-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnaive_rules.rs
242 lines (185 loc) · 11 KB
/
naive_rules.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
use datapond::generate_skeleton_datafrog;
use pretty_assertions::assert_eq;
#[test]
fn generate_naive_rules() {
let text = r#"
input borrow_region(O: Origin, L: Loan, P: Point)
input cfg_edge(P: Point, Q: Point)
input killed(L: Loan, P: Point)
input outlives(O1: Origin, O2: Origin, P: Point)
input region_live_at(O: Origin, P: Point)
input invalidates(L: Loan, P: Point)
internal subset(O1: Origin, O2: Origin, P: Point)
internal requires(O: Origin, L: Loan, P: Point)
internal borrow_live_at(L: Loan, P: Point)
output errors(L: Loan, P: Point)
subset(O1, O2, P) :- outlives(O1, O2, P).
subset(O1, O3, P) :- subset(O1, O2, P), subset(O2, O3, P).
subset(O1, O2, Q) :- subset(O1, O2, P), cfg_edge(P, Q), region_live_at(O1, Q), region_live_at(O2, Q).
requires(O, L, P) :- borrow_region(O, L, P).
requires(O2, L, P) :- requires(O1, L, P), subset(O1, O2, P).
requires(O, L, Q) :- requires(O, L, P), !killed(L, P), cfg_edge(P, Q), region_live_at(O, Q).
borrow_live_at(L, P) :- requires(O, L, P), region_live_at(O, P).
errors(L, P) :- borrow_live_at(L, P), invalidates(L, P).
"#;
let output = generate_skeleton_datafrog(text);
let expected = r#"
// Extensional predicates, and their indices
let borrow_region: Relation<(Origin, Loan, Point)> = Vec::new().into();
// Note: `cfg_edge_p` is an indexed version of the input facts `cfg_edge`
let cfg_edge_p: Relation<(Point, Point)> = Vec::new().into();
let invalidates: Relation<((Loan, Point), ())> = Vec::new().into();
let killed: Relation<(Loan, Point)> = Vec::new().into();
let outlives: Relation<(Origin, Origin, Point)> = Vec::new().into();
let region_live_at: Relation<((Origin, Point), ())> = Vec::new().into();
// `errors` inferred as the output relation
let errors = {
let mut iteration = Iteration::new();
// Intensional predicates, and their indices
let borrow_live_at = iteration.variable::<((Loan, Point), ())>("borrow_live_at");
let errors = iteration.variable::<(Loan, Point)>("errors");
let requires = iteration.variable::<(Origin, Loan, Point)>("requires");
// Note: `requires_lp` is an indexed version of the `requires` relation
let requires_lp = iteration.variable::<((Loan, Point), Origin)>("requires_lp");
// Note: `requires_op` is an indexed version of the `requires` relation
let requires_op = iteration.variable::<((Origin, Point), Loan)>("requires_op");
let requires_step_6_1 = iteration.variable("requires_step_6_1");
let requires_step_6_2 = iteration.variable("requires_step_6_2");
let subset = iteration.variable::<(Origin, Origin, Point)>("subset");
// Note: `subset_o1p` is an indexed version of the `subset` relation
let subset_o1p = iteration.variable::<((Origin, Point), Origin)>("subset_o1p");
// Note: `subset_o2p` is an indexed version of the `subset` relation
let subset_o2p = iteration.variable::<((Origin, Point), Origin)>("subset_o2p");
// Note: `subset_p` is an indexed version of the `subset` relation
let subset_p = iteration.variable::<(Point, (Origin, Origin))>("subset_p");
let subset_step_3_1 = iteration.variable("subset_step_3_1");
let subset_step_3_2 = iteration.variable("subset_step_3_2");
// R01: subset(O1, O2, P) :- outlives(O1, O2, P).
subset.extend(outlives.iter().clone());
// R04: requires(O, L, P) :- borrow_region(O, L, P).
requires.extend(borrow_region.iter().clone());
while iteration.changed() {
// Index maintenance
requires_op.from_map(&requires, |&(o, l, p)| ((o, p), l));
requires_lp.from_map(&requires, |&(o, l, p)| ((l, p), o));
subset_o2p.from_map(&subset, |&(o1, o2, p)| ((o2, p), o1));
subset_o1p.from_map(&subset, |&(o1, o2, p)| ((o1, p), o2));
subset_p.from_map(&subset, |&(o1, o2, p)| (p, (o1, o2)));
// Rules
// R01: subset(O1, O2, P) :- outlives(O1, O2, P).
// `outlives` is a static input, already loaded into `subset`.
// R02: subset(O1, O3, P) :- subset(O1, O2, P), subset(O2, O3, P).
subset.from_join(&subset_o2p, &subset_o1p, |&(_o2, p), &o1, &o3| (o1, o3, p));
// R03: subset(O1, O2, Q) :- subset(O1, O2, P), cfg_edge(P, Q), region_live_at(O1, Q), region_live_at(O2, Q).
subset_step_3_1.from_join(&subset_p, &cfg_edge_p, |&_p, &(o1, o2), &q| ((o1, q), o2));
subset_step_3_2.from_join(&subset_step_3_1, ®ion_live_at, |&(o1, q), &o2, _| ((o2, q), o1));
subset.from_join(&subset_step_3_2, ®ion_live_at, |&(o2, q), &o1, _| (o1, o2, q));
// R04: requires(O, L, P) :- borrow_region(O, L, P).
// `borrow_region` is a static input, already loaded into `requires`.
// R05: requires(O2, L, P) :- requires(O1, L, P), subset(O1, O2, P).
requires.from_join(&requires_op, &subset_o1p, |&(_o1, p), &l, &o2| (o2, l, p));
// R06: requires(O, L, Q) :- requires(O, L, P), !killed(L, P), cfg_edge(P, Q), region_live_at(O, Q).
requires_step_6_1.from_antijoin(&requires_lp, &killed, |&(l, p), &o| (p, (l, o)));
requires_step_6_2.from_join(&requires_step_6_1, &cfg_edge_p, |&_p, &(l, o), &q| ((o, q), l));
requires.from_join(&requires_step_6_2, ®ion_live_at, |&(o, q), &l, _| (o, l, q));
// R07: borrow_live_at(L, P) :- requires(O, L, P), region_live_at(O, P).
borrow_live_at.from_join(&requires_op, ®ion_live_at, |&(_o, p), &l, _| ((l, p), ()));
// R08: errors(L, P) :- borrow_live_at(L, P), invalidates(L, P).
errors.from_join(&borrow_live_at, &invalidates, |&(l, p), _, _| (l, p));
}
errors.complete()
};
"#;
println!("{}", output);
assert_eq!(expected, output);
}
// Copied from the above output test, to ensure what is generated at least builds, even
// if it cannot run due to having no data. The generic types are to bring in the ones
// defined in the declarations.
// TODO: add a build and generate step, and include the result in this function
#[allow(dead_code, unused_variables)]
fn ensure_generated_rules_build<Origin, Loan, Point>()
where
Origin: Ord + Copy + 'static,
Loan: Ord + Copy + 'static,
Point: Ord + Copy + 'static,
{
// shim to bring in datafrog so that the generated skeleton can build.
use datafrog::{Iteration, Relation};
// ----- output from the skeleton generator follows below -----
// Extensional predicates, and their indices
let borrow_region: Relation<(Origin, Loan, Point)> = Vec::new().into();
// Note: `cfg_edge_p` is an indexed version of the input facts `cfg_edge`
let cfg_edge_p: Relation<(Point, Point)> = Vec::new().into();
let invalidates: Relation<((Loan, Point), ())> = Vec::new().into();
let killed: Relation<(Loan, Point)> = Vec::new().into();
let outlives: Relation<(Origin, Origin, Point)> = Vec::new().into();
let region_live_at: Relation<((Origin, Point), ())> = Vec::new().into();
// `errors` inferred as the output relation
let errors = {
let mut iteration = Iteration::new();
// Intensional predicates, and their indices
let borrow_live_at = iteration.variable::<((Loan, Point), ())>("borrow_live_at");
let errors = iteration.variable::<(Loan, Point)>("errors");
let requires = iteration.variable::<(Origin, Loan, Point)>("requires");
// Note: `requires_lp` is an indexed version of the `requires` relation
let requires_lp = iteration.variable::<((Loan, Point), Origin)>("requires_lp");
// Note: `requires_op` is an indexed version of the `requires` relation
let requires_op = iteration.variable::<((Origin, Point), Loan)>("requires_op");
let requires_step_6_1 = iteration.variable("requires_step_6_1");
let requires_step_6_2 = iteration.variable("requires_step_6_2");
let subset = iteration.variable::<(Origin, Origin, Point)>("subset");
// Note: `subset_o1p` is an indexed version of the `subset` relation
let subset_o1p = iteration.variable::<((Origin, Point), Origin)>("subset_o1p");
// Note: `subset_o2p` is an indexed version of the `subset` relation
let subset_o2p = iteration.variable::<((Origin, Point), Origin)>("subset_o2p");
// Note: `subset_p` is an indexed version of the `subset` relation
let subset_p = iteration.variable::<(Point, (Origin, Origin))>("subset_p");
let subset_step_3_1 = iteration.variable("subset_step_3_1");
let subset_step_3_2 = iteration.variable("subset_step_3_2");
// R01: subset(O1, O2, P) :- outlives(O1, O2, P).
subset.extend(outlives.iter().clone());
// R04: requires(O, L, P) :- borrow_region(O, L, P).
requires.extend(borrow_region.iter().clone());
while iteration.changed() {
// Index maintenance
requires_op.from_map(&requires, |&(o, l, p)| ((o, p), l));
requires_lp.from_map(&requires, |&(o, l, p)| ((l, p), o));
subset_o2p.from_map(&subset, |&(o1, o2, p)| ((o2, p), o1));
subset_o1p.from_map(&subset, |&(o1, o2, p)| ((o1, p), o2));
subset_p.from_map(&subset, |&(o1, o2, p)| (p, (o1, o2)));
// Rules
// R01: subset(O1, O2, P) :- outlives(O1, O2, P).
// `outlives` is a static input, already loaded into `subset`.
// R02: subset(O1, O3, P) :- subset(O1, O2, P), subset(O2, O3, P).
subset.from_join(&subset_o2p, &subset_o1p, |&(_o2, p), &o1, &o3| (o1, o3, p));
// R03: subset(O1, O2, Q) :- subset(O1, O2, P), cfg_edge(P, Q), region_live_at(O1, Q), region_live_at(O2, Q).
subset_step_3_1.from_join(&subset_p, &cfg_edge_p, |&_p, &(o1, o2), &q| ((o1, q), o2));
subset_step_3_2.from_join(&subset_step_3_1, ®ion_live_at, |&(o1, q), &o2, _| {
((o2, q), o1)
});
subset.from_join(&subset_step_3_2, ®ion_live_at, |&(o2, q), &o1, _| {
(o1, o2, q)
});
// R04: requires(O, L, P) :- borrow_region(O, L, P).
// `borrow_region` is a static input, already loaded into `requires`.
// R05: requires(O2, L, P) :- requires(O1, L, P), subset(O1, O2, P).
requires.from_join(&requires_op, &subset_o1p, |&(_o1, p), &l, &o2| (o2, l, p));
// R06: requires(O, L, Q) :- requires(O, L, P), !killed(L, P), cfg_edge(P, Q), region_live_at(O, Q).
requires_step_6_1.from_antijoin(&requires_lp, &killed, |&(l, p), &o| (p, (l, o)));
requires_step_6_2.from_join(&requires_step_6_1, &cfg_edge_p, |&_p, &(l, o), &q| {
((o, q), l)
});
requires.from_join(&requires_step_6_2, ®ion_live_at, |&(o, q), &l, _| {
(o, l, q)
});
// R07: borrow_live_at(L, P) :- requires(O, L, P), region_live_at(O, P).
borrow_live_at.from_join(&requires_op, ®ion_live_at, |&(_o, p), &l, _| {
((l, p), ())
});
// R08: errors(L, P) :- borrow_live_at(L, P), invalidates(L, P).
errors.from_join(&borrow_live_at, &invalidates, |&(l, p), _, _| (l, p));
}
errors.complete()
};
}