-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpermutation_test.py
165 lines (141 loc) · 7.02 KB
/
permutation_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python
################################################################################
# SETUP
################################################################################
# Load required modules
import sys, os, argparse, logging, pandas as pd, numpy as np, json
from models import MODEL_NAMES, init_model, FEATURE_CLASSES
from i_o import getLogger
################################################################################
# MAP
################################################################################
# Generate permuted data and train a model
def map_permutation_test(args):
# Set up logger
logger = getLogger(args.verbosity)
# Load required modules
from sklearn.model_selection import LeaveOneOut, GridSearchCV, cross_val_predict
from metrics import compute_metrics
# Load the input data
X = pd.read_csv(args.feature_file, index_col=0, sep='\t')
y = pd.read_csv(args.outcome_file, index_col=0, sep='\t')
feature_classes = pd.read_csv(args.feature_class_file, index_col=0, sep='\t')
# Align the features and outcomes
patients = X.index
X = X.reindex(index = patients)
y = y.reindex(index = patients)
outcome_name = y.columns[0]
# Restrict to the training columns
selected_feature_classes = set(map(str.capitalize, set(FEATURE_CLASSES) - set(args.excluded_feature_classes)))
training_cols = feature_classes['Class'].isin(selected_feature_classes).index.tolist()
############################################################################
# RUN PERMUTATION TEST
############################################################################
#Initialize model
pipeline, gscv = init_model(args.model, args.n_jobs,
args.estimator_random_seed, args.max_iter, args.tol)
# Permute the outcomes
np.random.seed(args.permutation_random_seed)
y[outcome_name] = np.random.permutation(y[outcome_name])
# Convert dataframes to matrices to avoid dataframe splitting error
outer_cv = LeaveOneOut()
preds = pd.Series(cross_val_predict(estimator = gscv,
X=X.loc[:,training_cols],
y=y[outcome_name], cv=outer_cv,
n_jobs = args.n_jobs,
verbose=61 if args.verbosity > 0 else 0),
index = patients)
# Evalue results
sub_y = y.loc[patients][outcome_name].values
sub_preds = preds.loc[patients].values
metric_vals, var_explained = compute_metrics(sub_y, sub_preds)
############################################################################
# OUTPUT TO FILE
############################################################################
with open(args.output_file, 'w') as OUT:
output = {
"var_explained": var_explained.tolist(),
"true": sub_y.tolist(),
"preds": "sub_preds",
"params": vars(args),
"training_features": training_cols
}
output.update(metric_vals.items())
json.dump( output, OUT )
################################################################################
# REDUCE
################################################################################
# Read in a bunch of results on permuted data and compute significance
def reduce_permutation_test(args):
############################################################################
# LOAD AND SUMMARIZE INPUT
############################################################################
# Set up logger
logger = getLogger(args.verbosity)
# Load results file
with open(args.results_file, 'r') as IN:
obj = json.load(IN)
true_score = obj['mse']['held-out']
# Load permuted results files
permutation_scores = []
for permuted_results_file in args.permuted_results_files:
with open(permuted_results_file, 'r') as IN:
permutation_scores.append( json.load(IN)['mse']['held-out'] )
n_permutations = len(permutation_scores)
# Compute P-value
pvalue = (1. + sum(1. for s in permutation_scores if s >= true_score))/(n_permutations + 1.)
logger.info('- No. permutations: %s' % n_permutations)
logger.info('- True score: %.5f' % true_score)
logger.info('- P-value: p < %s' % pvalue)
############################################################################
# OUTPUT TO FILE
############################################################################
with open(args.output_file, 'w') as OUT:
output = dict(permutation_scores=permutation_scores,
true_score=true_score, n_permutations=n_permutations,
pvalue=pvalue, params=vars(args))
json.dump( output, OUT )
################################################################################
# MAIN
################################################################################
# Command-line argument parser
def get_parser():
# Set up and global arguments
parser = argparse.ArgumentParser()
subparser = parser.add_subparsers(dest='mode', help='Map or reduce.')
parser.add_argument('-v', '--verbosity', type=int, required=False, default=logging.INFO)
parser.add_argument('-of', '--output_file', type=str, required=True)
# Mapping arguments
map_parser = subparser.add_parser("map")
map_parser.add_argument('-ff', '--feature_file', type=str, required=True)
map_parser.add_argument('-fcf', '--feature_class_file', type=str, required=True)
map_parser.add_argument('-ocf', '--outcome_file', type=str, required=True)
map_parser.add_argument('-m', '--model', type=str, required=True, choices=MODEL_NAMES)
map_parser.add_argument('-mi', '--max_iter', type=int, required=False,
default=1000000,
help='ElasticNet only. Default is parameter used for the paper submission.')
map_parser.add_argument('-t', '--tol', type=float, required=False,
default=1e-7,
help='Default is parameter used for the paper submission.')
map_parser.add_argument('-nj', '--n_jobs', type=int, default=1, required=False)
map_parser.add_argument('-ers', '--estimator_random_seed', type=int,
default=12345, required=False)
map_parser.add_argument('-prs', '--permutation_random_seed', type=int,
default=12345, required=False)
map_parser.add_argument('-efc', '--excluded_feature_classes', type=str, required=False, nargs='*',
default=[], choices=FEATURE_CLASSES)
# Reduce arguments
reduce_parser = subparser.add_parser("reduce")
reduce_parser.add_argument('-rf', '--results_file', type=str, required=True)
reduce_parser.add_argument('-pf', '--permuted_results_files', type=str,
nargs='*', required=False, default=[])
return parser
def run(args):
if args.mode == 'map':
map_permutation_test(args)
elif args.mode == 'reduce':
reduce_permutation_test(args)
else:
raise NotImplementedError('Mode "%s" not implemented.' % args.mode)
if __name__ == '__main__':
run( get_parser().parse_args(sys.argv[1:]) )