4, help='learning rate in KGE phase')
parser.add_argument("--weight-decay", type=float, default=1e-6, help='weight decay for optimizer')
parser.add_argument("--kge-batch-size", type=int, default=500, help='batch size in KGE')
parser.add_argument("--grad-norm", type=float, default=1., help='grad norm during training')
parser.add_argument("--add-prefix", action='store_true', help='whether add prefix embedding')
parser.add_argument("--useid", action='store_true')
# Configure for phase
parser.add_argument("--do-pretrain", action='store_true', help='whether pretrain KGE')
parser.add_argument("--do-finetune", action='store_true', help='whether fine-tuning')
# Configure for LLM fine-tune
parser.add_argument("--batch-size", type=int, default=8, help='fine-tuning batch size')
parser.add_argument("--sm-batch-size", type=int, default=2, help='small batch size')
parser.add_argument("--n-ft-epoch", type=int, default=2, help='fine-tuning epoch')
parser.add_argument("--prepare-kbit", action='store_true', help='whether prepare for kbit training')
parser.add_argument("--ft-direction", choices=['right', 'left', 'bi'], default='right', type=str, help='type of data used')
parser.add_argument("--lr", type=float, default=2e-5, help='learning rate during fine-tuning')
parser.add_argument("--truncation-length", type=int, default=3000, help='truncation length limit')
parser.add_argument("--train-on-inputs", type=bool, default=True, help='whether training on inputs data')
parser.add_argument("--add-eos-tokens", type=bool, default=False, help='whether adding eos')
parser.add_argument("--prompt-template", type=str, default='llama', help='prompt template')
parser.add_argument("--data-augment", action='store_true', help='whether use other information to pad history')
# Configure for lora
parser.add_argument("--lora-rank", type=int, default=32, help='lora rank')
parser.add_argument("--lora-alpha", type=int, default=16, help='lora alpha')
parser.add_argument("--lora-dropout", type=float, default=0.05, help='dropout rate during ft')
parser.add_argument("--lora-target-modules", type=List[str], default=['q_proj', 'k_proj', 'v_proj', 'o_proj'], help='lora target modules')
# Configure for other places
parser.add_argument("--history-length", type=int, default=8, help='history references')
parser.add_argument("--val-size", type=int, default=0, help='vaild dataset length')
parser.add_argument("--output-dir", type=str, default='./outputs', help='output dirs')
parser.add_argument("--logging-dir", type=str, default='./logs', help='logs save dir')
parser.add_argument("--add-reciprocal", type=bool, default=False, help='whether do reverse reasoning')
parser.add_argument("--run-name", type=str, default='llama-2-7b', help='tag for checking in wandb')
args = parser.parse_args()
# start
run(args)